JPH0453694B2 - - Google Patents

Info

Publication number
JPH0453694B2
JPH0453694B2 JP61175739A JP17573986A JPH0453694B2 JP H0453694 B2 JPH0453694 B2 JP H0453694B2 JP 61175739 A JP61175739 A JP 61175739A JP 17573986 A JP17573986 A JP 17573986A JP H0453694 B2 JPH0453694 B2 JP H0453694B2
Authority
JP
Japan
Prior art keywords
pressure
deviation
molten material
temperature
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61175739A
Other languages
Japanese (ja)
Other versions
JPS6331731A (en
Inventor
Katsuhiro Iguchi
Teiji Shimizu
Kenji Nozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP61175739A priority Critical patent/JPS6331731A/en
Publication of JPS6331731A publication Critical patent/JPS6331731A/en
Publication of JPH0453694B2 publication Critical patent/JPH0453694B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92019Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/9238Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92495Treatment of equipment, e.g. purging, cleaning, lubricating or filter exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92885Screw or gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/9299Treatment of equipment, e.g. purging, cleaning, lubricating or filter exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、溶融プラスチツク材料を成形する
押出成形機、射出成形機および吹込成形機(以下
これらを総称して押出機等という)の制御方法に
係り、特に良品質の成形を行うため、材料の押出
し溶融を行うスクリユに主フライトとバリアフラ
イト(副フライト)とを設けて、バレル内面との
間にソリツド溝とメルト溝とを形成したバリア形
のスクリユを使用する押出機等の精密制御方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for controlling an extrusion molding machine, an injection molding machine, and a blow molding machine (hereinafter collectively referred to as extruders, etc.) for molding molten plastic materials. In order to achieve especially high-quality molding, a main flight and a barrier flight (sub-flight) are provided on the screw that extrudes and melts the material, and a barrier is created in which a solid groove and a melt groove are formed between the barrel inner surface and the barrel. This invention relates to a precision control method for an extruder using a shaped screw.

〔従来の技術〕[Conventional technology]

押出機等の制御の目標は、適切に設計された押
出スクリユを用いて、バレル温度を適当に設定
し、所定の押出量の溶融材料を均一にかつ安定し
て次工程へ供給することである。このために、初
期においてはスクリユヘツド部の溶融材料の圧力
ならびに温度の定値制御が行われた。しかし、こ
れのみの制御では限界があり、時には溶融の不安
定さを助長する逆効果があることが判明した。す
なわち、これはソリツドベツドのブレークアツプ
という現象によるもので、一般に固形状の未溶融
物の解体という意味であるが、スクリユの溝内で
固形材料が供給部、圧縮部、計量部を経て次第に
溶融材料に変つて行く溶融工程の途中で発生する
溶融の不安定状態を示すものである。このような
現象を回避するため、スクリユの最長の部分を占
める溶融促進部に、固形成分と溶融成分を分離す
る棚としてバリアフライトを新しく設けたのがバ
リア形のスクリユである。この新しいバリア形の
スクリユの改善効果は見るべきものがあつたが、
さらにこの効果を拡大したものは次のような診断
制御システムである。
The goal of controlling an extruder, etc. is to use an appropriately designed extrusion screw, set the barrel temperature appropriately, and uniformly and stably supply a predetermined amount of molten material to the next process. . For this reason, in the early stages, the pressure and temperature of the molten material in the screw head were controlled at fixed values. However, it has been found that this control alone has its limits and sometimes has the opposite effect of promoting melting instability. In other words, this is due to the phenomenon of solid bed breakup, which generally means the disintegration of solid unmelted material, but the solid material passes through the feeding section, compression section, and metering section in the groove of the screw, and gradually becomes molten material. This indicates an unstable state of melting that occurs during the melting process as the temperature changes. In order to avoid such a phenomenon, barrier-type screws have a new barrier flight installed in the melting promotion section, which occupies the longest part of the screw, as a shelf to separate the solid and molten components. The improvement effect of this new barrier-type screw was worth seeing, but
The following diagnostic control system further expands this effect.

すなわち、本出願人は、先に前記ソリツドベツ
ドのブレークアツプを含めて、その他の不安定に
対し、溶融促進部に設けた圧力センサと、スクリ
ユの駆動端に設けた位置センサからの信号によつ
て圧力波形を検出し、所定の基準データと比較お
よび対照させて、その相関性の統計量を算出し
て、その正常または異常の判別を行い、異常の際
にさらに追試を行うという溶融工程の自動診断制
御システムを提案し、特願昭60−81369号として
特許出願を行つた。また、同時出願の「押出機等
の制御方法」は、前記自動診断制御システムにお
いて前記溶融工程を正常と判定した後に、前記メ
ルト溝内圧力に基づいて前記溶融促進部に近接す
るバレル温度制御帯のバレル設定温度の制御を行
い、前記メルト溝内圧力を定値制御することを主
眼とするものである。
That is, the present applicant has previously discovered that the solid bed can be prevented from breaking up and other instability by using signals from a pressure sensor provided in the melting promotion section and a position sensor provided at the drive end of the screw. Automated melting process that detects the pressure waveform, compares and contrasts it with predetermined standard data, calculates the correlation statistics, determines whether it is normal or abnormal, and performs additional tests in the event of an abnormality. We proposed a diagnostic control system and filed a patent application as Japanese Patent Application No. 81369/1983. Further, the concurrently filed "Control method for an extruder, etc." provides a barrel temperature control zone near the melting promotion section based on the pressure in the melt groove after the melting process is determined to be normal in the automatic diagnostic control system. The main objective is to control the barrel temperature setting and to control the melt groove internal pressure to a constant value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の押出機等の制御方法は、
溶融工程が正常であれば、前記溶融促進部のメル
ト溝内圧力を基準として、この前記溶融促進部の
溶融熱量、すなわち固形材料から溶融材料へ移動
する速度を示す溶融速度に関係の深いバレル設定
温度を制御するものであつたが、このメルト溝内
圧力はただの溶融速度のみで変化するのではな
く、スクリユのヘツド部前方に設けられているフ
イルタの目詰りによつて発生するヘツド部の溶融
材料圧力の影響によつても変化する。従つて、メ
ルト溝内圧力だけを検出して、バレル設定温度を
修正しようとすると、あまり良い結果が得られな
い場合がある。例えば、今フイルタ目詰りの為に
メルト溝内圧力が上昇したにも拘わらず、溶融速
度が増加したと考えて、溶融加熱量が過剰だから
バレル設定温度を下げようとする修正動作は不適
当な動作である。第3図は、スクリユの定性的特
性曲線図であり、バレル設定温度と溶融速度およ
びスクリユ回転速度Nsの関係を示すものである。
第3図において、一定のバレル設定温度のときに
スクリユ速度Nsが増加すると、溶融速度は増加
するが、次第に飽和して所定のバレル設定温度以
上では一定になる。また、第4図はフイルタ目詰
りと溶融速度の変化による状態変化と修正動作の
説明図である。第4図において、事象の項目で単
独とあるのは、フイルタ目詰りと溶融速度の変化
が独立して発生した場合を示し、複合とあるのは
両者が同時に発生した場合を示す。状態変化の項
目で、参照符号P1はメルト溝内圧力、P2はフイ
ルタの前方の溶融材料圧力、P3はフイルタの後
方の溶融材料圧力をそれぞれ示す。矢印は、その
傾きにより増,減あるいは上昇,下降を表示す
る。星印は不定の状態を示す。また、第4図は、
一実施例を示すもので、実際にはヘツド部の溶融
材料の温度が関係してくるが、これは繁雑さをさ
けて省略してある。前述の例は、第4図の単独事
象において、メルト溝内圧力P1がフイルタ目詰
りにより上昇したものを溶融速度により上昇した
と誤認するもので、正しい判断をするためにはフ
イルタの後方の溶融材料圧力P3の検出が必要な
ことを示している。
However, conventional control methods for extruders, etc.
If the melting process is normal, the barrel setting is closely related to the melting heat amount of the melting promotion section, that is, the melting speed indicating the speed of movement from the solid material to the molten material, based on the pressure in the melt groove of the melting promotion section. The pressure inside the melt groove changes not only due to the melting speed, but also due to the change in the pressure in the head section caused by clogging of the filter installed in front of the head section of the screw. It also changes due to the influence of molten material pressure. Therefore, if an attempt is made to correct the barrel temperature setting by detecting only the melt groove internal pressure, very good results may not be obtained. For example, even though the pressure in the melt groove has increased due to a clogged filter, it is inappropriate to take corrective action to lower the barrel temperature setting because the melting heating amount is excessive, assuming that the melting rate has increased. It is an action. FIG. 3 is a qualitative characteristic curve diagram of the screw, showing the relationship between the barrel setting temperature, the melting rate, and the screw rotation speed Ns.
In FIG. 3, when the screw speed Ns increases at a constant barrel set temperature, the melting rate increases, but gradually becomes saturated and becomes constant above a predetermined barrel set temperature. Further, FIG. 4 is an explanatory diagram of state changes and corrective operations due to filter clogging and changes in melting rate. In FIG. 4, in the event category, "single" indicates that filter clogging and a change in melting rate occur independently, and "combined" indicates that both occur simultaneously. In the item of state change, reference symbol P 1 indicates the pressure in the melt groove, P 2 indicates the molten material pressure in front of the filter, and P 3 indicates the molten material pressure behind the filter. The arrow indicates increase, decrease, rise, or fall depending on its slope. An asterisk indicates an indeterminate state. Also, Figure 4 shows
This shows one example, and although the temperature of the molten material in the head section is actually related, this is omitted to avoid complexity. In the above example, in the single event shown in Figure 4, the increase in melt groove internal pressure P 1 due to filter clogging is mistakenly assumed to have increased due to the melting speed. This indicates that it is necessary to detect the molten material pressure P3 .

そこで、本発明の目的は、バリア形のスクリユ
をもつ押出機等の制御をメルト溝内圧力に基づく
定値制御のみではなく、このメルト溝内圧力なら
びにフイルタの前方および後方の溶融材料の圧力
も検出して、フイルタ目詰りに正しく対応した制
御を行い、押出量を常に一定範囲内に安定して維
持することができる押出機等の精密制御方法を提
供するものである。
Therefore, an object of the present invention is to control an extruder having a barrier-type screw not only by constant value control based on the pressure in the melt groove, but also by detecting the pressure in the melt groove and the pressure of the molten material in front and behind the filter. The present invention provides a precision control method for an extruder, etc., which can perform control that correctly responds to filter clogging, and can always stably maintain the extrusion amount within a certain range.

〔問題点を解決するための手段〕[Means for solving problems]

従つて、本発明に係る押出機等の精密制御方法
は、分割して温度制御されるバレル中に供給され
るプラスチツク固形材料を、主フライトおよびバ
リアフライトを備えたスクリユの回転により押出
し溶融し、この押出し溶融された所定押出量の溶
融材料を押出成形、射出成形もしくは吹込成形す
る押出機等の制御方法において、 前記スクリユの溶融促進部における第1圧力セ
ンサからのメルト溝内圧力P1およびソリツド溝
内圧力を示す圧力信号と、 第2圧力センサからの前記スクリユのヘツド部
前方に設けられるフイルタの前方の溶融材料圧力
P2を示す圧力信号と、 第3圧力センサからの前記フイルタの後方の溶
融材料圧力P3を示す圧力信号と、 温度センサからの前記フイルタの後方の溶融材
料温度TRを示す温度信号とを、 それぞれ信号処理器を介して順次選別入力した
信号をA/D変換器を介してサンプリングデータ
としてCPUに入力し、 位置センサからの前記バリアフライトおよび前
記主フライトの位置を示す位置信号は直接前記
CPUに入力しデータ処理されてメモリに記憶さ
れ、 これらのデータにより前記CPUが、 前記溶融材料圧力P3の目標圧力との偏差D3
増加して前記押出量が上昇するときは前記溶融促
進部に対応するバレル設定温度を偏差D3に見合
つて降下させ、 偏差D3が減少し前記溶融材料圧力P2の目標圧
力との偏差D2が増加して前記押出量が下降する、
フイルタ目詰りが認められる際には、前記スクリ
ユの回転速度を偏差D2とD3の差に見合うよう上
昇させ、 偏差D3が減少しかつ偏差D2も減少すると共に
前記メルト溝内圧力P1の目標圧力との偏差D1
減少する、フイルタ目詰りが認められずに溶融熱
量が不足する場合には、前記バレル設定温度を偏
差D1とD2とD3の和に見合うように上昇させ、 前記押出量を常に一定範囲内に安定して維持す
るよう制御することを特徴とする。
Therefore, the method for precisely controlling an extruder, etc. according to the present invention involves extruding and melting a plastic solid material supplied into a barrel whose temperature is controlled in parts by rotating a screw having a main flight and a barrier flight. In this method of controlling an extruder or the like for extrusion molding, injection molding or blow molding a predetermined extrusion amount of molten material that has been extruded and melted, the melt groove internal pressure P 1 and solids from the first pressure sensor in the melting promotion part of the screw are controlled. A pressure signal indicating the pressure in the groove, and a pressure of the molten material in front of the filter provided in front of the head of the screw from the second pressure sensor.
a pressure signal indicating the molten material pressure P 2 behind the filter from a third pressure sensor; and a temperature signal indicating the molten material temperature TR behind the filter from the temperature sensor; The signals that are sequentially selected and input through the respective signal processors are input to the CPU as sampling data through the A/D converter, and the position signals indicating the positions of the barrier flight and the main flight from the position sensor are directly input to the CPU.
The data is input to the CPU, processed, and stored in the memory, and based on these data, the CPU controls the melting process when the deviation D 3 of the molten material pressure P 3 from the target pressure increases and the extrusion rate increases. lowering the barrel set temperature corresponding to the part corresponding to the deviation D 3 , the deviation D 3 decreases, the deviation D 2 of the molten material pressure P 2 from the target pressure increases, and the extrusion amount decreases;
When the filter is found to be clogged, the rotational speed of the screw is increased to correspond to the difference between the deviations D 2 and D 3 , and as the deviation D 3 decreases and the deviation D 2 also decreases, the pressure inside the melt groove P decreases. If the deviation D 1 from the target pressure of 1 also decreases and the melting heat is insufficient due to filter clogging, the barrel set temperature should be adjusted to match the sum of the deviations D 1 , D 2 , and D 3 . The extrusion rate is controlled so that the extrusion rate is always stably maintained within a certain range.

〔作用〕[Effect]

本発明に係る押出機等の精密制御方法によれ
ば、正常に運転されている押出機等において、そ
の溶融工程に何等かの異常が生ずると、各センサ
からのサンプリングデータに基づく圧力波形に異
常が生じ、前記自動診断制御システムにより、異
常が検出されて警報の出力およびスローダウンの
応急処置が行われる。その回復過程において、圧
力波形が正常に戻れば、メルト溝内圧力に基づく
定値制御が行われる。ここに示される圧力波形は
サンプリングデータに基づくそれぞれの経時的変
化量を示すものである。
According to the precision control method for an extruder or the like according to the present invention, if any abnormality occurs in the melting process of the extruder or the like that is normally operating, the pressure waveform based on the sampling data from each sensor will be abnormal. The automatic diagnostic control system detects the abnormality and takes emergency measures such as outputting an alarm and slowing down the vehicle. In the recovery process, if the pressure waveform returns to normal, constant value control is performed based on the pressure within the melt groove. The pressure waveforms shown here indicate respective amounts of change over time based on sampling data.

さらに、スクリユの溶融促進部におけるメルト
溝内圧力P1のみならず、フイルタの前方および
後方の溶融材料圧力P2およびP3ならびにフイル
タの後方の溶融材料温度TRを計測する。これら
の計測により得られたサンプリングデータを利用
すれば押出量の上昇の場合は圧力P3の上昇のみ
の場合に対応し、押出量が下降してフイルタ目詰
りが認められる場合は圧力P2が上昇しているの
に圧力P3が下降している場合に対応し、押出量
が下降してフイルタ目詰りが認められない場合は
圧力P1とP3はいずれも下降している場合に対応
することになる(第4図参照)。従つて、このよ
うな事象の解明に基づき、前述の本発明に係る押
出機等の精密制御方法を実施すると、フイルタ目
詰りに正しく対応した制御が実施され、押出量を
常に一定範囲内に安定して維持することができ
る。
Furthermore, not only the melt groove internal pressure P 1 in the melting promotion part of the screw, but also the molten material pressures P 2 and P 3 in front and behind the filter, and the molten material temperature TR behind the filter are measured. Using the sampling data obtained from these measurements, if the extrusion rate increases, it will be determined that only the pressure P 3 increases, and if the extrusion rate decreases and the filter is clogged, the pressure P 2 will increase. This corresponds to a case where the pressure P3 is decreasing even though it is increasing.If the extrusion rate decreases and no filter clogging is observed, it corresponds to a case where both pressures P1 and P3 are decreasing. (See Figure 4). Therefore, if the precision control method for an extruder, etc. according to the present invention is implemented based on the elucidation of such phenomena, control will be implemented that correctly responds to filter clogging, and the extrusion amount will always be stabilized within a certain range. and can be maintained.

〔実施例〕〔Example〕

次に、本発明に係る押出機等の精密制御方法の
実施例につき、添付図面を参照しながら以下詳細
に説明する。
Next, examples of the method for precisely controlling an extruder, etc. according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図は、本発明に係る押出機等の精密制御方
法を実施する押出機の一実施例を示す概略構成図
である。第1図において、参照符号10はバレル
を示し、このバレル10の内部にスクリユ12が
挿通配置される。このスクリユ12のヘツド部に
は、押出成形型としてのTダイ14が設けられ
る。また、このスクリユ12の基部は、減速機1
6を介して駆動モータ18に接続される。また、
前記バレル10の外周には、加熱用のヒータ20
が装着され、またその近辺に温度センサが適宜設
けられ、これらは温度調節計21,22,23,
25および27によりバレル温度制御帯が分割し
て制御される。このヒータ20に対して外部冷却
用のフアン24が適宜設けられ、スクリユ12の
基部側にプラスチツクの固形材料を供給するホツ
パ11が設けられる。スクリユ12には、主フラ
イト60とバリアフライト62とが設けられ、こ
の二種類のフライトを備える部分がスクリユ12
の溶融促進部で、この部分に対応するバレル10
に、メルト溝内圧力およびソリツド溝内圧力を検
出するための第1の圧力センサ26が設けられ、
さらにスクリユ12のヘツド部前方に設けられる
フイルタ13の前方および後方の溶融材料圧力を
検出するために、この部材に対応するバレル10
に第2の圧力センサ29および第3の圧力センサ
31が設けられ、さらにフイルタ13の後方の溶
融材料温度を検出する温度センサ28がバレル1
0に設けられる。また、スクリユ12の基部の端
部12aには主フライト60およびバリアフライ
ト62の位置を検出する位置センサ30が設けら
れる。第1、第2、第3のそれぞれの圧力センサ
26,29および31、ならびに温度センサ28
で検出された信号は、それぞれ信号処理器32,
34,35および37を介してマルチプレクサ3
6により選択的にA/D変換器38に供給され、
サンプリングデータとなりCPU40に入力する。
一方、位置センサ30からの信号は、信号処理器
42を介して直接CPU40に入力する。これら
諸入力データは内部メモリ44に記憶される。や
がて、これら入力データは予め既に記憶保持され
ている目標値あるいは基準の圧力波形データと比
較される。CPU40にはCRTデイスプレイ46
やプリンタ48等の出力機器、キーボード53か
らなる入力設定器およびフロツピデイスク50等
の外部メモリが適宜接続される。また、CPU4
0に対して出力インタフエース52を介して異常
警報を行うブザー54、スクリユ12の駆動モー
タ18ならびにマルチプレクサ51を介して選択
的に温度調節計21,22,23,25および2
7が接続される。
FIG. 1 is a schematic configuration diagram showing an embodiment of an extruder for carrying out the precision control method for an extruder, etc. according to the present invention. In FIG. 1, reference numeral 10 indicates a barrel, into which a screw 12 is inserted and disposed. A T-die 14 serving as an extrusion mold is provided at the head portion of the screw 12. Further, the base of this screw 12 is connected to the reducer 1
6 to a drive motor 18. Also,
A heater 20 for heating is provided on the outer periphery of the barrel 10.
is mounted, and temperature sensors are appropriately installed near it, and these are temperature controllers 21, 22, 23,
The barrel temperature control zone is divided and controlled by 25 and 27. A fan 24 for external cooling is appropriately provided for the heater 20, and a hopper 11 for supplying solid plastic material is provided on the base side of the screw 12. The screw 12 is provided with a main flight 60 and a barrier flight 62, and the portion of the screw 12 that has these two types of flights is
, the barrel 10 corresponding to this part
A first pressure sensor 26 for detecting the pressure in the melt groove and the pressure in the solid groove is provided,
Furthermore, in order to detect the pressure of the molten material in front and behind the filter 13 provided in front of the head portion of the screw 12, a barrel 10 corresponding to this member is used.
A second pressure sensor 29 and a third pressure sensor 31 are provided at the barrel 1, and a temperature sensor 28 for detecting the temperature of the molten material behind the filter 13 is provided at the barrel 1.
Set to 0. Further, a position sensor 30 for detecting the positions of the main flight 60 and the barrier flight 62 is provided at the end 12a of the base of the screw 12. First, second and third pressure sensors 26, 29 and 31, and temperature sensor 28
The detected signals are processed by signal processors 32 and 32, respectively.
Multiplexer 3 via 34, 35 and 37
6 selectively supplied to the A/D converter 38,
This becomes sampling data and is input to the CPU 40.
On the other hand, the signal from the position sensor 30 is directly input to the CPU 40 via the signal processor 42. These various input data are stored in internal memory 44. Eventually, these input data are compared with previously stored target values or reference pressure waveform data. CRT display 46 for CPU 40
An output device such as a printer 48, an input setting device such as a keyboard 53, and an external memory such as a floppy disk 50 are connected as appropriate. Also, CPU4
A buzzer 54 that issues an abnormality alarm via an output interface 52 when the
7 is connected.

次に、このように構成された押出機の精密制御
方法につきその動作に基づいて説明する。
Next, a method for precisely controlling the extruder configured as described above will be explained based on its operation.

まず、バレル温度を所定設定温度に上昇し、ス
クリユ12の回転速度を所定の回転数に保持し
て、プラスチツク固形材料を供給する。次に、各
種センサによりサンプリングデータがCPU40
を介してメモリ44に記憶され、再びCPU40
によつて溶融工程の異常ならびにフイルタ目詰り
がないと判断されると、押出量は一定範囲内に維
持されるであろう。溶融工程の異常判断について
前記自動診断制御システムが利用されることはい
うまでもない。このシステムの作用については省
略する。フイルタ目詰り対策については、第2図
のフローチヤートにより説明する。第2図は第1
図に示す押出機のプログラムの一例を示すフロー
チヤートである。ステツプaは初期設定、ステツ
プbは計測処理の割込みを開始してもよいかの判
断、ステツプcは第1、第2および第3の圧力セ
ンサならびに温度センサとの接続をマルチプレク
サ36により切替える処理、ステツプdは各セン
サからの圧力P1,P2およびP3ならびに温度TRの
入力開始のタイミング、ステツプeはサンプリン
グデータの入力処理、ステツプfは各センサから
のデータ入力終了のタイミング、ステツプgは計
測点の有無の確認であり、このようにして計測、
サンプリングは一応完了する。これらのサンプリ
ングデータは、ステツプhにてデータ処理され、
そしてCRTデイスプレイ46にグラフイツクに
表示される。ステツプiにおいては押出量の変化
が判断される、すなわち、圧力P3の目標圧力と
の偏差D3の増加により押出量のアツプが判断さ
れる際には、ステツプmへ移り、溶融促進部に対
応するバレル設定温度を偏差D3に見合うように
減少させる。第1図で、CPU40はマルチプレ
クサ51を駆動して出力インタフエース52を介
してバレル設定温度を偏差D3に見合うよう減少
させる修正信号を温度調節計21および22へ出
力する。また、第2図において、偏差D3の減少
により、押出量のダウンが判断されるときは、ス
テツプjへ移り、圧力P2の目標圧力との偏差D2
の増加によりフイルタ目詰りのあることが判断さ
れるときはステツプnへ移り、スクリユの回転速
度Nsを偏差D2とD3の差に見合うよう増加させ
る。第1図でCPU40は出力インタフエース5
2を介して偏差D2とD3の差に見合うようスクリ
ユの回転速度Nsを増加させる修正信号を駆動モ
ータ18へ送出してこの回転速度Nsを上昇させ
る。スクリユの回転速度Nsと、溶融速度との関
係は第3図に示す通りである。また、第2図で偏
差D3の減少により、押出量のダウンが判断され、
偏差D2の減少によりフイルタ目詰りのないこと
が判断された場合は、ステツプkへ移り、溶融熱
量が不足かどうかが判断される。すなわち、圧力
P1の目標圧力との偏差D1もまた減少する場合に
は、明らかに溶融熱量が不足であるからステツプ
lへ移り、溶融促進部に対応するバレル設定温度
を、例えば偏差D1とD2とD3の和に見合うよう増
加させる。第1図でCPU40はマルチプレクサ
51を駆動して出力インタフエース52を介して
バレル設定温度を偏差D1とD2とD3の和に見合う
よう増加させる修正信号を温度調節計21および
22へ出力する。再び第2図において、ステツプ
kで偏差D3が零かあるいは増加する際に、溶融
工程に異常があるからオペレータに注意を喚起す
るメツセージをCPUデイスプレイ46に表示す
るか、ブザー54を鳴らす。これがステツプpで
ある。このような修正処理が終了すれば、ステツ
プqへ移り、押出機の反応を待つことになる。温
度制御の反応速度はゆつくりしたものであるが、
徐々に押出機の押出量は一定範囲に落ついてくる
ことになる。
First, the barrel temperature is raised to a predetermined set temperature, the rotational speed of the screw 12 is maintained at a predetermined rotational speed, and the plastic solid material is fed. Next, the sampling data is sent to the CPU 40 by various sensors.
is stored in the memory 44 via the CPU 40
If it is determined that there is no abnormality in the melting process and no filter clogging, the extrusion rate will be maintained within a certain range. It goes without saying that the automatic diagnostic control system described above is used to determine abnormalities in the melting process. The operation of this system will be omitted. Measures against filter clogging will be explained with reference to the flowchart shown in FIG. Figure 2 is the first
1 is a flowchart showing an example of a program for the extruder shown in the figure. Step a is initialization, step b is a determination as to whether or not to start interrupting the measurement process, and step c is a process of switching connections with the first, second and third pressure sensors and temperature sensor using the multiplexer 36. Step d is the timing to start inputting pressures P 1 , P 2 and P 3 and temperature TR from each sensor, step e is sampling data input processing, step f is timing to end data input from each sensor, and step g is This is to check the presence or absence of the measurement point, and in this way, the measurement,
Sampling is now complete. These sampling data are processed in step h,
Then, it is displayed graphically on the CRT display 46. In step i, a change in the extrusion rate is determined, that is, when an increase in the extrusion rate is determined based on an increase in the deviation D3 between the pressure P3 and the target pressure, the process moves to step m, and the melting promotion section is Decrease the corresponding barrel set point temperature commensurate with the deviation D 3 . In FIG. 1, CPU 40 drives multiplexer 51 to output a correction signal to temperature controllers 21 and 22 via output interface 52 that reduces the barrel set point temperature by the deviation D 3 . In addition, in FIG. 2, when it is determined that the extrusion amount has decreased due to a decrease in the deviation D 3 , the process moves to step j, and the deviation D 2 of the pressure P 2 from the target pressure is determined.
If it is determined that the filter is clogged due to the increase in , the process moves to step n, and the screw rotational speed Ns is increased to correspond to the difference between the deviations D 2 and D 3 . In Figure 1, CPU 40 is output interface 5
2, a correction signal is sent to the drive motor 18 to increase the rotational speed Ns of the screw so as to correspond to the difference between the deviations D2 and D3 . The relationship between the rotational speed Ns of the screw and the melting speed is as shown in FIG. In addition, in Figure 2, it is determined that the extrusion amount has decreased due to the decrease in the deviation D 3 ,
If it is determined that the filter is not clogged due to a decrease in the deviation D2 , the process moves to step k, where it is determined whether the amount of melting heat is insufficient. i.e. pressure
If the deviation D 1 from the target pressure of P 1 also decreases, it is clear that the amount of melting heat is insufficient, so proceed to step 1, and change the barrel set temperature corresponding to the melting promotion part, for example, by adjusting the deviation D 1 and D 2 and D 3 . In FIG. 1, the CPU 40 drives the multiplexer 51 and outputs a correction signal to the temperature controllers 21 and 22 via the output interface 52 to increase the barrel set temperature in proportion to the sum of the deviations D 1 , D 2 , and D 3 . do. Referring again to FIG. 2, when the deviation D 3 becomes zero or increases in step k, a message is displayed on the CPU display 46 or a buzzer 54 is sounded to alert the operator that there is an abnormality in the melting process. This is step p. When such correction processing is completed, the process moves to step q and waits for the reaction of the extruder. Although the reaction speed of temperature control is slow,
The amount of extrusion from the extruder will gradually fall within a certain range.

〔発明の効果〕〔Effect of the invention〕

前述した実施例から明らかなように、本発明に
係る押出機等の精密制御方法によれば、溶融工程
の異常を判断処理して第1圧力センサによるメル
ト溝内圧力による定値制御のみならず、第2、第
3の圧力センサによるフイルタの前方および後方
の溶融材料圧力を計測することにより、フイルタ
目詰りに正しく反応した制御を行い、押出量を常
に一定範囲内に安定して維持することができる。
As is clear from the embodiments described above, according to the precision control method for an extruder, etc. according to the present invention, abnormalities in the melting process are judged and processed, and not only constant value control based on the pressure in the melt groove by the first pressure sensor, but also By measuring the pressure of the molten material in front and behind the filter using the second and third pressure sensors, it is possible to perform control that correctly responds to filter clogging and to maintain the extrusion amount stably within a certain range. can.

なお、その他本発明の精神を逸脱しない範囲内
において種々の設計変更をなし得ることは勿論で
ある。
It goes without saying that various other design changes may be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る押出機等の精密制御方法
を実施する押出機の一実施例を示す概略構成図、
第2図は第1図に示す押出機の制御プログラムの
一例を示すフローチヤート、第3図はバレル設定
温度と溶融速度およびスクリユ回転速度Nsの関
係を示す特性曲線図、第4図はフイルタ目詰りと
溶融速度の変化による状態変化と修正動作の説明
図である。 10……バレル、11……ホツパ、12……ス
クリユ、13……フイルタ、14……Tダイ、1
6……減速機、18……駆動モータ、20……ヒ
ータ、21,22,23,25,27……温度調
節計、24……冷却用フアン、26,29,31
……圧力センサ、28……温度センサ、30……
位置センサ、32,34,35,37,42……
信号処理器、36,51……マルチプレクサ、3
8……A/D変換器、40……CPU、44……
内部メモリ、46……CRTデイスプレイ、48
……プリンタ、50……フロツピデイスク、52
……出力インタフエース、53……キーボード、
54……ブザー、60……主フライト、62……
バリアライト。
FIG. 1 is a schematic configuration diagram showing an embodiment of an extruder for implementing the precision control method for an extruder, etc. according to the present invention;
Figure 2 is a flowchart showing an example of the control program for the extruder shown in Figure 1, Figure 3 is a characteristic curve diagram showing the relationship between barrel set temperature, melting rate, and screw rotation speed Ns, and Figure 4 is a filter diagram. FIG. 3 is an explanatory diagram of state changes and corrective operations due to clogging and changes in melting rate. 10... Barrel, 11... Hotspa, 12... Skrill, 13... Filter, 14... T-die, 1
6... Reduction gear, 18... Drive motor, 20... Heater, 21, 22, 23, 25, 27... Temperature controller, 24... Cooling fan, 26, 29, 31
...Pressure sensor, 28...Temperature sensor, 30...
Position sensor, 32, 34, 35, 37, 42...
Signal processor, 36, 51...Multiplexer, 3
8...A/D converter, 40...CPU, 44...
Internal memory, 46...CRT display, 48
...Printer, 50 ...Floppy disk, 52
...output interface, 53...keyboard,
54...buzzer, 60...main flight, 62...
barrier light.

Claims (1)

【特許請求の範囲】 1 分割して温度制御されるバレル中に供給され
るプラスチツク固形材料を、主フライトおよびバ
リアフライトを備えたスクリユの回転により押出
し溶融し、この押出し溶融された所定押出量の溶
融材料を押出成形、射出成形もしくは吹込成形す
る押出機等の制御方法において、 前記スクリユの溶融促進部における第1圧力セ
ンサからのメルト溝内圧力P1およびソリツド溝
内圧力を示す圧力信号と、 第2圧力センサからの前記スクリユのヘツド部
前方に設けられるフイルタの前方の溶融材料圧力
P2を示す圧力信号と、 第3圧力センサからの前記フイルタの後方の溶
融材料圧力P3を示す圧力信号と、 温度センサからの前記フイルタの後方の溶融材
料温度TRを示す温度信号とを、 それぞれ信号処理器を介して順次選別入力した
信号をA/D変換器を介してサンプリングデータ
としてCPUに入力し、 位置センサからの前記バリアフライトおよび前
記主フライトの位置を示す位置信号は直接前記
CPUに入力しデータ処理されてメモリに記憶さ
れ、 これらのデータにより前記CPUが、 前記溶融材料圧力P3の目標圧力との偏差D3
増加して前記押出量が上昇するときは前記溶融促
進部に対応するバレル設定温度を偏差D3に見合
つて降下させ、 偏差D3が減少し前記溶融材料圧力P2の目標圧
力との偏差D2が増加して前記押出量が下降する、
フイルタ目詰りが認められる際には、前記スクリ
ユの回転速度を偏差D2とD3の差に見合うよう上
昇させ、 偏差D3が減少しかつ偏差D2も減少すると共に
前記メルト溝内圧力P1の目標圧力との偏差D1
減少する、フイルタ目詰りが認められずに溶融熱
量が不足する場合には、前記バレル設定温度を偏
差D1とD2とD3の和に見合うよう上昇させ、 前記押出量を常に一定範囲内に安定して維持す
るよう制御することを特徴とする押出機等の精密
制御方法。
[Claims] 1. Plastic solid material supplied in portions into temperature-controlled barrels is extruded and melted by rotation of a screw equipped with a main flight and a barrier flight, and a predetermined extrusion amount of the extruded and melted material is In a method for controlling an extruder or the like for extrusion molding, injection molding or blow molding a molten material, a pressure signal indicating the melt groove internal pressure P1 and the solid groove internal pressure from a first pressure sensor in the melting promotion part of the screw; Molten material pressure in front of the filter provided in front of the head of the screw from the second pressure sensor
a pressure signal indicating the molten material pressure P 2 behind the filter from a third pressure sensor; and a temperature signal indicating the molten material temperature TR behind the filter from the temperature sensor; The signals that are sequentially selected and input through the respective signal processors are input to the CPU as sampling data through the A/D converter, and the position signals indicating the positions of the barrier flight and the main flight from the position sensor are directly input to the CPU.
The data is input to the CPU, processed, and stored in the memory, and based on these data, the CPU controls the melting process when the deviation D 3 of the molten material pressure P 3 from the target pressure increases and the extrusion rate increases. lowering the barrel set temperature corresponding to the part corresponding to the deviation D 3 , the deviation D 3 decreases, the deviation D 2 of the molten material pressure P 2 from the target pressure increases, and the extrusion amount decreases;
When the filter is found to be clogged, the rotational speed of the screw is increased to correspond to the difference between the deviations D 2 and D 3 , and as the deviation D 3 decreases and the deviation D 2 also decreases, the pressure inside the melt groove P decreases. If the deviation D 1 from the target pressure of 1 also decreases, and the melting heat is insufficient due to no filter clogging, the barrel set temperature is increased to match the sum of the deviations D 1 , D 2 , and D 3 . A precision control method for an extruder, etc., characterized in that the extrusion amount is controlled so as to be always stably maintained within a certain range.
JP61175739A 1986-07-28 1986-07-28 Precision control of extruder or the like Granted JPS6331731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61175739A JPS6331731A (en) 1986-07-28 1986-07-28 Precision control of extruder or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61175739A JPS6331731A (en) 1986-07-28 1986-07-28 Precision control of extruder or the like

Publications (2)

Publication Number Publication Date
JPS6331731A JPS6331731A (en) 1988-02-10
JPH0453694B2 true JPH0453694B2 (en) 1992-08-27

Family

ID=16001403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61175739A Granted JPS6331731A (en) 1986-07-28 1986-07-28 Precision control of extruder or the like

Country Status (1)

Country Link
JP (1) JPS6331731A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2442960B1 (en) * 2009-06-19 2013-11-27 Husky Injection Molding Systems Ltd. In an injection unit having a filter, a method of controlling melt pressure in accordance with a target pressure range
CA2989935C (en) 2015-08-12 2020-02-18 Omachron Intellectual Property Inc. Extruder
US11472065B2 (en) 2015-08-12 2022-10-18 Omachron Intellectual Property Inc. Plastic parts made from plastics having different melting points and a method of manufacturing same
US11478972B2 (en) 2018-09-13 2022-10-25 Davis-Standard, Llc Diagnostic troubleshooting system for an extrusion system
US11161275B2 (en) 2019-03-27 2021-11-02 Omachron Intellectual Property Inc. Modular extruder
US11279072B2 (en) 2019-03-27 2022-03-22 Omachron Intellectual Property Inc. Extruder with feed block for promoting increased mass transport rate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518179U (en) * 1978-07-24 1980-02-05
JPS6189820A (en) * 1984-10-09 1986-05-08 Inoue Japax Res Inc Controlling method of temperature and pressure in resin treating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518179U (en) * 1978-07-24 1980-02-05
JPS6189820A (en) * 1984-10-09 1986-05-08 Inoue Japax Res Inc Controlling method of temperature and pressure in resin treating device

Also Published As

Publication number Publication date
JPS6331731A (en) 1988-02-10

Similar Documents

Publication Publication Date Title
CZ20022696A3 (en) Method for controlling extruder temperature with perpetual temperature zeroing
JPH0453694B2 (en)
JP2004527404A (en) Method and apparatus for pressure regulation in vented single screw or cascade extruders
US20230373151A1 (en) Extruder and method for manufacturing strand
WO2022185623A1 (en) Extrusion device and extrusion molding die used by same, monitoring device and program, strand manufacturing method, and strand diameter adjustment method
US20020158359A1 (en) Method of monitoring die opening force in an electric injection molding machine
US6914537B2 (en) Method for monitoring operation data of an injection-molding machine
JPS6331730A (en) Control of extruder or the like
JPH04818B2 (en)
JPS61241124A (en) Automatic diagnostically controlling system for melting process of material in plastic molding machine
JPH05147094A (en) Deaeration extruder
JPH06304976A (en) Method and device for sensing resin melting state of plastic molding machine and method and machine for plastic
JP3323277B2 (en) Control method of compound extrusion molding equipment
JP4473108B2 (en) Method and apparatus for molding plastic mixture
JP2008201096A (en) Resin temperature control method and apparatus of online blend injection molding machine
JPH04214320A (en) Screw extruder
JP4977175B2 (en) Vent-up detection method and extruder for an extruder equipped with a vent
JP3240173B2 (en) Injection molding machine resin plasticization process control method
JPH05245908A (en) Extruding quantity control method of extruder with gear pump and its apparatus
JP2531421B2 (en) Injection molding machine
JP2000280327A (en) Raw material supplying amount measuring device for plastic molding machine
JP2004155118A (en) Display method for molding data of molding machine and molding data control system
JPH08309831A (en) Extrusion amount controlling method for two-stage extruder
CN114851520A (en) Bottle blowing machine capable of eliminating parison length deviation and control method thereof
JP3611347B2 (en) Method and apparatus for measuring internal state of twin-screw extruder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees