JPH0453652A - Detection of tool breakdown for machine tool - Google Patents

Detection of tool breakdown for machine tool

Info

Publication number
JPH0453652A
JPH0453652A JP15953890A JP15953890A JPH0453652A JP H0453652 A JPH0453652 A JP H0453652A JP 15953890 A JP15953890 A JP 15953890A JP 15953890 A JP15953890 A JP 15953890A JP H0453652 A JPH0453652 A JP H0453652A
Authority
JP
Japan
Prior art keywords
tool
cutting
current value
rough
finishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15953890A
Other languages
Japanese (ja)
Other versions
JP2553227B2 (en
Inventor
Kazuhiro Honda
和弘 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2159538A priority Critical patent/JP2553227B2/en
Publication of JPH0453652A publication Critical patent/JPH0453652A/en
Application granted granted Critical
Publication of JP2553227B2 publication Critical patent/JP2553227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To detect the breakdown of a cutting tool, by moving a finishing tool along a simulation tool path, and comparing the actual load current value with a reference current value of the tool feeding device at that time. CONSTITUTION:Simulation machining is performed with a finishing tool 7 with a simulation tool path 26 prior to the finishing cut with a tool path 13, after performing a rough cutting by a rough cutting tool 6 with a tool path 12. At this time in case the rough cutting tool 6 is broken, cutting is left remaining without the dimension after rough cutting being of a normal dimension tool. When simulation machining is performed by moving the finishing tool 7 following the simulation tool path 26, the load current value I2 of a Z axes motor 10 is increased by the cutting resistance and exceeds a reference current value I3, because of cutting being performed actually despite being a simulation work. Consequently, an abnormal signal is output from an abnormal signal output part 25 with the breakdown of the rough cutting tool 6 being detected.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、NC旋盤に代表されるような旋削工作機械の
工具破損検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a tool damage detection method for turning machine tools such as NC lathes.

従来の技術 例えばポーリング加工を目的としたNC旋盤において、
主軸駆動用モータのはか工具の2軸自由度方向の送り装
置に付帯しているモータの負荷電流値を監視して、これ
らの電流値と予め設定されている基準電流値を比較する
ことにより工具の破損を検出する方法が知られている。
Conventional technology For example, in an NC lathe for the purpose of polling,
By monitoring the load current value of the motor attached to the feeder in the direction of the tool's two-axis degrees of freedom, and comparing these current values with a preset reference current value. Methods of detecting tool damage are known.

例えば第5図に示すように、バイトが破損している時の
モータの負荷電流値11は切削抵抗の増加のためにバイ
トが破損しいていない時の負荷電流値i、と比べて高く
なることから、バイト正常時の負荷電流値1.よりもわ
ずかに高い値の基準電流値10を予め設定しておくこと
により、負荷電流値が基準電流値10を越えた時点で例
えばバイト交換等を促す異常信号を旋盤のNCコントロ
ーラ側に出力するものである。
For example, as shown in Fig. 5, the motor load current value 11 when the cutting tool is damaged is higher than the load current value i when the cutting tool is not damaged due to an increase in cutting resistance. From this, the load current value when the cutting tool is normal is 1. By setting in advance a reference current value 10 that is slightly higher than the reference current value 10, when the load current value exceeds the reference current value 10, an abnormal signal is output to the NC controller of the lathe, prompting, for example, to change the cutting tool. It is something.

発明が解決しようとする課題 従来の工具破損検出方法においては、例えば削り代およ
び送り速度の大きい荒削りの場合には工具破損による電
流増加よりも工具自体の定常摩耗や素材(粗材)の削り
代のばらつきによる電流値の変動の方が大きく工具破損
との識別が困難で、仮に工具の破損があったとしてもこ
れを的確に検出することはきわめて困難であった。
Problems to be Solved by the Invention In the conventional tool breakage detection method, for example, in the case of rough cutting with large cutting allowance and feed rate, the constant wear of the tool itself and the cutting allowance of the material (rough material) are more important than the increase in current due to tool breakage. The fluctuation of the current value due to the variation in the current value is large, making it difficult to distinguish it from tool damage, and even if there is tool damage, it is extremely difficult to accurately detect it.

特に荒削りバイトによる荒削りに続いて直ちに仕上げバ
イトによる仕上げ削りに移行するような加ニブログラム
のNC旋盤においては、荒削りバイトの破損を検出し損
なうとその荒削りバイトの破損による削り残しのために
仕上げ削り代の変動で仕上げバイトまで破損してしまう
おそれがある。
Particularly in the case of NC lathes for machine programs, where rough cutting with a rough cutting tool is immediately followed by finishing cutting with a finishing tool, if damage to the rough cutting tool is not detected, the finish machining allowance will be removed due to uncut material due to damage to the rough cutting tool. There is a risk that even the finishing tool will be damaged due to fluctuations in the cutting speed.

本発明は以上のような問題点に鑑みてなされたもので、
その目的とするところは上記のように荒削りに続いて仕
上げ削りを行うにあたり、工具自体の摩耗や素材(粗材
)の削り代のばらつきの影響を受けることなく、荒削り
バイトの破損を的確に検出できるようにした方法を提供
することにある。
The present invention was made in view of the above problems.
The purpose of this is to accurately detect damage to the rough cutting tool when performing finish cutting following rough cutting, as described above, without being affected by wear of the tool itself or variations in the cutting allowance of the material (rough material). The goal is to provide a method that makes it possible.

課題を解決するための手段 本発明は、予め設定されたツールパスに79 って工具
を移動させ、荒削りに続いて荒削り工具とは別の仕上げ
工具を用いて仕上げ削りを行う旋削工作機械において、
荒削りおよび仕上げ削り用のツールパスとは別に荒削り
用のツールパスよりもわずかに逃がした位置に空振り加
工用の空振りツールパスを予め設定する一方、この空振
り加工時における工具送り装置の負荷電流値よりもわず
かに高い値の基準電流値を予め設定しておき、前記荒削
り後であって仕上げ削り前に空振りツールパスで仕上げ
工具を移動させ、その時の工具送り装置の実際の負荷電
流値と基準電流値とを比較して荒削り用工具の破損を検
出することを特徴とする。
Means for Solving the Problems The present invention provides a turning machine tool in which a tool is moved along a preset tool path and, following rough cutting, finishing cutting is performed using a finishing tool different from the rough cutting tool.
Separately from the tool paths for roughing and finishing, a missing tool path for missing cutting is preset at a position slightly removed from the tool path for rough cutting, and the load current value of the tool feeder during this missing cutting is set in advance. A slightly higher reference current value is set in advance, and the finishing tool is moved in a missed tool pass after the rough cutting but before the finishing cut, and the actual load current value of the tool feeder at that time and the reference current are The feature is that damage to the rough cutting tool is detected by comparing the values.

作用 この方法によると、荒削り工具が破損していればその影
響で仕上げ削り時の削り代が大きくなることから、仕上
げ削りに先立つ空振り加工時に仕上げ工具により実際の
切削が行われ、一方、荒削リバイトが適正であれば仕上
げ削り時の削り代も適正なものであるために空振り加工
時にはあくまで空振り加工で実際の切削は行われない。
Effect According to this method, if the rough cutting tool is damaged, the cutting allowance during finish cutting will become larger as a result, so the actual cutting is performed by the finishing tool during the blank machining prior to finishing cutting, while the rough cutting If the rebiting is appropriate, the cutting allowance during finish machining is also appropriate, so during blank machining, it is just blank machining and no actual cutting is performed.

そして、上記のように空振り加工時に実際に切削が行わ
れる場合には工具送り装置の負荷電流が切削負荷に応じ
た値となるのに対して、空振り加工時に実際の加工が行
われない場合には無負荷の電流値となって両者の差が大
きいことから、基準電流値との比較により荒削り工具の
破損を的確に検出できるようになる。
As mentioned above, when cutting is actually performed during blank machining, the load current of the tool feeder becomes a value corresponding to the cutting load, whereas when actual machining is not performed during blank machining, is the no-load current value and there is a large difference between the two, so it becomes possible to accurately detect damage to the rough cutting tool by comparing it with the reference current value.

実施例 第1図および第2図は本発明の一実施例を示す図で、ポ
ーリング加工を目的としたNC旋盤の例を示している。
Embodiment FIGS. 1 and 2 are diagrams showing an embodiment of the present invention, and show an example of an NC lathe intended for poling processing.

同図に示すように、主軸1は先端にワーク2を把持する
チャック3を備えていて、主軸モータ4により回転駆動
される。一方、刃物台5は荒削りバイト6および仕上げ
バイト7を備えており、この刃物台5は、X軸モータ8
を中心とするX軸送り装置9および2軸モータ10を中
心とする2軸送り装置11によりX、Y方向の送りが与
えられる。
As shown in the figure, the main spindle 1 is provided with a chuck 3 at its tip for gripping a workpiece 2, and is rotationally driven by a main spindle motor 4. On the other hand, the tool rest 5 is equipped with a rough cutting tool 6 and a finishing tool 7, and this tool rest 5 is equipped with an X-axis motor 8.
Feed in the X and Y directions is provided by an X-axis feed device 9 centered around the X-axis feed device 9 and a two-axis feed device 11 centered around the two-axis motor 10 .

そして、加工手順としては第2図に示すようにワーク2
の端面2a、  2bを荒削りバイト6で荒削りしたの
ち、同じく荒削りバイト6でワーク2の内周面2Cを荒
削りする。さらに、内周面2Cの荒削りに続いて仕上げ
バイト7により同じく内周面2cに仕上げ削りを施す。
The processing procedure is as shown in Figure 2.
After rough cutting the end faces 2a and 2b of the workpiece 2 with a rough cutting tool 6, the inner circumferential surface 2C of the workpiece 2 is rough cut using the same rough cutting tool 6. Furthermore, following the rough cutting of the inner circumferential surface 2C, the finishing cutter 7 similarly performs finish cutting on the inner circumferential surface 2c.

ここで、内周面2Cの荒削り時における荒削りバイト6
の先端の軌跡、すなわち荒削バイト6のツールパスを符
号12で示し、また仕上げバイト7のツールパスを符号
13で示す。14は切削加工前のワーク2の粗形状を示
している。
Here, the rough cutting tool 6 during rough cutting of the inner peripheral surface 2C
The locus of the tip of the tool, that is, the tool path of the rough cutting tool 6 is indicated by 12, and the tool path of the finishing tool 7 is indicated by 13. 14 shows the rough shape of the workpiece 2 before cutting.

切削加工中における各モータ4,8.10の負荷電流値
Is、  lx、  Izは主軸コントローラ15およ
びX軸、Z軸のサーボアンプ16.17を通して負荷電
流検出装置18で監視されており、各負荷電流値1s、
  1.、 1□は電流値比較部19゜20.21にお
いて基準電流値II、L、I−と比較される。基準電流
値!、、I、、1.は各モー夕4,8.10ごとに独立
して設けた基準電流値設定部22,23.24に予め設
定されている。
The load current values Is, lx, Iz of each motor 4, 8.10 during cutting are monitored by the load current detection device 18 through the spindle controller 15 and the X-axis and Z-axis servo amplifiers 16.17. Current value 1s,
1. , 1□ are compared with reference current values II, L, I- in the current value comparison section 19°20.21. Reference current value! , ,I, ,1. is set in advance in the reference current value setting sections 22, 23, 24 provided independently for each motor 4, 8, 10.

そして、負荷電流値1−、lx、Izのいずれかが該当
する基準電流値を越えた場合には、バイト破損に伴う切
削抵抗の増大により負荷電流が増大したものと判断し、
異常信号出力部25から図示外のNCコントローラに対
して異常信号を出力し、例えばオペレータに対して工具
交換を促すべく所定の警報を発する。
If any of the load current values 1-, lx, and Iz exceeds the corresponding reference current value, it is determined that the load current has increased due to an increase in cutting resistance due to tool breakage,
An abnormality signal is outputted from the abnormality signal output section 25 to an NC controller (not shown), and a predetermined alarm is issued, for example, to prompt the operator to replace the tool.

本実施例においては、Z輸送り装置11を使った加工形
態として第2図および第3.4図に示すように荒削りが
終了したのち仕上げ削りに移行する前に、空振りツール
パス26のちとに仕上げバイト7を動かしていわゆる空
振り加工を行うように予め加ニブログラムが設定されて
いる。この空振り加工時のツールパス26は、荒削り時
のツールパス12よりもわずかに逃がした位置であって
、正規刃先形状の荒削りバイト6で正規寸法どおりに荒
削りが施されていればワーク2を切削することがないよ
うな位置に設定される。
In this embodiment, as a machining mode using the Z transport device 11, as shown in FIGS. 2 and 3.4, after rough machining is completed and before proceeding to finish machining, after the missing tool pass 26, A cutting program is set in advance to move the finishing tool 7 to perform so-called missed machining. The tool path 26 during this blank machining is a position that is slightly missed from the tool path 12 during rough machining, and if the rough machining tool 6 with the regular cutting edge shape is rough-machined according to the regular dimensions, the workpiece 2 will be cut. It is set in such a position that there is nothing to do.

これに対応して基準電流値設定部23には、仕上げバイ
ト7でワーク2を切削することなく無負荷の状態で空振
り加工を行った時のZ軸モータ10の負荷電流値I2.
(第4図)をわずかに上回るような値で基準電流値I、
が設定されている。
Correspondingly, the reference current value setting unit 23 stores the load current value I2.
(Fig. 4) at a value that slightly exceeds the reference current value I,
is set.

一方、第1図の切換器27は上記の空振り加工開始指令
を受けて空振り加工の開始と同時に作動し、空振り加工
が行われている間だけZ軸モータ10の負荷電流値I2
を電流値比較部21に取り込む。その結果、負荷電流値
I2は上記の基準電流値!、と比較される。
On the other hand, the switch 27 shown in FIG. 1 operates at the same time as the start of the blank machining in response to the above-mentioned blank machining start command, and changes the load current value I2 of the Z-axis motor 10 only while the blank machining is being performed.
is taken into the current value comparison section 21. As a result, the load current value I2 is the above reference current value! , compared to .

すなわち、第2図および第3.4図に示すようにツール
パス12のもとに荒削りバイト6で荒削りを行ったのち
、ツールパス13での仕上げ削りに先立って空振りツー
ルパス26のもとに仕上げバイト7で空振り加工を行う
That is, as shown in FIGS. 2 and 3.4, after performing rough cutting with the rough cutting tool 6 under the tool path 12, before finishing cutting with the tool path 13, the rough cutting is performed under the missing tool path 26. Perform blank machining with finishing tool 7.

この時、例えば荒削りバイト6の刃先の欠損等により荒
削りバイト6が破損している場合には、荒削り後の寸法
は正規の寸法とならずに削り残しが生じている。したが
って仕上げバイト7を空振リツールパス26のもとに動
かして空振り加工を行うと、空振り加工でありながら実
際に切削が行われるために、その切削抵抗によりZ軸モ
ータ10の負荷電流値■2が第4図のように高くなって
基準電流値I、を越えることになる。その結果、前述し
たように荒削りバイト6の破損が検出されて第1図の異
常信号出力部25から異常信号が出力される。
At this time, if the rough cutting tool 6 is damaged due to, for example, a chipping of the cutting edge of the rough cutting tool 6, the dimensions after rough cutting will not be the normal dimensions, and uncut parts will be left. Therefore, when the finishing tool 7 is moved under the missed retooling path 26 to perform missed machining, cutting is actually performed even though it is missed machining, and the load current value ■2 of the Z-axis motor 10 increases due to the cutting resistance. As shown in FIG. 4, the current becomes high and exceeds the reference current value I. As a result, damage to the rough cutting tool 6 is detected as described above, and an abnormal signal is output from the abnormal signal output section 25 in FIG.

これに対して、荒削りバイト6の刃先が正常で荒削り後
の寸法が正規寸法であれば、たとえ仕上げバイト7で空
振り加工を行ってもワーク2が切削されることがないの
で2軸モータ1oの負荷電流値I2は無負荷電流値12
.となって基準電流値■、を上回ることはない。そして
、荒削りバイト6の破損が検出されないかぎり、空振り
加工に続いて第2図のツールパス13のもとに仕上げバ
イト7により仕上げ削りが行われる。
On the other hand, if the cutting edge of the rough cutting tool 6 is normal and the dimensions after rough cutting are the normal dimensions, the workpiece 2 will not be cut even if the finishing tool 7 is used for machining. Load current value I2 is no-load current value 12
.. Therefore, it will never exceed the reference current value ■. Then, unless damage to the rough cutting tool 6 is detected, finish cutting is performed by the finishing tool 7 under the tool path 13 shown in FIG. 2 following the missed machining.

このように本実施例によれば、荒削りバイト6が破損し
ている場合とそうでない場合とでは空振り加工時に負荷
電流値I2の大きな差となって表われるために荒削りバ
イト6の破損を確実に検出でき、その結果、仕上げ削り
時に仕上げバイト7が早送りで前進したとしても、荒削
り時の削り残し部位と仕上げバイト7との衝突による工
具破損を防止できることになる。
As described above, according to this embodiment, since there is a large difference in the load current value I2 during machining when the rough cutting tool 6 is damaged and when it is not, it is possible to ensure that the rough cutting tool 6 is not damaged. As a result, even if the finishing cutting tool 7 advances rapidly during finishing cutting, tool damage due to collision between the finishing cutting tool 7 and the uncut portion during rough cutting can be prevented.

発明の効果 以上のように本発明によれば、荒削り終了後であって仕
上げ削りの前に荒削り時のツールパスよりもわずかに逃
がした空振りツールパスのもとに仕上げ工具を動かして
空振り加工を行うようにしたことにより、荒削り工具の
破損による削り残しがあった場合とそうでない場合とで
は工具送り装置の負荷電流の差が大きいために、従来の
ようにワークたる粗材寸法のばらつきゃ工具の定常摩耗
の影響を受けることなく荒削り工具の破損を的確に検出
することができ、工具破損検出の信頼性が向上する。ま
た、従来のように荒削り工具の破損の影響で仕上げ工具
が破損するのを未然に防止できる効果がある。
Effects of the Invention As described above, according to the present invention, after rough cutting is completed and before finishing, the finishing tool is moved under a missing tool path that is slightly missed than the tool path during rough cutting to perform missing cutting. As a result, there is a large difference in the load current of the tool feeder between when there is uncut material due to breakage of the rough cutting tool and when there is no uncut material due to damage to the rough cutting tool. It is possible to accurately detect damage to rough cutting tools without being affected by steady wear, and the reliability of tool damage detection is improved. Furthermore, it is possible to prevent the finishing tool from being damaged due to damage to the rough cutting tool, which is the case in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を応用したNC旋盤の要部の構成説
明図、第2図は各ツールパスの相互関係を示す説明図、
第3図は第1図の構成のもとでの作動を説明するための
フローチャート、第4図は切削時の負荷電流の変化を示
す説明図、第5図は従来の工具破損検出方法における負
荷電流の変化を示す説明図である。 1・・・主軸、2・・・ワーク、4・・・主軸モータ、
6・・・荒削りバイト(荒削り工具)、7・・・仕上げ
バイト(仕上げ工具)、8・・・X軸モータ、9・・X
軸送り装置、10・・・Z軸モータ、11・・・Z輸送
り装置、12・・・荒削り用のツールパス、13・・・
仕上げ削り用のツールパス、】8・・・負荷電流検出装
置、19゜20.21・・・電流値比較部、22.23
,241.。 基準電流値設定部、26・・・空振りツールパス。 12 : を削り用のツールパス 13:  イ士上げ削り用のツールパス26 : 空振
り加工用のツールパス
Fig. 1 is an explanatory diagram of the configuration of the main parts of an NC lathe to which the method of the present invention is applied, Fig. 2 is an explanatory diagram showing the interrelationship of each tool path,
Fig. 3 is a flowchart for explaining the operation under the configuration shown in Fig. 1, Fig. 4 is an explanatory diagram showing changes in load current during cutting, and Fig. 5 is a flowchart for explaining the load current in the conventional tool breakage detection method. FIG. 3 is an explanatory diagram showing changes in current. 1...Spindle, 2...Workpiece, 4...Spindle motor,
6...Rough cutting tool (rough cutting tool), 7...Finishing tool (finishing tool), 8...X-axis motor, 9...X
Axis feed device, 10...Z-axis motor, 11...Z transport device, 12...Roughing tool path, 13...
Tool path for finish cutting, ]8...Load current detection device, 19°20.21...Current value comparison section, 22.23
, 241. . Reference current value setting section, 26... Missing tool path. 12: Tool path for milling 13: Tool path for sharpening 26: Tool path for blank machining

Claims (1)

【特許請求の範囲】[Claims] (1)予め設定されたツールパスに沿って工具を移動さ
せ、荒削りに続いて荒削り工具とは別の仕上げ工具を用
いて仕上げ削りを行う旋削工作機械において、 荒削りおよび仕上げ削り用のツールパスとは別に荒削り
用のツールパスよりもわずかに逃がした位置に空振り加
工用の空振りツールパスを予め設定する一方、 この空振り加工時における工具送り装置の負荷電流値よ
りもわずかに高い値の基準電流値を予め設定しておき、 前記荒削り後であって仕上げ削り前に空振りツールパス
で仕上げ工具を移動させ、その時の工具送り装置の実際
の負荷電流値と基準電流値とを比較して荒削り用工具の
破損を検出することを特徴とする工作機械の工具破損検
出方法。
(1) In a turning machine tool that moves the tool along a preset tool path and performs rough cutting and then finish cutting using a finishing tool different from the rough cutting tool, the tool path for rough cutting and finishing cutting and Separately, a missing tool path for missing cutting is set in advance at a position slightly offset from the tool path for rough cutting, and a reference current value that is slightly higher than the load current value of the tool feeder during this missing cutting is set in advance. is set in advance, and after the rough cutting and before finish cutting, the finishing tool is moved with a missed tool pass, and the actual load current value of the tool feeder at that time is compared with the reference current value, and the rough cutting tool is adjusted. A tool damage detection method for a machine tool, characterized by detecting damage to a machine tool.
JP2159538A 1990-06-18 1990-06-18 Tool damage detection method for machine tools Expired - Lifetime JP2553227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2159538A JP2553227B2 (en) 1990-06-18 1990-06-18 Tool damage detection method for machine tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2159538A JP2553227B2 (en) 1990-06-18 1990-06-18 Tool damage detection method for machine tools

Publications (2)

Publication Number Publication Date
JPH0453652A true JPH0453652A (en) 1992-02-21
JP2553227B2 JP2553227B2 (en) 1996-11-13

Family

ID=15695953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2159538A Expired - Lifetime JP2553227B2 (en) 1990-06-18 1990-06-18 Tool damage detection method for machine tools

Country Status (1)

Country Link
JP (1) JP2553227B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105619178B (en) * 2016-03-09 2017-07-11 华中科技大学 A kind of Digit Control Machine Tool breaking real-time detection method

Also Published As

Publication number Publication date
JP2553227B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
US8600542B2 (en) Method of and apparatus for controlling machine tool for restarting automatic operation
KR20040060741A (en) A Tool Error Detecting Unit of CNC and Method Thereof
JPH07205023A (en) Confirming method for dressing of superfine particle grinding wheel in nc grinding device
JPS62228359A (en) Angular grinder
JP3526070B2 (en) Numerical control device and numerical control machining method
US4698573A (en) Numerically controlled working process
JPS6243805B2 (en)
JPH0453652A (en) Detection of tool breakdown for machine tool
JPH11327624A (en) Numerical controller with feed speed controlling function
CN111660142B (en) Machine tool with automatic correction function during tool replacement
WO2020110573A1 (en) Lathe
JPS58117007A (en) Interrupting control method in numerical control lathe
JP2000084798A (en) Machining abnormality detecting method and device, and machining controller
JPH05177480A (en) Controller of machining center equipped with automatic tool changer
JPH01316102A (en) Lathe work machine
JP3886694B2 (en) Grinding apparatus and grinding method
JP2585768B2 (en) Cutting feed setting device for machine tools
JP6919427B2 (en) Machine tools, machine tool control methods, and machine tool control programs
JP2926524B2 (en) Numerical controller with trial cutting function
JP2005288612A (en) Control method of nc machine tool having index table and nc machine tool
JPH081403A (en) Method for deburring of screw end part by machine tool having nc device
JP2005222463A (en) Operation control method and operation controller of machine tool at abnormal machining
JPS6130356A (en) Working in n.c. lathe
JP2700685B2 (en) Longitudinal positioning device
JPS5993256A (en) Positioning of machine tool