JPS5993256A - Positioning of machine tool - Google Patents

Positioning of machine tool

Info

Publication number
JPS5993256A
JPS5993256A JP20313082A JP20313082A JPS5993256A JP S5993256 A JPS5993256 A JP S5993256A JP 20313082 A JP20313082 A JP 20313082A JP 20313082 A JP20313082 A JP 20313082A JP S5993256 A JPS5993256 A JP S5993256A
Authority
JP
Japan
Prior art keywords
tool
positioning
workpiece
external force
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20313082A
Other languages
Japanese (ja)
Inventor
Takeo Nakayama
中山 建夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20313082A priority Critical patent/JPS5993256A/en
Publication of JPS5993256A publication Critical patent/JPS5993256A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37405Contact detection between workpiece and tool, probe, feeler
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43194Speed steps, switch over as function of position

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To permit positioning with high accuracy in a short time, preventing a working tool from being broken, by setting a positioning tool which is easily deformed by an external force and restored when the external force is removed, in opposed state to an article to be worked, permitting replacement with the working tool. CONSTITUTION:A positioning tool 62 which is easily deformed by an external force and restored when the external force is removed is installed onto a tool replacement apparatus 58, and a tool 62 is brought close to an article 56 to be worked, at high speed, and when a contact detection apparatus 60 detects contact, said tool 62 is stopped by the instruction of an NC apparatus 24, and each position on the X and Y axes is detected by detectors 22 and 38 respectively, and input into the NC apparatus 24. Then, replacement to a working tool 44 is performed by the tool replacement apparatus 58, and then positioning is performed stepwise from high speed to low speed to a close position, taking account of the size and safety of the tool 44, on the basis of the positioning data by the tool 62 which are memorized in the NC apparatus 24, and then contact positioning is performed at ultralow speed. Therefore, the breakage of the working tool due to the collision with the article to be worked is prevented, and the positioning time can be reduced by a large margin.

Description

【発明の詳細な説明】 本発明は、工作機械の位置決め方法、特にX−Yクロス
テーブル上に固定された被加工物を、N。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for positioning a machine tool, particularly a workpiece fixed on an X-Y cross table.

装置の指令に従って主軸に取付けられた工具で切削加工
する工作機械の位置決め方法に関するものである。
This invention relates to a method for positioning a machine tool that performs cutting using a tool attached to a spindle according to instructions from the device.

先ず、本発明方法を適用する工作機械の概、要を第1図
について説明する。第1図において、X−Yクロステー
ブルはY軸方向に移動するY軸テーブル10上にX軸方
向に移動可能にX軸テーブル12を重ねたもので、その
X軸テーブル12は一ボールネジ14に直結されたX軸
モータ16の回転によりX軸方向に駆動される。このX
軸モータ16は駆動増幅器18と位置決め制御回路20
によってその動きが制御され、このX軸モータ16の動
きが回転角検出器(ロータリエンコーダ)22により検
出されて上記位置決め制御回路20にフィードバックさ
れることおよび該位置決め制御回路20に供給されるN
o装@、24からの指令ノξルスによって、X軸テーブ
ル12は所望位置に制御される。
First, the outline and main points of a machine tool to which the method of the present invention is applied will be explained with reference to FIG. In FIG. 1, the X-Y cross table has an X-axis table 12 movable in the X-axis direction stacked on a Y-axis table 10 that moves in the Y-axis direction, and the X-axis table 12 is attached to one ball screw 14. It is driven in the X-axis direction by the rotation of the directly connected X-axis motor 16. This X
The shaft motor 16 is connected to a drive amplifier 18 and a positioning control circuit 20.
The movement of the X-axis motor 16 is detected by a rotation angle detector (rotary encoder) 22 and fed back to the positioning control circuit 20, and the N
The X-axis table 12 is controlled to a desired position by the command ξ from the oscilloscope 24.

上記指令パルスの情報源は予じめNo装置24に装填す
る穿孔テープ26にプログラムしておくものである。一
方、Y軸テーブル10についても同様であって、ボール
ネジ30に直結されたY軸モータ32の回転によってY
軸方向に駆動される。
The information source of the command pulse is programmed in advance into the perforated tape 26 loaded into the No. device 24. On the other hand, the same applies to the Y-axis table 10, and the Y-axis is rotated by the rotation of the Y-axis motor 32 directly connected to the ball screw 30.
Driven in the axial direction.

このY軸モータ32はX軸モータ16と同様、駆動増幅
器34と位置決め制御回路36によってその動きが制御
され、このY軸モータ32の動きが回転角検出器38に
より検出されて上記位fat決め制御回路36にフィー
ドツマツクされることおよび該位置決め制御回路に供給
されるNO装β、24がらの指令パルスとによって、Y
軸テーブル1oは所望の位置に制御される。
Like the X-axis motor 16, the movement of this Y-axis motor 32 is controlled by a drive amplifier 34 and a positioning control circuit 36, and the movement of this Y-axis motor 32 is detected by a rotation angle detector 38 to control the above-mentioned fat determination. By being fed into circuit 36 and the command pulse from NO device β, 24 supplied to the positioning control circuit, Y
The axis table 1o is controlled to a desired position.

主軸40にはその先端に絶縁物42を介して工具44が
増刊けである。この主軸4oはZ軸モータ46で駆動さ
れるボールネジ48の回転により上下即ちZ軸方向に動
く。この2軸モータ46は位置決め制御回路50.駆動
増幅器52、回転角検出器54とNo装置24によって
その動きが決定され、これによって主軸4oが所望の位
置に制御される。そして、上記X−Yクロステーブルの
X−Y軸方向の水平移動と工具44のZ111方向の垂
直移動の組合せによって、X軸テーブル12上に載置さ
れた被加工物56を所望形状に切削加工する。この切削
加工に従って、工具44は工具交換装置58により他の
工具44a、44bと適宜交換しながら所望の切削加工
を行なうものである、上記のような構成の工作機械にお
いて、従来は工具44と被加工物56との相対位置の関
係を知るために、この工具44と被加工物56との間に
接触検出装置60を接続して該両省間に約iovの直流
低電圧を印加し、No装置240指令によりX−Yクロ
ステーブルを移動させて、工具44と被加工物56の接
触からつまり両者を通じて電流かびi、ねることにより
、接/I)Ji検出装fli60がらNo装[24へ接
触検出信号が供給されて相対位置を検出している。
A tool 44 is attached to the tip of the main shaft 40 with an insulator 42 interposed therebetween. This main shaft 4o moves up and down, that is, in the Z-axis direction, by rotation of a ball screw 48 driven by a Z-axis motor 46. This two-axis motor 46 is connected to a positioning control circuit 50. The movement is determined by the drive amplifier 52, the rotation angle detector 54, and the No. device 24, thereby controlling the main shaft 4o to a desired position. Then, by combining the horizontal movement of the X-Y cross table in the X-Y axis direction and the vertical movement of the tool 44 in the Z111 direction, the workpiece 56 placed on the X-axis table 12 is cut into a desired shape. do. According to this cutting process, the tool 44 is exchanged with other tools 44a, 44b by a tool changer 58 to perform the desired cutting process.In the machine tool having the above-mentioned configuration, conventionally, the tool 44 and the target are In order to know the relative positional relationship with the workpiece 56, a contact detection device 60 is connected between the tool 44 and the workpiece 56, and a low DC voltage of approximately IOV is applied between the two. The X-Y cross table is moved by the 240 command, and the electric current flows from the contact between the tool 44 and the workpiece 56, i.e., through both, thereby detecting contact from the Ji detection device fli60 to the No device [24]. A signal is supplied to detect the relative position.

次に上記相対位置の検出つまり位置決め過程を第2図に
ついて詳述する。先ず、第2図(a)に示すようにX軸
テーブル12をX軸方向に移動させ工具44と被加工物
56が接触して接触検出装M60から接触検出信号がN
o装置24に伝達されると、No装置24はX軸テーブ
ル12の動キをただちに停止させ、その停止時点におけ
るX座標値をゼロリセットする。次に第2図(b)に示
すようにY軸についても同様に工具44と被加工物56
との接触点においてY座標値をゼロリセットする。そし
て第2図(c)に示すように工具44をX−Y座標のゼ
ロ点に位1t′1−決めした後、第2図(d)のように
既知である工具44のX軸半径、Y軸半径外だけ、X軸
テーブル12、Y軸テーブル10を移動させる。これに
より、工具44の中心は被加工物56の基準点Pに位置
決めされるので、角度X−Y座標値をゼロリセットすれ
ば、被加工物560基準点Pをスタート点にしたプログ
ラムテープ26により加工を行なうことができる。
Next, the above-mentioned relative position detection or positioning process will be described in detail with reference to FIG. First, the X-axis table 12 is moved in the X-axis direction as shown in FIG.
When transmitted to the o device 24, the no device 24 immediately stops the movement of the X-axis table 12 and resets the X coordinate value to zero at the time of the stop. Next, as shown in FIG. 2(b), the tool 44 and workpiece 56 are similarly connected to the Y axis.
The Y coordinate value is reset to zero at the point of contact with. After positioning the tool 44 at the zero point of the X-Y coordinates as shown in FIG. 2(c), the known X-axis radius of the tool 44 is determined as shown in FIG. 2(d). The X-axis table 12 and the Y-axis table 10 are moved only outside the Y-axis radius. As a result, the center of the tool 44 is positioned at the reference point P of the workpiece 56, so if the angle X-Y coordinate value is reset to zero, the program tape 26 with the workpiece 560 reference point P as the starting point Can be processed.

従来は上記のように工具と被加工物の相対位置を両名の
電気的な接触によって検出しているため、接触させる時
の速度をきわめて遅くしないと、オー/々−ランにより
工具を被加工物に衝突させて該工具を破損する危険性が
あった。特に10μm以下の値で高精度に4η出する場
合、通常の機械の有するイナーシャの大きさから1〜2
デπ/分程度の超低速でX−Yクロステーブルを送る必
要があり2、長い検出時間を要するという欠点があった
Conventionally, as mentioned above, the relative position of the tool and workpiece is detected by electrical contact between the two, so unless the speed at which they make contact is extremely slow, the tool will not be machined due to over-run. There was a risk that the tool would be damaged by colliding with something. In particular, when outputting 4η with high precision at a value of 10 μm or less, the inertia of a normal machine is 1 to 2
This method has the disadvantage that it is necessary to send the X-Y crosstable at an extremely low speed of about π/min, 2 and that a long detection time is required.

本発明は前述した従来の課題に鑑み為されたものであり
、その目的は、工具を破損するおそれがなく、工゛具に
対する被加工物の位置決めを高精度に且つ短時間に行う
ことのできる工作機様の位置決め方法を提供することに
ある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to position a workpiece relative to a tool with high precision and in a short time without the risk of damaging the tool. Our goal is to provide a positioning method for machine tools.

上記目的を達成するために、本発明はX−Yクロステー
ブル上に固定された被加工物を、No装置の指令に従っ
て主軸に取り付けられた加工用工具で切削加工する工作
機械において、外力により容易罠変形し外力がなくなi
lば元の形にもどる位置決め工具を上記加工用工具と交
換的に被加工物に対向させるように備え、初めは前記位
置決め用工具を被加工物に対向させ、両者を相対的に高
速既で移動させて接触位置決めを行なって位置決めデー
タを求め、次に加工用工具を被加工物に幻向させ、前記
位置決めデータに基づき加工用工具と被加工物の両者を
極めて近くまで高速から低速へ多段階の速度で相削的に
移動させた稜、前記両者を相約的に超低速で接触するま
で移動させて位1t4′決めすることを特徴とする。
To achieve the above object, the present invention provides a machine tool that cuts a workpiece fixed on an X-Y cross table using a machining tool attached to a spindle according to instructions from a No. The trap deforms and the external force disappears
A positioning tool that returns to its original shape is provided to face the workpiece in place of the processing tool, and the positioning tool is initially opposed to the workpiece, and both are moved at relatively high speeds. The machining tool is moved and contact positioning is performed to obtain positioning data, and then the machining tool is phantomed to the workpiece, and based on the positioning data, both the machining tool and the workpiece are moved from high speed to low speed repeatedly until they are extremely close together. The edge is moved reciprocally at a step speed, and the two are moved reciprocally at a very low speed until they come into contact to determine the position 1t4'.

以下、図面に基づいて本発明の好適な実施例を説明する
Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

本発明方法を実施するために前記第1図に示す工作機械
の工具交換装置58に、外力により容易に変形し外力が
な(なれば元の形にもどる位置決め用工具62を設ける
In order to carry out the method of the present invention, the tool changing device 58 of the machine tool shown in FIG.

以下、本発明方法による位置決め過程を第3図について
詳述する。第3図において、(a)は位置決め用工具6
2が被加工物56に対して高速F。
Hereinafter, the positioning process according to the method of the present invention will be explained in detail with reference to FIG. In FIG. 3, (a) is the positioning tool 6
2 is a high speed F with respect to the workpiece 56.

で接近中の状態を示す図、(b)は位置決め用工具62
が被加工物56に接触した瞬間を示す図、(C)は接触
検出装置60の接触検出信号を受けたNo装置24かも
の指令によりテーブル移動が停止し、位置決め用工具6
2がテーブルのオーバーランにより変形している状態を
示す図、(d)はテーブルが逆方向に低速FLでもどっ
ている状態を示すし」、(e)は位置決め用工具62と
被加工物56が非接触状態になって該位置決め用工具が
元の形にもどり、接触検出装置60の非接触検出信号を
受けたNo装置24からの指令によりテーブルの移動が
停止した時の状態を示す図であり、この(e)の状態に
おいてテーブルの現在値をNo装置24内で記憶する。
(b) is a diagram showing a state in which the positioning tool 62 is approaching.
(C) is a diagram showing the moment when the positioning tool 6 comes into contact with the workpiece 56, and the table movement is stopped by the No. device 24 command after receiving the contact detection signal from the contact detection device 60, and the positioning tool 6
2 shows the table being deformed due to overrun, (d) shows the table returning in the opposite direction at low speed FL, and (e) shows the positioning tool 62 and workpiece 56. is in a non-contact state, the positioning tool returns to its original shape, and the movement of the table is stopped by a command from the No. device 24 which has received a non-contact detection signal from the contact detection device 60. Yes, the current value of the table is stored in the No device 24 in this state (e).

以上の1liII作をX軸、Y軸について行なった彼、
第3図<r>に示すように工具交換装置58により位置
決め用工具62を加工用工具44に交換し、No装置2
4内に記憶している前記第3図(e)の状態におけるテ
ーブルの現在値に基づき、位置決め用工具62と加工用
工具44との大きさを考慮した上で安全性を見込んで、
加工用工具44を被加工物56の極めて近い位置まで高
速FHから低速FLと段階的速度で位ITIj、決めを
行ない、その後、第3図(g)に示すように超低速FS
Lで接融位置決めを行なえば、加工用工具44の中心を
被加工物560基準点P(第2図(d)谷照)に位置決
めすることができる。
He did the above 1liII work on the X and Y axes,
As shown in FIG.
Based on the current values of the table in the state shown in FIG. 3(e) stored in 4, taking into account the sizes of the positioning tool 62 and the machining tool 44, and taking safety into account,
The machining tool 44 is positioned very close to the workpiece 56 at stepwise speeds from high speed FH to low speed FL, and then, as shown in FIG.
By performing welding positioning at L, the center of the processing tool 44 can be positioned at the reference point P of the workpiece 560 (see the valley in FIG. 2(d)).

なお、上記実施例ではX−Y軸の位置決めについて説明
したが、Z軸方向の工具と被加工物との411対位置検
出であっても上記実施例と同様の効果を奏する。
In the above embodiment, positioning in the X-Y axes has been described, but the same effects as in the above embodiment can be achieved even when detecting the 411 pair positions of the tool and the workpiece in the Z-axis direction.

以上のように、本発明によれば、外力により容易に変形
し外力がな(なわは元の形にもどる位置決め用工具によ
り高速で被加工物との相対位置検出を行なって位置決め
した後、位置決め用工具を加工用工具と交換し上記位置
決めデータを用いて加工用工具と被加工物の両者を極め
て近くまで焉速から低速へ多段階の速度で相対的に移動
させて位置決めし、その後両者を相対的に超低速で移動
させて相対位置検出を行なうようにしたので、加工用工
具を被加工物に衝突させて破伊させるおそれが全くなく
、位置決め全体に要する時間が大幅に短縮できるととも
に高精度に位置決めを行なうことができる効果が得られ
る。
As described above, according to the present invention, the rope is easily deformed by external force, and the rope returns to its original shape. The processing tool is replaced with the processing tool, and using the above positioning data, both the processing tool and the workpiece are moved relatively close to each other at multiple speeds from slow to slow to position them, and then both are moved. Since the relative position is detected by moving at a relatively low speed, there is no risk of the machining tool colliding with the workpiece and breaking it, and the time required for overall positioning can be significantly shortened and the The effect of being able to perform positioning with precision is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明位置決め方法を適用する工作機械全体の
措成図、第2図は従来の位置決め過程の説り11図、第
3図は本発明方法による位「1決め過程の説、明図であ
る。 各図中回一部材には同−杓号を伺し、10はY軸テーブ
ル、12はX軸テーブル、24はNo装置、40は主軸
、44は加工用工具、56は板加工物、60は接触検出
装置、621位侘“を決め用工具。 代理人 弁理士  葛 町 イi − (外1名) 第2図 第3図
Fig. 1 is a schematic diagram of the entire machine tool to which the positioning method of the present invention is applied; Fig. 2 is an explanation of the conventional positioning process; It is a figure. In each figure, the turning parts have the same numbers, 10 is the Y-axis table, 12 is the X-axis table, 24 is the No. device, 40 is the main spindle, 44 is the processing tool, and 56 is the plate. The workpiece, 60 is a contact detection device, and 621 is a determination tool. Agent Patent attorney Kuzumachi II - (1 other person) Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)X、”Yクロステーブル上に固定された被加工物
を、No装置の指令に従って主軸に取り伺けられた加工
用工具で切削加工する工作機械において、外力により容
易に変形し外力がなくなれは元の形にもどる位置決め用
工具を上記加工用工具と交換的に被加工物に対向させる
ように備え、初めは前記位置決め用工具を被加工物に対
向させ、両者を相対的に高速度で移動させて接触位置決
めを行なって位置決めデータを求め、次に加工用工具を
被加工物に対向させ、前記位置決めデータに基づき加工
用工具と被加工物の両名を極めて近(まで高速から低速
へ多段階の速度で相対的に移動させた彼、前記両者を相
対的に超低速で接触するまで移動させて位置決めするこ
とを特徴とする工作機械の位置決め方法。
(1) In a machine tool that cuts a workpiece fixed on an X, Y cross table using a machining tool attached to the spindle according to the instructions of a No. device, it is easily deformed by external force. A positioning tool that returns to its original shape is provided to face the workpiece in place of the processing tool, and initially the positioning tool is placed opposite the workpiece, and both are moved at a relatively high speed. to perform contact positioning to obtain positioning data, then place the machining tool to face the workpiece, and based on the positioning data, move both the machining tool and the workpiece extremely close (from high to low speed). A method for positioning a machine tool, characterized in that the machine tool is positioned by relatively moving the two at a multi-step speed and moving the two at a relatively low speed until they come into contact.
JP20313082A 1982-11-19 1982-11-19 Positioning of machine tool Pending JPS5993256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20313082A JPS5993256A (en) 1982-11-19 1982-11-19 Positioning of machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20313082A JPS5993256A (en) 1982-11-19 1982-11-19 Positioning of machine tool

Publications (1)

Publication Number Publication Date
JPS5993256A true JPS5993256A (en) 1984-05-29

Family

ID=16468902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20313082A Pending JPS5993256A (en) 1982-11-19 1982-11-19 Positioning of machine tool

Country Status (1)

Country Link
JP (1) JPS5993256A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883077B2 (en) * 2008-06-27 2011-02-08 QEM, Inc, Low-profile X-Y table
US20110094327A1 (en) * 2008-06-27 2011-04-28 Qem, Inc. Low-profile x-y table

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883077B2 (en) * 2008-06-27 2011-02-08 QEM, Inc, Low-profile X-Y table
US20110094327A1 (en) * 2008-06-27 2011-04-28 Qem, Inc. Low-profile x-y table
US8556246B2 (en) * 2008-06-27 2013-10-15 Qem, Inc. Low-profile X-Y table

Similar Documents

Publication Publication Date Title
US4513380A (en) Method of tool recovery in threadcutting apparatus
JP6881725B2 (en) Work processing method, spindle angle correction device and compound lathe
JPS5993256A (en) Positioning of machine tool
JPH03190601A (en) Work changing method
JPH08263115A (en) Interference evading method for nc machine tool
US10996655B2 (en) Numerical controller
JP2005321890A (en) Erroneous working preventing device and method
JP2002273601A (en) Multispindle machine tool
JPH0655415A (en) Measuring method for and secular change of machine tool
CN107520618A (en) Steel construction joint ball Five-axis NC Machining Center and its method of work
JPS61173845A (en) Method of controlling measurement of cutter tip in lathe
JP2553227B2 (en) Tool damage detection method for machine tools
JPH056046Y2 (en)
JPH04332005A (en) Program checking device for nc device
JPH0230391A (en) Plate material working machine utilizing heat energy
JP2686286B2 (en) Three-dimensional laser controller
JP2021039401A (en) Numerical control device
JPH0790445B2 (en) Machine Tools
JP3522862B2 (en) R chamfering method for gear material tooth end face
JPS63144913A (en) Dialogue type nc controller
JPS63306853A (en) Edge point coordinates position setting device for numerically controlled machine tool
JPS63162121A (en) Electric discharge processing device
JPS63293609A (en) Numerical controller
JPH04370807A (en) Numerical controller
JPH02145236A (en) Nc lathe with tracer type manual feeding mechanism