JPH0453157B2 - - Google Patents

Info

Publication number
JPH0453157B2
JPH0453157B2 JP11642084A JP11642084A JPH0453157B2 JP H0453157 B2 JPH0453157 B2 JP H0453157B2 JP 11642084 A JP11642084 A JP 11642084A JP 11642084 A JP11642084 A JP 11642084A JP H0453157 B2 JPH0453157 B2 JP H0453157B2
Authority
JP
Japan
Prior art keywords
circuit
subscriber
voltage level
low voltage
subscriber line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11642084A
Other languages
Japanese (ja)
Other versions
JPS60261287A (en
Inventor
Shinichi Iribe
Hideo Tatsuno
Masaki Ehata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Oki Electric Industry Co Ltd
Original Assignee
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Telegraph and Telephone Corp, Oki Electric Industry Co Ltd filed Critical Hitachi Ltd
Priority to JP59116420A priority Critical patent/JPS60261287A/en
Publication of JPS60261287A publication Critical patent/JPS60261287A/en
Publication of JPH0453157B2 publication Critical patent/JPH0453157B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/001Current supply source at the exchanger providing current to substations
    • H04M19/005Feeding arrangements without the use of line transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Devices For Supply Of Signal Current (AREA)
  • Interface Circuits In Exchanges (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、電話交換機の加入者回路の構成方式
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a system for configuring a subscriber circuit of a telephone exchange.

〔発明の背景〕[Background of the invention]

従来の加入者回路は直流供給特性及び交流終端
特性を決定する帰還回路を高電圧の印加される部
分で構成していたため、回路素子が高耐圧にな
り、形状が大きく高価になり、特性の可変制御を
行なうことも難しかつた。これを図を用いて説明
する。第1図は従来の加入者回路の構成方法のブ
ロツク図の一例である。第1図において、1は加
入者線の負荷抵抗、2は電圧電流変換回路(変換
比gm)、3は電圧検出回路(検出比k)、4は直
流帰還用信号伝達回路(伝達比GDC)、5は交流
帰還用信号伝達回路(伝達比GAC)、6は直流し
や断用コンデンサである。第1図において、加入
者回路の等価直流抵抗ZDC及び等価交流抵抗ZAC
帰還回路の条件より次式となる。
In conventional subscriber circuits, the feedback circuit that determines the DC supply characteristics and AC termination characteristics was constructed from the part to which high voltage is applied, so the circuit elements had to withstand high voltages, were bulky and expensive, and had variable characteristics. It was also difficult to control. This will be explained using figures. FIG. 1 is an example of a block diagram of a conventional method of configuring a subscriber circuit. In Figure 1, 1 is the load resistance of the subscriber line, 2 is the voltage-current conversion circuit (conversion ratio gm), 3 is the voltage detection circuit (detection ratio k), and 4 is the DC feedback signal transmission circuit (transmission ratio G DC ), 5 is a signal transmission circuit for AC feedback (transfer ratio G AC ), and 6 is a DC or disconnection capacitor. In FIG. 1, the equivalent direct current resistance Z DC and equivalent AC resistance Z AC of the subscriber circuit are given by the following equations based on the conditions of the feedback circuit.

ZDC=1/(K・GDC・gm) … ZAC=1/(K・GAC・gm) … したがつて、GDC又はGACにより、帰還特性を
決定できる。
Z DC = 1/(K·G DC ·gm) ... Z AC = 1/(K·G AC ·gm) ... Therefore, the feedback characteristic can be determined by G DC or G AC .

次に第2図に、従来の加入者回路の構成方法の
1例を示す。第2図において、101は加入者線
の負荷抵抗、102,103は電流供給用抵抗、
104,105は電流供給用トランジスタ、10
6,107,123はオペアンプ、108〜11
1,120,121は抵抗、112〜118はカ
レントミラー回路で丸印の入力に対して一定の比
で出力を出す回路、119,124はトランジス
タ、122は交流除去用コンテンサ、125は直
流バイアス用電流源、126は直流しや断用コン
テンサ、127は交流インピーダンス回路、12
8は低電圧電源、129は高電圧電源である。
Next, FIG. 2 shows an example of a conventional method of configuring a subscriber circuit. In FIG. 2, 101 is a subscriber line load resistance, 102 and 103 are current supply resistances,
104 and 105 are current supply transistors; 10
6,107,123 is an operational amplifier, 108-11
1, 120, 121 are resistors, 112 to 118 are current mirror circuits that output at a constant ratio to the input circled, 119 and 124 are transistors, 122 is a capacitor for AC removal, and 125 is for DC bias. Current source, 126 is a DC or disconnection capacitor, 127 is an AC impedance circuit, 12
8 is a low voltage power supply, and 129 is a high voltage power supply.

第2図において、等価直流抵抗ZDC及び等価交
流抵抗ZACは抵抗の値をRに添字で示すと、 ZDC=1/2×(R108+R109)×(1/2R110×R102
1/R111×R103)… ZAC=1/2×(R108+R109)×Z/R120×(1/2R1
10
×R103+1/R111×R103)… R108=R109=RA2R110=R111=RBR102=R103
RCとすると、 ZDC=2RA・RC/RB … ZAC=2RA・Z/R120・RC/RB … 例としてRA=40kΩ RB=9.27kΩ RC=51Ω
R120=13.3kΩとすると、 ZDC=440(Ω) … ZAC=Z/30 … 第1図と対照すると、次式のようになる。
In Figure 2, the equivalent direct current resistance Z DC and equivalent AC resistance Z AC are expressed by the resistance value R as a subscript: Z DC = 1/2 x (R 108 + R 109 ) x (1/2 R 110 x R 102 +
1/R 111 × R 103 )… Z AC = 1/2 × (R 108 + R 109 ) × Z/R 120 × (1/2R 1
10
×R 103 +1/R 111 ×R 103 )… R 108 = R 109 = R A 2R 110 = R 111 = R B R 102 = R 103 =
Assuming R C , Z DC = 2R A・R C /R B … Z AC = 2R A・Z/R 120・R C /R B … For example, R A = 40kΩ R B = 9.27kΩ R C = 51Ω
If R 120 = 13.3kΩ, then Z DC = 440 (Ω) ... Z AC = Z/30 ... Comparing with Figure 1, the following equation is obtained.

gm=1/RC … K=RB/RA … GDC=1 … GAC=R120/Z … 第2図において、GDC及びGACを決定する回路
であるカレントミラー回路115〜118及びト
ランジスタ124及びコンデンサ122はすべて
高電圧レベルが印加される回路になつているた
め、形状が大きく、耐圧条件からコスト的にも不
利な条件となつていた。又、特性を可変するため
の回路を追加する際にも、高耐圧の素子が必要と
なり、容易に実現できなかつた。
gm=1/R C ... K=R B /R A ... G DC = 1... G AC = R 120 /Z... In Fig. 2, current mirror circuits 115 to 118 are the circuits that determine G DC and G AC . Since the transistor 124 and the capacitor 122 are all circuits to which a high voltage level is applied, they are large in size and disadvantageous in terms of cost due to withstand voltage conditions. Furthermore, when adding a circuit for varying the characteristics, a high-voltage element is required, which cannot be easily realized.

特に、加入者線の片線ずつのインピーダンスを
制御することは不可能であつた。
In particular, it has been impossible to control the impedance of each subscriber line.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、加入者回路の高電圧レベル回
路を簡略化して、安価でかつ、特性の可変制御が
容易な加入者回路構成方式、特に加入者線の片線
ずつのインピーダンスを制御可能とする加入者回
路構成方式を提供することにある。
The object of the present invention is to simplify the high voltage level circuit of the subscriber circuit, to provide a subscriber circuit configuration system that is inexpensive and easy to control variable characteristics, and in particular, to provide a subscriber circuit configuration method that is capable of controlling the impedance of each subscriber line one by one. The object of the present invention is to provide a subscriber circuit configuration system that allows

〔発明の概要〕[Summary of the invention]

本発明は、加入者回路の直流給電特性及び交流
終端特性を決定する帰還回路を低電圧レベル回路
ですべて構成するとともに、加入者線の片線ずつ
のインピーダンス制御も可能にしたものである。
In the present invention, the feedback circuit that determines the direct current feeding characteristics and alternating current termination characteristics of the subscriber circuit is constructed entirely of low voltage level circuits, and it also makes it possible to control the impedance of each subscriber line.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細について図を用いて説明す
る。第3図は本発明による加入者回路構成方法の
ブロツク図である。第3図において第1図と同一
の部分は同一符号を付しており、2′〜6′は同一
機能を実現する回路であるが、電圧条件が異なる
ことを示し、7,8は電圧レベル変換回路であ
る。第3図において電圧レベル変換回路7,8に
より分割されるAA′の線より右側はすべて低電圧
レベルの回路で構成することが可能である。
Hereinafter, details of the present invention will be explained using figures. FIG. 3 is a block diagram of a subscriber circuit configuration method according to the present invention. In Fig. 3, the same parts as in Fig. 1 are given the same symbols, 2' to 6' are circuits that realize the same function, but the voltage conditions are different, and 7 and 8 are voltage levels. It is a conversion circuit. In FIG. 3, the entire area to the right of the line AA' divided by the voltage level conversion circuits 7 and 8 can be configured with low voltage level circuits.

第4図は、本発明を説明するための参考図を示
し、第2図と同一の部分は同一符号を付してあ
り、112′はカレントミラーの入出力方向を変
え、118′はカレントミラー比を10:1に変え、
120′は抵抗値を1/10に変え、カレントミラー
回路115′〜118′、トランジスタ124′、
コンデンサ122′は耐圧条件を緩和してあり、
抵抗121′は1/10に変え、コンデンサ122′は
10倍の値とし、130はカレントミラー回路、1
31は低電圧電源である。第4図における直流等
価抵抗ZDC及び交流等価抵抗ZACは第2図で求めた
値と全く同一である。そしてAA′の線より右側は
すべて低電圧レベルの回路で構成可能である。
又、R120′及びR121′の値を下げることによつて、
ダイナミツクレンジが不足することを防止してい
る。
FIG. 4 shows a reference diagram for explaining the present invention, in which the same parts as in FIG. Change the ratio to 10:1,
120' changes the resistance value to 1/10, current mirror circuits 115' to 118', transistor 124',
The capacitor 122' has relaxed voltage resistance conditions,
Resistor 121' was changed to 1/10, and capacitor 122' was
10 times the value, 130 is the current mirror circuit, 1
31 is a low voltage power supply. The DC equivalent resistance Z DC and AC equivalent resistance Z AC in FIG. 4 are exactly the same as the values found in FIG. 2. Everything to the right of the AA' line can be configured with low voltage level circuits.
Also, by lowering the values of R 120 ′ and R 121 ′,
This prevents the Dynamite Cleanse from running out.

次に第5図に本発明の一実施例を示す。第5図
において、第2図又は第4図と同一の部分は同一
符号を付してあり、132〜136はカレントミ
ラー回路、137,138は電流電圧変換用抵
抗、139,140は電圧電流変換抵抗、14
1,142はアナログ・デイジタル変換(以下
A/D変換と略す。)回路、143,144はデ
イジタル・アナログ変換(D/A変換と略す。)
回路、145はデイジタル演算回路である。第5
図における特性はA/D変換回路141及び14
2の入力V1,V2とD/A変換回路143,14
4の出力V3,V4の関係によりすべて決定される。
Next, FIG. 5 shows an embodiment of the present invention. In FIG. 5, the same parts as in FIG. 2 or 4 are given the same reference numerals, 132 to 136 are current mirror circuits, 137 and 138 are current-voltage conversion resistors, and 139 and 140 are voltage-current conversion resistors. resistance, 14
1,142 is an analog-to-digital conversion (hereinafter referred to as A/D conversion) circuit; 143, 144 is a digital-to-analog conversion (hereinafter referred to as D/A conversion) circuit;
The circuit 145 is a digital arithmetic circuit. Fifth
The characteristics in the figure are A/D conversion circuits 141 and 14.
2 inputs V 1 and V 2 and D/A conversion circuits 143 and 14
It is determined by the relationship between the outputs V 3 and V 4 of No. 4.

たとえば、第2図及び第4図と同じ特性を得る
ための条件はR137=R138=R139=R140として、V1
〜V4の直流分を添字DC、交流分を添字ACで表
わすと、 V3DC=V4DC=(V1DC+V2DC)・1/2 … V3AC=V4AC=(V1AC+V2AC)・1/2・R120/Z… 式及び式に係数をかければ、直流等価抵抗
及び交流等価抵抗を比例的に変更することは容易
である。
For example, the conditions to obtain the same characteristics as in Figures 2 and 4 are R 137 = R 138 = R 139 = R 140 , and V 1
~ Expressing the direct current component of V 4 with the subscript DC and the alternating current component with the subscript AC, V 3DC = V 4DC = (V 1DC + V 2DC )・1/2 ... V 3AC = V 4AC = (V 1AC + V 2AC )・1 /2・R 120 /Z... By multiplying the equation and the equation by a coefficient, it is easy to change the DC equivalent resistance and AC equivalent resistance proportionally.

次に両線を別々にインピーダンス制御する場合
について、説明する。
Next, a case will be described in which the impedances of both wires are controlled separately.

電流供給用トランジスタ104のコレクタ側と
対地とのインピーダンスをZB、電流供給用トラ
ンジスタ105のコレクタ側と対地(高電圧電源
129のインピーダンスは充分小さいとして無視
する)とのインピーダンスをZAとすると、 ZB=R102×R108/R110×R140/R138×V2/V4 … ZA=R103×R109/R111×R139/R137×V1/V3 … R140=R138,R139=R137として、 GB=V4/V2 … GA=V3/V1 … と定義すると、 ZB=R102×R108/R110×1/GB … ZA=R103×R109/R111×1/GA … 演算例として、直流分を添字DCで表わし、 R102=R103=51Ω, R108=R109=40KΩ,R110=R111=9.27KΩとす
ると、 ZBDC=220×1/GBDC … ZADC=220×1/GADC … 制御例として、GBDC=2 GADC=2/3とする
と、ZBDC=110Ω,ZADC=330Ωとなり、片線ずつ
のインピーダンス制御が可能となる。又、GBDC
=1 GADC=0.001とすると、 ZBDC=220Ω ZADC=22KΩとなり、等価的に
は、片線動作、片線非動作状態が実現できるとと
もに、ZADCが高抵抗であるため、ZA側の高抵抗
地気検出が容易にできる。次に交流分を添字DC
で表わし、前述の抵抗値を用いると、 ZBAC=220×1/GBAC …〓〓 ZAAC=220×1/GAAC … 制御例として、GBAC=220/200,GAAC=220/4
00とすると、ZBAC=200Ω ZAAC=400Ωとなり、
交流等価抵抗は差動インピーダンスとして、
600Ωとなる。このとき、同相インピーダンスは、
上記のZBAC,ZAACの値となつていることは言う
までもない。
If the impedance between the collector side of the current supply transistor 104 and the ground is ZB, and the impedance between the collector side of the current supply transistor 105 and the ground (the impedance of the high voltage power supply 129 is ignored as it is sufficiently small) is ZA, then ZB= R 102 ×R 108 /R 110 ×R 140 /R 138 ×V 2 /V 4 … ZA=R 103 ×R 109 /R 111 ×R 139 /R 137 ×V 1 /V 3 … R 140 =R 138 , Assuming R 139 = R 137 , and defining GB = V 4 /V 2 ... GA = V 3 /V 1 ..., ZB = R 102 × R 108 / R 110 × 1 / GB ... ZA = R 103 × R 109 / R 111 × 1/GA... As an example of calculation, if the direct current component is expressed by the subscript DC and R 102 = R 103 = 51Ω, R 108 = R 109 = 40KΩ, R 110 = R 111 = 9.27KΩ, then ZB DC = 220 × 1/GB DC … ZA DC = 220 × 1/GA DC … As a control example, if GB DC = 2 GA DC = 2/3, ZB DC = 110Ω, ZA DC = 330Ω, and impedance control for each wire. becomes possible. Also, GB DC
= 1 GA DC = 0.001, ZB DC = 220Ω ZA DC = 22KΩ, and equivalently, one wire operation and one wire non-operation state can be realized, and since ZA DC has a high resistance, the ZA side High resistance earth air detection can be easily performed. Next, the AC component is subscripted DC
Expressed as , and using the resistance value mentioned above, ZB AC = 220 x 1/GB AC ...〓〓 ZA AC = 220 x 1/GA AC ... As a control example, GB AC = 220/200, GA AC = 220/4
00, ZB AC = 200Ω ZA AC = 400Ω,
The AC equivalent resistance is expressed as differential impedance,
It becomes 600Ω. At this time, the common mode impedance is
Needless to say, the values of ZB AC and ZA AC are the same as above.

又、GBACとGAACに複素インピーダンス特性を
持たせることにより、交流インピーダンスを自由
に設定し、加入者線の電話機の側音防止制御を行
なうことが可能である。
Furthermore, by providing GB AC and GA AC with complex impedance characteristics, it is possible to freely set AC impedance and perform sidetone prevention control on subscriber line telephones.

以上の説明では演算をデイジタル処理すること
としたが、アナログ処理も可能なことは言うまで
もない。
In the above explanation, the calculations are performed digitally, but it goes without saying that analog processing is also possible.

又、本発明を加入者回路と同様な機能をもつト
ランク回路に適用できることも明白である。
It is also obvious that the present invention can be applied to trunk circuits having similar functions as subscriber circuits.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、加入者回路の高電圧レベル回
路を簡略化して、安価な加入者回路を実現するこ
とができ、特性を可変にするための回路も低電圧
レベル回路で構成できる。特に、加入者線の片線
ずつのインピーダンスを制御することができる。
さらにデイジタル処理を用いることにより、一
層、特性の可変制御が容易にできる効果がある。
According to the present invention, the high voltage level circuit of the subscriber circuit can be simplified to realize an inexpensive subscriber circuit, and the circuit for making the characteristics variable can also be configured with a low voltage level circuit. In particular, the impedance of each subscriber line can be controlled.
Furthermore, by using digital processing, there is an effect that variable control of characteristics can be made easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の加入者回路の構成方法のブロ
ツク図、第2図は従来の加入者回路の構成方法の
1例を示す回路図、第3図は本発明による加入者
回路の構成方法のブロツク図、第4図は本発明を
説明するための参考例を示す回路図、第5図は本
発明による一実施例を示す回路図である。 1…加入者線の負荷抵抗、2…電圧電流変換回
路、3…電圧検出回路、4…直流帰還用信号伝達
回路、5…交流帰還用信号伝達回路、6…直流し
や断用コンデンサ、101…加入者線の負荷抵
抗、102,103…電流供給用抵抗、104,
105…電流供給用トランジスタ、106,10
7,123…オペアンプ、108〜111,12
0,121…抵抗、112〜118…カレントミ
ラー回路、119,124…トランジスタ、12
2…交流除去用コンデンサ、125…直流バイア
ス用電流源、126…直流しや断用コンデンサ、
127…交流インピーダンス回路、128…低電
圧電源、129…高電圧電源、130…カレント
ミラー回路、131…低電圧電源、132〜13
6…カレントミラー回路、137,138…電流
電圧変換用抵抗、139,140…電圧電流変換
抵抗、141,142…A/D変換回路、14
3,144…D/A変換回路、145…デイジタ
ル演算回路。
FIG. 1 is a block diagram of a conventional subscriber circuit configuration method, FIG. 2 is a circuit diagram showing an example of a conventional subscriber circuit configuration method, and FIG. 3 is a subscriber circuit configuration method according to the present invention. FIG. 4 is a circuit diagram showing a reference example for explaining the present invention, and FIG. 5 is a circuit diagram showing an embodiment according to the present invention. DESCRIPTION OF SYMBOLS 1... Load resistance of subscriber line, 2... Voltage-current conversion circuit, 3... Voltage detection circuit, 4... Signal transmission circuit for direct current feedback, 5... Signal transmission circuit for alternating current feedback, 6... Capacitor for direct current or disconnection, 101 ...Load resistance of subscriber line, 102, 103...Resistance for current supply, 104,
105... Current supply transistor, 106, 10
7,123...Operational amplifier, 108-111,12
0,121...Resistor, 112-118...Current mirror circuit, 119,124...Transistor, 12
2...Capacitor for AC removal, 125...Current source for DC bias, 126...Capacitor for DC and disconnection,
127...AC impedance circuit, 128...Low voltage power supply, 129...High voltage power supply, 130...Current mirror circuit, 131...Low voltage power supply, 132-13
6... Current mirror circuit, 137, 138... Current-voltage conversion resistor, 139, 140... Voltage-current conversion resistor, 141, 142... A/D conversion circuit, 14
3,144...D/A conversion circuit, 145...digital calculation circuit.

Claims (1)

【特許請求の範囲】 1 加入者線路を介して端末に直流電流を供給す
る手段と、該端末との間で、交流信号の送受信を
行う手段とを有する電子化加入者回路において、 加入者線に直接接続される高電圧レベル回路
と、該高電圧レベルの帰還回路である低電圧レベ
ル回路を具備し、 前記高電圧レベル回路は、 加入者線の電圧電流状態を検出し、低電圧レベ
ルへ変換し、加入者線の両線別々の電圧電流信号
を前記低電圧レベル回路へ伝送する機能、 及び、前記低電圧レベル回路からの両線別々の
駆動信号を、低電圧レベルの直流及び交流から高
電圧レベルへ変換して、加入者線に伝達し、加入
者線を駆動する機能を有し、 前記低電圧レベル回路は、 前記電子化加入者回路の直流供給特性及び交流
終端特性を決定する帰還特特性を持ち、 加入者線の両線の電圧電流信号の演算により、
加入者線の差動信号と同相信号を別々に制御する
ように、直流交流の帰還特性を設定可能とする機
能とともに、 加入者線の両線別々の電圧電流信号の演算によ
り、片線ごとの帰還特性を制御し、加入者線の両
線別々にインピーダンス制御を行う機能を有する
ことを特徴とする加入者回路構成方式。 2 前記低電圧レベル回路の入力側にアナログ、
デイジタル変換回路を設け、出力側にデイジタ
ル、アナログ変換回路を設けることにより、帰還
特性をデイジタル信号により演算又は制御可能と
することを特徴とする特許請求の範囲第1項記載
の加入者回路構成方式。
[Scope of Claims] 1. In an electronic subscriber circuit having means for supplying direct current to a terminal via a subscriber line and means for transmitting and receiving an alternating current signal to and from the terminal, the subscriber line and a low voltage level circuit which is a feedback circuit for the high voltage level, the high voltage level circuit detecting the voltage and current state of the subscriber line and converting it to the low voltage level. converting and transmitting separate voltage and current signals for both lines of the subscriber line to said low voltage level circuit; and converting separate drive signals for both lines from said low voltage level circuit from low voltage level direct current and alternating current; The low voltage level circuit has the function of converting to a high voltage level, transmitting it to the subscriber line, and driving the subscriber line, and the low voltage level circuit determines the DC supply characteristics and AC termination characteristics of the electronic subscriber circuit. It has a feedback characteristic, and by calculating the voltage and current signals of both subscriber lines,
In addition to the function that allows you to set the DC/AC feedback characteristics so that the differential signal and common-mode signal of the subscriber line are controlled separately, it is also possible to calculate the voltage and current signals for both subscriber lines separately. A subscriber circuit configuration system characterized by having a function of controlling the feedback characteristics of the subscriber line and controlling the impedance of both subscriber lines separately. 2 Analog on the input side of the low voltage level circuit,
A subscriber circuit configuration system according to claim 1, characterized in that by providing a digital conversion circuit and providing a digital/analog conversion circuit on the output side, the feedback characteristic can be calculated or controlled by a digital signal. .
JP59116420A 1984-06-08 1984-06-08 Subscriber's circuit constituting system Granted JPS60261287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59116420A JPS60261287A (en) 1984-06-08 1984-06-08 Subscriber's circuit constituting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59116420A JPS60261287A (en) 1984-06-08 1984-06-08 Subscriber's circuit constituting system

Publications (2)

Publication Number Publication Date
JPS60261287A JPS60261287A (en) 1985-12-24
JPH0453157B2 true JPH0453157B2 (en) 1992-08-25

Family

ID=14686638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59116420A Granted JPS60261287A (en) 1984-06-08 1984-06-08 Subscriber's circuit constituting system

Country Status (1)

Country Link
JP (1) JPS60261287A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912638A (en) * 1982-07-13 1984-01-23 Nippon Telegr & Teleph Corp <Ntt> Impedance synthesis type line circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912638A (en) * 1982-07-13 1984-01-23 Nippon Telegr & Teleph Corp <Ntt> Impedance synthesis type line circuit

Also Published As

Publication number Publication date
JPS60261287A (en) 1985-12-24

Similar Documents

Publication Publication Date Title
EP0046588B1 (en) Method of and circuit arrangement for supplying current to a two-wire telecommunications line
CA1143813A (en) Transceiver for full-duplex transmission of digital signals on a single line
JPH0626400B2 (en) Electronic battery feeder circuit for telephone system
US4631359A (en) Arrangement for supplying current to a subscriber telephone set
US5053650A (en) Monolithic semiconductor integrated circuit device having current adjusting circuit
KR900001340B1 (en) Battery feed circuit for a pair of subscriber lines
JPH0453157B2 (en)
US4281219A (en) Telephone line circuit
US4872199A (en) Battery-feed circuit for exchange
WO1996035264A1 (en) Rail-to-rail dac drive circuit
US4013972A (en) Amplifier with gain control means
JPH04130591A (en) Addition amplifier having complex weighting factor and interface therewith
JP2560247Y2 (en) Headphone output circuit
JPS60236509A (en) Differential variable amplifier circuit
JPS5934190Y2 (en) D↓-A converter
JPS6121866Y2 (en)
JPS6310615B2 (en)
JPS5922636Y2 (en) Voltage-current conversion circuit
EP0791245B1 (en) Driving stage
JPH0614499Y2 (en) Electronic volume buffer circuit
JPH0637449Y2 (en) Reference voltage generator
US20030016831A1 (en) One-terminal effector
SU789982A1 (en) Voltage-to-current converter
JPH0646835B2 (en) Impedance converter for electrostatic microphone
JPS6244578Y2 (en)