JPH0452938B2 - - Google Patents

Info

Publication number
JPH0452938B2
JPH0452938B2 JP59033631A JP3363184A JPH0452938B2 JP H0452938 B2 JPH0452938 B2 JP H0452938B2 JP 59033631 A JP59033631 A JP 59033631A JP 3363184 A JP3363184 A JP 3363184A JP H0452938 B2 JPH0452938 B2 JP H0452938B2
Authority
JP
Japan
Prior art keywords
dispersion
pigment
charge
viscosity
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59033631A
Other languages
Japanese (ja)
Other versions
JPS60177347A (en
Inventor
Masakazu Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3363184A priority Critical patent/JPS60177347A/en
Publication of JPS60177347A publication Critical patent/JPS60177347A/en
Publication of JPH0452938B2 publication Critical patent/JPH0452938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0525Coating methods

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、顔料分散液に関し、詳しくは光導電
性有機顔料の分散安定性の向上を計つた顔料分散
液に係わるものである。 従来、無機光導電物質からなる電子写真感光体
としては、セレン、硫化カドミウム、酸化亜鉛等
を用いたものが広く用いられてきた。 一方、有機光導電物質からなる電子写真感光体
としては、ポリ−N−ビニルカルバゾールに代表
される光導電性ポリマーや2,5−ビス(p−ジ
エチルアミノフエニル)−1,3,4−オキサジ
アゾールの如き低分子の有機光導電物質を用いた
もの、更には、斯る有機光導電物質と各種染料や
顔料を組み合せたもの等が知られている。 有機光導電物質を用いた電子写真感光体は成膜
性が良く、塗工により生産できる事、極めて生産
性が高く、安価な感光体を提供できる利点を有し
ている。又、使用する染料や顔料等の増感剤の選
択により、感色性を自在にコントロールできる等
の利点を有し、これまで幅広い検討がなされてき
た。特に、最近では、有機光導電性顔料を電荷発
生層とし、前述の光導電性ポリマーや、低分子の
有機光導電物質等からなる所謂電荷輸送層を積層
した機能分離型感光体の開発により、従来の有機
電子写真感光体の欠点とされていた感度や耐久性
に著るしい改善がなされ、実用に供される様にな
つてきた。更に、機能分解型感光体に適応する各
種の化合物および顔料も見いだされてきた。 この様な機能分離型感光体は、電荷発生層と電
荷輸送層の少くとも2層構成からなるため、電荷
発生層の光吸収で生じた電荷キヤリアが電荷輸送
層に注入され、感光体表面電荷を消失せしめ静電
コントラストを生じることになるが、その過程に
おいて電荷発生層が担う役割は極めて重要であ
る。即ち電荷キヤリアをいかに多く、均一に発生
するか、発生した電荷キヤリアをいかに効率良く
電荷輸送層に注入するか、また逆電荷キヤリアを
いかにスムーズに支持体に流すか、言葉を変えれ
ば、静電特性、画像特性等の電子写真特性の多く
は電荷発生層に負う所が多い。 一般的には、電荷発生層が均一でかつ極めて薄
く平滑に形成されている程、従つて必然的に電荷
発生粒子が細かい程電子写真特性は良好になると
考えられている。従つて実用化における最大の問
題点を極薄層をいかに安定して得るかにありその
為には電荷発生物質たる顔料をいかに微粒子状に
分散させるかという分散性の問題、分散液を凝集
性のない安定な液として製造する分散安定性の問
題が解決されなければならない。 微粒状の顔料分散液の製造法としては顔料をバ
インダーとともに、サンドミル、ポールミル、ロ
ールミルやアトライター等を用いて粉砕してゆく
方法が一般的であり、分散条件の最適化を計れば
一応の水準まで微粒化が可能である。更に顔料を
合成・精製段階から微粒化し、かつそれを保つ技
術とを食い合わせれば、0.1μm以下の微細な顔料
分散液を製造することも困難ではない。しかし、
一般的に言つて顔料粒子を細かくすればする程、
凝集性、チキソ性、等塗布液としての安定性を阻
害する要因は反比例的に増大し、分散性と分散安
定性は相反することが多い。 分散安定性については歴史の古い顔料分野で
は、SP値等により、顔料、バインダー、溶剤の
マツチングを計る、分散安定剤と称する添加剤を
加える等の手法がほぼ確立しているが、よりフア
インな電子写真用の顔料分散液の安定化について
は、まだ確立した手法はなく、暗中模索の状態で
あるといつて過言ではない。本発明者は顔料の微
粒子分散液の安定性向上に種々努力してきたが、
その結果として、凝集性の強い顔料分散液にあつ
ては、分散比粘度と称する値が凝集性を左右する
因子たることを見出したものである。 即ち本発明の目的は、微粒子状有機顔料を含有
する光導電性組成物の製造法を提供することであ
り、また微粒子状有機顔料の安定分散液の製造法
を提供することであり、更には高感度特性と耐久
使用時における安定した電位特性を有する電子写
真感光体の製造法を提供するこにある。本発明は
下記に規定する分散比粘度をもつて安定な分散状
態を見出すことに特徴を有している。 分散比粘度=顔料分散液の粘度/顔料成分を除いた溶液
の粘度 即ち分散比粘度が0.8〜2.5の範囲にある顔料分散
液を塗布・乾燥することにより光導電性組成物を
製造するものである。分散比粘度はポリマー溶液
の粘度を溶剤のみの粘度で除した値比粘度に模し
たもので、溶剤、バインダー、添加物等よりなる
原液の粘度即ち顔料成分を除いた溶液の粘度で分
散液の粘度を除した値であり、顔料微粒子が混在
することによつて粘度が変化する割合を示す。 分散比粘度は顔料と溶剤とバインダーの組み合
わせ、顔料とバインダーの混合比、固形分濃度等
によつて変化するが、0.8〜2.5更に好ましくは1.1
〜1.6の範囲にあるとき分散液の安定性が際立つ
て良好となる。 本発明の光導電性組成物の製造方法について、
さらに詳しく説明する。光導電性有機顔料として
は、アゾ系顔料、フタロシアニン系顔料、キナク
リドン系顔料、シアニン系顔料、ピリリウム系顔
料、チアピリリウム系顔料、インジゴー系顔料、
スケアリツク酸系顔料、多環キノン系顔料等を電
子写真感光体の電荷発生材料として用いることが
できる。 顔料は粉末又はペーストの状態でバインダー樹
脂と共にメタノール、エタノール、IPA等のアル
コール系溶剤、アセトン、MEK、MIBK、シク
ロヘキサノン、等のケトン系溶剤、ベンゼン、ト
ルエン、キシレン、クロルベンゼン等の芳香族系
溶剤、1,4−ジオキサン、THF、DMF、
DNAC等の各種溶剤に分散される。 バインダー樹脂としては、ポリビニルブチラー
ル、ホルマール樹脂、ポリアミド樹脂、ポリウレ
タン樹脂、セルロース系樹脂、ポリエステル樹
脂、ポリサルホン樹脂、スチレン系樹脂、ポリカ
ーボネート樹脂、アクリル系樹脂等が用いられ
る。 分散手段としてはサンドミル、コロイドミル、
アトライター、ポールミル、ロールミル等の方法
が利用できる。 分散条件は上記の有機顔料、バインダー、溶剤
の組み合わせの中で、顔料とバインダーの比率を
変え、固形分濃度を変え、分散手段を吟味して最
適化を計るが、分散比粘度は塗布液濃度とした時
に0.8〜2.5の範囲内になるように制御されなくて
はならない。 本発明の方法においては、有機顔料の微粒化分
散液は極めて安定であり、密栓放置では1年以
上、循環、過、攪拌を組み込んだ実際の塗布機
のモデル系では3ケ月以上にわたり、凝集なくか
つ粘度変化のない状態を維持する。これを電子写
真感光体として用いた時には、下述の実施態様例
からでも明らかな様に感度特性および耐久使用時
における電荷特性に改善が見られる。電荷発生層
は、前述の分散液を導電性支持体上に直接ないし
は接着層上に塗工することによつて形成できる。
又、下述の電荷輸送層の上に塗工することによつ
ても形成できる。電荷発生層の膜厚は、5μ以下、
好ましくは0.01〜1μの膜厚をもつ薄膜層とするこ
とが望ましい。入射光量の大部分が電荷発生層で
吸収されて、多くの電荷キヤリアを生成するこ
と、さらには発生した電荷キヤリアを再結合やト
ラツプにより失活することなく電荷輸送槽に注入
する必要があるため、上述の膜厚とすることが好
ましい。 塗工は、浸漬コーテイング法、スプレーコーテ
イング法、スピンナーコーテイング法、ビードコ
ーテイング法、マイヤーバーコーテイング法、ブ
レードコーテイング法、ローラーコーテイング
法、カーテンコーテイング法などのコーテイング
法を用いて行なうことができる。乾燥は、室温に
おける指触乾燥後、加熱乾燥する方法が好まし
い。加熱感動は、30℃〜200℃の温度で5分〜2
時間の範囲の時間で、静止または送風下で行なう
ことができる。 電荷輸送層は、前述の電荷発生層と電気的に接
続されており、電界の存在下で電荷発生層から注
入された電荷キヤリアを受け取るとともに、これ
らの電荷キヤリアを表面まで輸送できる機能を有
している。この際、この電荷輸送層は、電荷発生
層の上に積層されていてもよく、またその下に積
層されていてもよい。しかし、電荷輸送層は、電
荷発生層の上に積層されていることが望ましい。 光導電体は、一般に電荷キヤリアを輸送する機
能を有しているので、電荷輸送層はこの光導電体
によつて形成できる。 電荷輸送層における電荷キヤリアを輸送する物
質(以下、単に電荷輸送物質という)は、前述の
電荷発生層が感応する電磁波の波長域に実質的に
非感応性であることが好ましい。ここで言う「電
磁波」とは、γ線、X線、紫外線、可視光線、近
赤外線、赤外線、遠赤外線などを包含する広義の
「光線」の定義を包含する。電荷輸送層の光感応
性波長域が電荷発生層のそれと一致またはオーバ
ーラツプする時には、両者で発生した電荷キヤリ
アが相互に捕獲し合い、結果的には感度の低下の
原因となる。 電荷輸送物質としては電子輸送性物質と正孔輸
送性物質があり、電子輸送性物質としては、クロ
ルアニル、ブロモアニル、テトラシアノエチレ
ン、テトラシアノキノジメタン、2,4,7−ト
リニトロ−9−フルオレノン、2,4,5,7−
テトラニトロ−9−フルオレノン、2,4,7−
トリニトロ−9−ジシアノメチレンフルオレノ
ン、2,4,5,7−テトラニトロキサントン、
2,4,8−トリニトロチオキサントン等の電子
吸引性物質やこれら電子吸引物質を高分子化した
もの等がある。 正孔輸送性物質としては、ピレン、N−エチル
カラバゾール、N−イソプロピルカルバゾール、
N−メチル−N−フエニルヒドラジノ−3−メチ
リデン−9−エチルカルバゾール、N,N−ジフ
エニルヒドラジノ−3−メチリデン−9−エチル
カルバゾール、N,N−ジフエニルヒドラジノ−
3−メチリデン−10−エチルフエノチアジン、
N,N−ジフエニルヒドラジノ−3−メチリデン
−10−エチルフエノキサジン、p−ジエチルアミ
ノベンズアルデヒド−N,N−ジフエニルヒドラ
ゾン、p−ジエチルアミノベンズアルデヒド−N
−α−ナフチル−N−フエニルヒドラゾン、p−
ピロリジノベンズアルデヒド−N,N−ジフエニ
ルヒドラゾン、1,3,3−トリメチルインドレ
ニン−ω−アルデヒド−N,N−ジフエニルヒド
ラゾン、p−ジエチルベンズアルデヒド−3−メ
チルベンズチアゾリノン−2−ヒドラゾン等のヒ
ドラゾン類、2,5−ビス(p−ジエチルアミノ
フエニル)−1,3,4−オキサジアゾール、1
−フエニル−3−(p−ジエチルアミノスチリル)
−5−(p−ジエチルアミノフエニル)ピラゾリ
ン、1−〔キノリル(2)〕−3−(p−ジエチルアミ
ノスチリル)−5−(p−ジエチルアミノフエニ
ル)ピラゾリン、1−〔ピリジル(2)〕−3−(p−
ジエチルアミノスチリル)−5−(p−ジエチルア
ミノフエニル)ピラゾリン、1−〔6−メトキシ
−ピリジル(2)〕−3−(p−ジエチルアミノスチリ
ル)−5−(p−ジエチルアミノフエニル)ピリゾ
リン、1−〔ピリジル(3)〕−3−(p−ジエチルア
ミノスチリル)−5−(p−ジエチルアミノフエニ
ル)ピラゾリン、1−〔レピジル(2)〕−3−(p−
ジエチルアミノスチリル)−5−(p−ジエチルア
ミノフエニル)ピラゾリン、1−〔ピリジル(2)〕−
3−(p−ジエチルアミノスチリル)−4−メチル
−5−(p−ジエチルアミノフエニル)ピラゾリ
ン、1−〔ピリジル(2)〕−3−(α−メチル−p−
ジエチルアミノスチリル)−5−(p−ジエチルア
ミノフエニル)ピラゾリン、1−フエニル−3−
(p−ジエチルアミノスチリル)−4−メチル−5
−(p−ジエチルアミノフエニル)ピラゾリン、
1−フエニル−3−(α−ベンジル−p−ジエチ
ルアミノスチリル)−5−(p−ジエチルアミノフ
エニル)ピラゾリン、スピロピラゾリンなどのピ
ラゾリン類、2−(p−ジエチルアミノスチリル)
−6−ジエチルアミノベンズオキサゾール、2−
(p−ジエチルアミノフエニル)−4−(p−ジメ
チルアミノフエニル)−5−(2−クロロフエニ
ル)オキサゾール等のオキサゾール系化合物、2
−(p−ジエチルアミノスチリル)−6−ジエチル
アミノベンゾチアゾール等のチアゾール系化合
物、ビス(4−ジエチルアミノ−2−メチルフエ
ニル)−フエニルメタン等のトリアリールメタン
系化合物、1,1−ビス(4−N,N−ジエチル
アミノ−2−メチルフエニル)ヘプタン、1,
1,2,2−テトラキス(4−N,N−ジメチル
アミノ−2−メチルフエニル)エタン等のポリア
リールアルカン類、トリフエニルアミン、ポリ−
N−ビニルカルバゾール、ポリビニルピレン、ポ
リビニルアントラセン、ポリビニルアクリジン、
ポリ−9−ビニルフエニルアントラセン、ピレン
−ホルムアルデヒド樹脂、エチルカルバノールホ
ルムアルデヒド樹脂等がある。 これらの有機電荷輸送物質の他に、セレン、セ
レン−テルル、アミルフアスシリコン、硫化カド
ミウムなどの無機材料も用いることができる。 また、これらの電荷輸送物質は、1種または2
種以上組合せて用いることができる。 電荷輸送物質に成膜性を有していない時には、
適当なバインダーを選択することによつて被膜形
成できる。バインダーとして使用できる樹脂は、
例えばアクリル樹脂ポリアリレート、ポリエステ
ル、ポリーボネート、ポリスチレン、アクリロニ
トリル−スチレンコポリマー、アクリロニトリル
−ブタジエンコポリマー、ポリビニルブチラー
ル、ポリビニルホルマール、ポリスルホン、ポリ
アクリルアミド、ポリアミド、塩素化ゴムなどの
絶縁性樹脂、あるいはポリ−N−ビニルカルバゾ
ール、ポリビニルアントラセン、ポリビニルピレ
ンなどの有機光導電性ポリマーを挙げることがで
きる。 電荷輸送層は、電荷キヤリアを輸送できる限界
があるので、必要以上に膜厚を厚くすることがで
きない。一般的には、5ミクロン〜30ミクロンで
あるが、好ましい範囲は8ミクロン〜20ミクロン
である。塗工によつて電荷輸送層を形成する際に
は、前述した様な適当なコーテイング法を用いる
ことができる。 この様は電荷発生層と電荷輸送層の積層構造か
らなる感光層は、導電層を有する基体の上に設け
られる。導電層を有する基体としては、基体自体
が導電性をもつもの、例えばアルミニウム、アル
ミニウム合金、銅、亜鉛、ステンレス、バナジウ
ム、モリブデン、クロム、チタン、ニツケル、イ
ンジウム、金や白金などを用いることができ、そ
の他にアルミニウム、アルミニウム合金、酸化イ
ンジウム、酸化錫、酸化インジウム−酸化錫合金
などを真空蒸着法によつて被膜形成された層を有
するプラスチツク(例えば、ポリエチレン、ポリ
プロピレン、ポリ塩化ビニル、ポリエチレンテレ
フタレート、アクリル樹脂、ポリフツ化エチレン
など)、導電性粒子(例えば、カーボンブラツク、
銀粒子など)を適当なバインダーとともにプラス
チツクの上に被覆した基体、導電性粒子をプラス
チツクや紙に含浸した基体や導電性ポリマーを有
するプラスチツクなどを用いることができる。 導電層と感光層の中間に、バリヤー機能と接着
機能をもつ下引層を設けることもできる。下引層
は、カゼイン、ポリビニルアルコール、ニトロセ
ルロース、エチレン−アクリル酸コポリマー、ポ
リアミド(ナイロン6、ナイロン66、ナイロン
610、共重合ナイロン、アルコキシメチル化ナイ
ロンなど)、ポリウレタン、ゼラチン、酸化アル
ミニウムなどによつて形成できる。 下引層の膜厚あ、0.1ミクロン〜5ミクロン、
好ましくは0.3ミクロン〜3ミクロンが適当であ
る。 導電層、電荷発生層、電荷輸送層の順に積層し
た感光体を使用する場合において電荷輸送物質が
電子輸送性物質からなるときは、電荷輸送層表面
を正に帯電する必要があり、帯電後露光すると露
光部では電荷発生層において生成した電子が電荷
輸送層に注入され、そのあと表面に達して正電荷
を中和し、表面電位の減衰が生じ未露光部との間
に静電コントラストが生じる。この様にしてでき
た静電潜像を負荷電性のトナーで現像すれば可視
像が得られる。これを直接定着するか、あるいは
トナー像を紙やプラスチツクフイルム等に転写
後、現像し定着することができる。 また、感光体上の静電潜像を転写紙の絶縁層上
に転写後現像し、定着する方法もとれる。現像剤
や種類や現像方法、定着方法は公知のものや公知
の方法のいずれを採用しても良く、特定のものに
限定されるものではない。 一方、電荷輸送物質が正孔輸送物質から成る場
合、電荷輸送層表面を負に帯電する必要があり、
帯電後、露光すると露光部では電荷発生層におい
て生成した正孔が電荷輸送層に注入され、その後
表面に達して負電荷を中和し、表面電位の減衰が
生じ未露光部との間に静電コントラストが生じ
る。現像時には電子輸送物質を用いた場合とは逆
に正電荷性トナーを用いる必要がある。 本発明の別の具体例としては、前述の光導電性
有機顔料を電荷輸送物質とともに同一層に含有さ
せた電子写真感光体を挙げることができる。この
際、前述の電荷輸送物質の他にポリ−N−ビニル
カルバゾールとトリニトロフルオレノンからなる
電荷移動錯化合物を用いることができる。 この例の電子写真感光体は、前述の有機光導電
体と電荷移動錯化合物をテトラヒドロフランに溶
解されたポリエステル溶液中に分散させた後、被
膜形成させて調製できる。 いずれの感光体も少なくとも1種類の顔料を含
有し、必要に応じて光吸収の異なる顔料を組合せ
て使用した感光体の感度を高めたり、パンクイク
ロマチツクな感光体を得るなどの目的で顔料を2
種以上使用することも可能である。 本発明の電子写真感光体は電子写真複写機に利
用するのみならず、レーザープリンターやCRT
プリンター等の電子写真応用分野にも広く用いる
ことができる。 また、本発明の光導電性組成物は、前述の電子
写真感光体に限らず太陽電池や光センサーに用い
ることもできる。 以下、本発明を実施例に従つて説明する。 実施例1 (比較例1) 500mlビーカーに水80ml、濃塩酸16.6ml(0.19
モル)
The present invention relates to a pigment dispersion, and more particularly to a pigment dispersion that improves the dispersion stability of a photoconductive organic pigment. Conventionally, as electrophotographic photoreceptors made of inorganic photoconductive materials, those using selenium, cadmium sulfide, zinc oxide, etc. have been widely used. On the other hand, electrophotographic photoreceptors made of organic photoconductive substances include photoconductive polymers typified by poly-N-vinylcarbazole and 2,5-bis(p-diethylaminophenyl)-1,3,4-oxa Those using low-molecular organic photoconductive substances such as diazole, and furthermore, those in which such organic photoconductive substances are combined with various dyes and pigments are known. An electrophotographic photoreceptor using an organic photoconductive substance has good film forming properties, can be produced by coating, has extremely high productivity, and has the advantage of being able to provide an inexpensive photoreceptor. Further, it has the advantage that color sensitivity can be freely controlled by selecting the sensitizer such as dye or pigment to be used, and a wide range of studies have been carried out to date. In particular, recently, with the development of a functionally separated photoreceptor in which an organic photoconductive pigment is used as a charge generation layer and a so-called charge transport layer made of the aforementioned photoconductive polymer or a low-molecular organic photoconductive substance is laminated, Significant improvements have been made in the sensitivity and durability, which were considered to be drawbacks of conventional organic electrophotographic photoreceptors, and they have come into practical use. Furthermore, various compounds and pigments that are suitable for functionally decomposed photoreceptors have also been discovered. Since such a functionally separated photoreceptor has a structure of at least two layers, a charge generation layer and a charge transport layer, charge carriers generated by light absorption in the charge generation layer are injected into the charge transport layer, increasing the charge on the photoreceptor surface. This causes electrostatic contrast to disappear, and the role played by the charge generation layer in this process is extremely important. In other words, how to generate a large number of charge carriers uniformly, how to efficiently inject the generated charge carriers into the charge transport layer, and how smoothly to flow opposite charge carriers to the support. Many of the electrophotographic properties, such as characteristics and image properties, are largely due to the charge generation layer. It is generally believed that the more uniform, extremely thin and smooth the charge generation layer is formed, and therefore the finer the charge generation particles, the better the electrophotographic properties will be. Therefore, the biggest problem in practical application is how to stably obtain an ultra-thin layer, and to do so, there is the problem of dispersibility, which is how to disperse the pigment, which is a charge-generating substance, into fine particles, and the problem of cohesiveness of the dispersion liquid. The problem of dispersion stability, which is produced as a stable liquid without oxidation, must be solved. A common method for producing finely divided pigment dispersions is to grind the pigment together with a binder using a sand mill, pole mill, roll mill, attritor, etc., and if the dispersion conditions are optimized, it can be achieved to a certain level. It is possible to atomize the particles up to Furthermore, it is not difficult to produce a fine pigment dispersion of 0.1 μm or less if this technology is combined with technology to make the pigment into fine particles from the synthesis and purification stage and to maintain the fine particles. but,
Generally speaking, the finer the pigment particles, the more
Factors that inhibit stability as a coating solution, such as cohesiveness and thixotropy, increase inversely proportionally, and dispersibility and dispersion stability are often contradictory. Regarding dispersion stability, in the pigment field with a long history, there are almost established methods such as measuring the matching of pigment, binder, and solvent using SP values, etc., and adding additives called dispersion stabilizers. It is no exaggeration to say that there is still no established method for stabilizing pigment dispersions for electrophotography, and that we are still searching in the dark. The present inventor has made various efforts to improve the stability of fine particle dispersions of pigments, but
As a result, it has been discovered that in the case of pigment dispersions with strong cohesiveness, a value called dispersion specific viscosity is a factor that influences the cohesiveness. That is, an object of the present invention is to provide a method for producing a photoconductive composition containing a particulate organic pigment, and also to provide a method for producing a stable dispersion of a particulate organic pigment. An object of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor having high sensitivity characteristics and stable potential characteristics during long-term use. The present invention is characterized by finding a stable dispersion state having a dispersion specific viscosity defined below. Dispersion specific viscosity = viscosity of pigment dispersion / viscosity of solution excluding pigment components, that is, a photoconductive composition is produced by applying and drying a pigment dispersion having a dispersion specific viscosity in the range of 0.8 to 2.5. be. Dispersion specific viscosity is a value similar to the specific viscosity obtained by dividing the viscosity of a polymer solution by the viscosity of only the solvent.It is the viscosity of the stock solution consisting of the solvent, binder, additives, etc., that is, the viscosity of the solution excluding pigment components. This is the value obtained by dividing the viscosity, and indicates the rate at which the viscosity changes due to the presence of fine pigment particles. Dispersion specific viscosity varies depending on the combination of pigment, solvent, and binder, mixing ratio of pigment and binder, solid content concentration, etc., but is 0.8 to 2.5, more preferably 1.1.
When the value is in the range of ~1.6, the stability of the dispersion becomes outstandingly good. Regarding the method for manufacturing the photoconductive composition of the present invention,
I will explain in more detail. Examples of photoconductive organic pigments include azo pigments, phthalocyanine pigments, quinacridone pigments, cyanine pigments, pyrylium pigments, thiapyrylium pigments, indigo pigments,
Scaric acid pigments, polycyclic quinone pigments, and the like can be used as charge-generating materials for electrophotographic photoreceptors. The pigment can be used in powder or paste form along with the binder resin in alcoholic solvents such as methanol, ethanol, and IPA, ketone solvents such as acetone, MEK, MIBK, and cyclohexanone, and aromatic solvents such as benzene, toluene, xylene, and chlorobenzene. , 1,4-dioxane, THF, DMF,
Dispersed in various solvents such as DNAC. As the binder resin, polyvinyl butyral, formal resin, polyamide resin, polyurethane resin, cellulose resin, polyester resin, polysulfone resin, styrene resin, polycarbonate resin, acrylic resin, etc. are used. Sand mill, colloid mill,
Methods such as attritor, pole mill, roll mill, etc. can be used. The dispersion conditions are optimized by changing the ratio of pigment to binder, changing the solid content concentration, and examining the dispersion method among the above combinations of organic pigment, binder, and solvent, but the dispersion specific viscosity depends on the concentration of the coating solution. must be controlled so that it is within the range of 0.8 to 2.5. In the method of the present invention, the atomized dispersion of organic pigment is extremely stable, with no agglomeration for over 1 year when left in a sealed container, and over 3 months in a model system of an actual coating machine that incorporates circulation, filtration, and stirring. and maintain a state with no viscosity change. When this is used as an electrophotographic photoreceptor, improvements are seen in sensitivity characteristics and charge characteristics during long-term use, as is clear from the embodiments described below. The charge generation layer can be formed by coating the above-mentioned dispersion directly onto the conductive support or onto the adhesive layer.
It can also be formed by coating on the charge transport layer described below. The thickness of the charge generation layer is 5μ or less,
Preferably, it is a thin film layer with a thickness of 0.01 to 1 μm. Most of the incident light is absorbed by the charge generation layer, generating many charge carriers, and the generated charge carriers must be injected into the charge transport tank without being deactivated by recombination or trapping. , it is preferable to set the film thickness as described above. Coating can be carried out using coating methods such as dip coating, spray coating, spinner coating, bead coating, Meyer bar coating, blade coating, roller coating, and curtain coating. For drying, it is preferable to dry to the touch at room temperature and then heat dry. Heating sensation: 5 minutes to 2 at a temperature of 30℃ to 200℃
It can be carried out stationary or under blown air for a period of time within a range of hours. The charge transport layer is electrically connected to the charge generation layer described above, and has the function of receiving charge carriers injected from the charge generation layer in the presence of an electric field and transporting these charge carriers to the surface. ing. At this time, this charge transport layer may be laminated on or under the charge generation layer. However, it is desirable that the charge transport layer is laminated on the charge generation layer. Since the photoconductor generally has the function of transporting charge carriers, the charge transport layer can be formed by the photoconductor. The substance that transports charge carriers in the charge transport layer (hereinafter simply referred to as charge transport substance) is preferably substantially insensitive to the wavelength range of electromagnetic waves to which the charge generation layer is sensitive. The term "electromagnetic waves" used herein includes a broad definition of "light rays" that includes gamma rays, X-rays, ultraviolet rays, visible light, near infrared rays, infrared rays, far infrared rays, and the like. When the photosensitive wavelength range of the charge transport layer coincides with or overlaps that of the charge generation layer, charge carriers generated in both trap each other, resulting in a decrease in sensitivity. Charge transport substances include electron transport substances and hole transport substances, and electron transport substances include chloranil, bromoanil, tetracyanoethylene, tetracyanoquinodimethane, and 2,4,7-trinitro-9-fluorenone. , 2, 4, 5, 7-
Tetranitro-9-fluorenone, 2,4,7-
trinitro-9-dicyanomethylenefluorenone, 2,4,5,7-tetranitroxanthone,
Examples include electron-withdrawing substances such as 2,4,8-trinitrothioxanthone, and polymerized versions of these electron-withdrawing substances. Examples of hole-transporting substances include pyrene, N-ethylcarabazole, N-isopropylcarbazole,
N-Methyl-N-phenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-
3-methylidene-10-ethylphenothiazine,
N,N-diphenylhydrazino-3-methylidene-10-ethylphenoxazine, p-diethylaminobenzaldehyde-N,N-diphenylhydrazone, p-diethylaminobenzaldehyde-N
-α-naphthyl-N-phenylhydrazone, p-
Pyrrolidinobenzaldehyde-N,N-diphenylhydrazone, 1,3,3-trimethylindolenine-ω-aldehyde-N,N-diphenylhydrazone, p-diethylbenzaldehyde-3-methylbenzthiazolinone-2-hydrazone hydrazones such as 2,5-bis(p-diethylaminophenyl)-1,3,4-oxadiazole, 1
-Phenyl-3-(p-diethylaminostyryl)
-5-(p-diethylaminophenyl)pyrazoline, 1-[quinolyl(2)]-3-(p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]- 3-(p-
diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[6-methoxy-pyridyl(2)]-3-(p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrizoline, 1- [pyridyl(3)]-3-(p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[lepidyl(2)]-3-(p-
diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-
3-(p-diethylaminostyryl)-4-methyl-5-(p-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-3-(α-methyl-p-
diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-phenyl-3-
(p-diethylaminostyryl)-4-methyl-5
-(p-diethylaminophenyl)pyrazoline,
1-Phenyl-3-(α-benzyl-p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, spiropyrazoline and other pyrazolines, 2-(p-diethylaminostyryl)
-6-diethylaminobenzoxazole, 2-
Oxazole compounds such as (p-diethylaminophenyl)-4-(p-dimethylaminophenyl)-5-(2-chlorophenyl)oxazole, 2
Thiazole compounds such as -(p-diethylaminostyryl)-6-diethylaminobenzothiazole, triarylmethane compounds such as bis(4-diethylamino-2-methylphenyl)-phenylmethane, 1,1-bis(4-N,N -diethylamino-2-methylphenyl)heptane, 1,
Polyarylalkanes such as 1,2,2-tetrakis(4-N,N-dimethylamino-2-methylphenyl)ethane, triphenylamine, poly-
N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, polyvinylacridine,
Examples include poly-9-vinylphenylanthracene, pyrene-formaldehyde resin, and ethylcarbanol formaldehyde resin. In addition to these organic charge transport materials, inorganic materials such as selenium, selenium-tellurium, amylphous silicon, and cadmium sulfide can also be used. In addition, these charge transport substances may be one or two types.
More than one species can be used in combination. When the charge transport material does not have film-forming properties,
A film can be formed by selecting an appropriate binder. Resins that can be used as binders are:
For example, insulating resins such as acrylic resin polyarylate, polyester, polybonate, polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene copolymer, polyvinyl butyral, polyvinyl formal, polysulfone, polyacrylamide, polyamide, chlorinated rubber, or poly-N- Mention may be made of organic photoconductive polymers such as vinylcarbazole, polyvinylanthracene, polyvinylpyrene. Since the charge transport layer has a limit in its ability to transport charge carriers, it cannot be made thicker than necessary. Typically it is between 5 microns and 30 microns, with a preferred range between 8 microns and 20 microns. When forming the charge transport layer by coating, an appropriate coating method as described above can be used. In this way, a photosensitive layer having a laminated structure of a charge generation layer and a charge transport layer is provided on a substrate having a conductive layer. As the substrate having the conductive layer, materials that are themselves conductive can be used, such as aluminum, aluminum alloy, copper, zinc, stainless steel, vanadium, molybdenum, chromium, titanium, nickel, indium, gold, and platinum. In addition, plastics (e.g., polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, acrylic resin, polyethylene fluoride, etc.), conductive particles (e.g. carbon black,
A substrate made of plastic coated with silver particles (silver particles, etc.) together with a suitable binder, a substrate made of plastic or paper impregnated with conductive particles, a plastic containing a conductive polymer, etc. can be used. A subbing layer having barrier and adhesive functions can also be provided between the conductive layer and the photosensitive layer. The subbing layer is made of casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymer, polyamide (nylon 6, nylon 66, nylon
610, copolymerized nylon, alkoxymethylated nylon, etc.), polyurethane, gelatin, aluminum oxide, etc. Undercoat layer thickness: 0.1 micron to 5 micron,
Preferably, 0.3 micron to 3 micron is appropriate. When using a photoreceptor in which a conductive layer, a charge generation layer, and a charge transport layer are laminated in this order, and the charge transport material is an electron transport material, the surface of the charge transport layer must be positively charged, and exposure after charging is required. Then, in the exposed area, electrons generated in the charge generation layer are injected into the charge transport layer, and then reach the surface and neutralize the positive charge, causing a decrease in surface potential and creating an electrostatic contrast with the unexposed area. . A visible image can be obtained by developing the electrostatic latent image thus formed with a negatively charged toner. This can be directly fixed, or the toner image can be transferred to paper, plastic film, etc. and then developed and fixed. Alternatively, a method may be used in which the electrostatic latent image on the photoreceptor is transferred onto an insulating layer of transfer paper, then developed and fixed. The developer, type, developing method, and fixing method may be any known developer or known method, and are not limited to specific ones. On the other hand, when the charge transport material consists of a hole transport material, the surface of the charge transport layer must be negatively charged.
After charging, when exposed to light, holes generated in the charge generation layer in the exposed area are injected into the charge transport layer, and then reach the surface and neutralize the negative charge, causing a decrease in the surface potential and static electricity between the exposed area and the unexposed area. Electrocontrast occurs. During development, it is necessary to use a positively charged toner, contrary to the case where an electron transport material is used. Another specific example of the present invention is an electrophotographic photoreceptor in which the photoconductive organic pigment described above is contained in the same layer as a charge transport material. At this time, a charge transfer complex compound consisting of poly-N-vinylcarbazole and trinitrofluorenone can be used in addition to the above-mentioned charge transport substance. The electrophotographic photoreceptor of this example can be prepared by dispersing the aforementioned organic photoconductor and charge transfer complex compound in a polyester solution dissolved in tetrahydrofuran, and then forming a film thereon. Each photoreceptor contains at least one type of pigment, and if necessary, pigments with different light absorptions are used in combination to increase the sensitivity of the photoreceptor or to obtain a punctochromatic photoreceptor. 2
It is also possible to use more than one species. The electrophotographic photoreceptor of the present invention can be used not only for electrophotographic copying machines, but also for laser printers and CRTs.
It can also be widely used in electrophotographic applications such as printers. Further, the photoconductive composition of the present invention can be used not only for the above-mentioned electrophotographic photoreceptor but also for solar cells and optical sensors. Hereinafter, the present invention will be explained according to examples. Example 1 (Comparative Example 1) In a 500 ml beaker, 80 ml of water and 16.6 ml of concentrated hydrochloric acid (0.19
mole)

【式】で 示されるジアミンを6.53g(0.029モル)を入れ、
氷水浴で冷却しながら攪拌し液温を3℃とした。
次に亜硝酸ソーダ4.2g(0。061モル)を水7ml
に溶かした液を液温を3〜10℃の範囲にコントロ
ールしながら10分間で滴下し終了後同温度で更に
30分攪拌した。反応液にカーボンを加え過して
テトラゾ化液を得た。 次に、2ビーカーに水700mlを入れ苛性ソー
ダ21g(0.53モル)を溶解した後ナフトールAS
(3−ヒドロキシ−2−ナフトエ酸アニリド)
16.2g(0.061モル)を添加して溶解した。 このカプラー溶液を6℃に冷却し液温を6〜10
℃にコントロールしながら前述のテトラゾ化液を
30分かけて攪拌下滴下して、その後室温で2時間
攪拌し更に1晩放置した。反応液を過後、水洗
し粗製顔料19.08gを得た。次に、各400mlのN,
N−ジメチルホルムアミドで5回洗浄を繰り返し
た。その後、各500mlのMEKで3回洗浄をくり返
し、精製顔料のMEKベースト67.32gを得た。
MEKベースト中の顔料固形分は2.5%、収率は75
%であつた。また、得られた顔料は、下記構造を
有する。 次に上記ペースト顔料50gをMEK(メチルエチ
ルケトン)240mlにブチラール樹脂(ブリラール
化度63モル%)5gを溶かした液に加え、アトラ
イターで2時間分散した。また比較例としてブチ
ラール樹脂2gで同様に処理した分散液を調製し
た。本発明の分散液の平均粒径は0.10、比較例で
は0.28であつた。 一方分散比粘度測定用にMEK110mlに上記ブチ
ラール樹脂2gを溶解した液の粘度を測定し、比
較例用にブチラール樹脂0.8gを溶解した液の粘
度を測定し、上記分散液の粘度から分散比粘度を
求めた。
Add 6.53g (0.029mol) of diamine represented by the formula,
The mixture was stirred while cooling in an ice-water bath to bring the liquid temperature to 3°C.
Next, add 4.2g (0.061mol) of sodium nitrite to 7ml of water.
Add the solution dissolved in water dropwise over 10 minutes while controlling the temperature within the range of 3 to 10℃. After finishing, add the solution at the same temperature.
Stirred for 30 minutes. Carbon was added to the reaction solution to obtain a tetrazotized solution. Next, put 700ml of water into 2 beakers and dissolve 21g (0.53mol) of caustic soda, then naphthol AS.
(3-hydroxy-2-naphthoic acid anilide)
16.2 g (0.061 mol) was added and dissolved. Cool this coupler solution to 6℃ and reduce the liquid temperature to 6-10℃.
Add the above-mentioned tetrazotization solution while controlling the temperature at
The mixture was added dropwise over 30 minutes with stirring, and then stirred at room temperature for 2 hours and further left overnight. After filtering the reaction solution, it was washed with water to obtain 19.08 g of a crude pigment. Next, each 400ml of N,
Washing was repeated five times with N-dimethylformamide. Thereafter, washing was repeated three times with 500 ml each of MEK to obtain 67.32 g of MEK base of purified pigment.
Pigment solid content in MEK baset is 2.5%, yield is 75
It was %. Moreover, the obtained pigment has the following structure. Next, 50 g of the above paste pigment was added to a solution prepared by dissolving 5 g of butyral resin (degree of briralization: 63 mol %) in 240 ml of MEK (methyl ethyl ketone), and dispersed with an attritor for 2 hours. Further, as a comparative example, a dispersion liquid treated in the same manner with 2 g of butyral resin was prepared. The average particle size of the dispersion of the present invention was 0.10, and that of the comparative example was 0.28. On the other hand, for dispersion specific viscosity measurement, the viscosity of a solution in which 2 g of the above butyral resin was dissolved in 110 ml of MEK was measured, and for a comparative example, the viscosity of a solution in which 0.8 g of butyral resin was dissolved was measured, and from the viscosity of the above dispersion, the dispersion specific viscosity I asked for

【表】 粘度の測定は、東芝システム(株)製の単一円筒型回
転粘度計「ビスメトロン型VS−A1」を用いて行
なつた。その際の条件は下記のとおりとした。 回転数 ;60r.p.m (低粘度用ローター使用) 測定時 ;始動から5分後 測定温度 ;30±0.1℃ 上記2種の分散液の安定性を下記3項の方法で
試験した。 1 密栓放置 2 開放攪拌(溶剤の蒸発ロスは適宜補充) 3 攪拌槽−循環ポンプ−圧力計−フイルター からなる循環塗布系モデル(第1図)にて連続運
転(図中1は循環槽、2は圧力計、3はフイルタ
ー、4はポンプ、5は液だめを示す。) 評価方法は過時紙が目づまりするか(圧力
計が上昇するか)、分散液にアルミシートを浸漬
して引き上げ、乾燥膜に粒状付着物が認められる
かで凝集性の判断を、また粘度の経時変化も合わ
せて分散液の安定性を判定した。
[Table] The viscosity was measured using a single cylindrical rotational viscometer "Vismetron type VS-A1" manufactured by Toshiba Systems Corporation. The conditions at that time were as follows. Rotation speed: 60 r.pm (low viscosity rotor used) Time of measurement: 5 minutes after starting Measurement temperature: 30±0.1°C The stability of the above two types of dispersions was tested by the method described in Section 3 below. 1. Leave the cap tightly closed. 2. Stir in the open (replenish the evaporation loss of the solvent as appropriate). 3. Continuous operation using the circulation coating system model (Fig. 1) consisting of a stirring tank, circulation pump, pressure gauge, and filter (1 in the figure indicates the circulation tank, 2 ( indicates the pressure gauge, 3 indicates the filter, 4 indicates the pump, and 5 indicates the liquid reservoir.) The evaluation method is to check whether the paper becomes clogged over time (does the pressure gauge increase)? Cohesiveness was determined based on whether granular deposits were observed on the dried film, and stability of the dispersion was determined based on changes in viscosity over time.

【表】 実施例−1は比較例−1に比べ著しく安定性が
増したことが判つた。 次いでアルミ板上にカゼインのアンモニア水溶
液(カゼイン11.2g28%アンモニア水1g、水
222ml)をマイヤーバーで、乾燥後の膜厚が1.0ミ
クロンとなる様に塗布し、乾燥した。このカゼイ
ン層上に先に分散した顔料分散液を乾燥後の膜厚
が0.3ミクロンとなる様にマイヤーバーで塗布し、
乾燥して電荷発生層を形成した 次いで、p−ジエチルアミノベンズアルデヒド
−N,N−ジフエニルヒドラゾン5gとポリメチ
ルメタクリレート樹脂(数平均分子量100000)5
gをベンゼン70mlに溶解し、これを電荷発生層の
上に乾燥後に膜厚が12ミクロンとなる様にマイヤ
ーバーで塗布し、乾燥して電荷輸送層を形成し試
料1とした。 一方、比較の為に前記の比較例として調製した
分散液を分散翌日に上記の方法と全く同様に塗
布、乾燥し、比較試料1を作成した。 この様にして作成した電子写真感光体を川口電
機(株)製静電複写紙、試験装置“Model sp−428”
を用いてスタチツク方式で−5kVでコロナ帯電
し、暗所で1秒間保持した後、照度5luxで露光
し、帯電特性を調べた。 帯電特性としては、表面電位(VD)と1秒間
暗所減衰させた時の電位を1/2に減衰するに必要
な露光量(E1/2)を測定した。この結果を第3
表に示す。
[Table] It was found that the stability of Example-1 was significantly increased compared to Comparative Example-1. Next, place an ammonia solution of casein on an aluminum plate (casein 11.2 g, 28% ammonia water 1 g, water
222 ml) was applied using a Mayer bar so that the film thickness after drying was 1.0 micron, and dried. The previously dispersed pigment dispersion was applied onto this casein layer using a Mayer bar so that the film thickness after drying was 0.3 microns.
A charge generation layer was formed by drying. Next, 5 g of p-diethylaminobenzaldehyde-N,N-diphenylhydrazone and 5 g of polymethyl methacrylate resin (number average molecular weight 100,000) were added.
Sample 1 was obtained by dissolving 1.g in 70 ml of benzene and coating the charge generation layer with a Mayer bar so that the film thickness would be 12 microns after drying, and drying to form a charge transport layer. On the other hand, for comparison, the dispersion liquid prepared as the above-mentioned comparative example was applied and dried in exactly the same manner as described above on the day after dispersion to prepare comparative sample 1. The electrophotographic photoreceptor prepared in this way was used with electrostatic copying paper manufactured by Kawaguchi Electric Co., Ltd. and a test device "Model sp-428".
The sample was statically charged with a corona at -5kV using a 1000V, held in a dark place for 1 second, and then exposed to light at an illuminance of 5lux to examine its charging characteristics. As for the charging characteristics, the surface potential (V D ) and the exposure amount (E1/2) required to attenuate the potential to 1/2 when the potential is attenuated in the dark for 1 second were measured. This result is the third
Shown in the table.

【表】 さらに、繰り返し使用した時の明部電位と暗部
電位の変動を測定するために、本実施例で作成し
た感光体を−5.6kVのコロナ帯電器、露光量
12lux・secの露光光学系、現像器、転写帯電器、
除電露光光学系およびクリーナーを備えた電子写
真複写機のシリンダーに貼り付けた。この複写機
は、シリンダーの駆動に伴い、転写紙上に画像が
得られる構成になつている。この複写機を用い
て、初期の明部電位(VL)と暗部電位(VD)お
よび5000回使用した後の明部電位(VL)と暗部
電位(VD)を測定した。この結果を第4表に示
す。
[Table] Furthermore, in order to measure the fluctuations in the bright area potential and dark area potential during repeated use, the photoreceptor prepared in this example was charged with a -5.6kV corona charger, and the exposure amount was
12lux・sec exposure optical system, developer, transfer charger,
It was attached to the cylinder of an electrophotographic copying machine equipped with a static elimination exposure optical system and a cleaner. This copying machine is configured to produce an image on transfer paper as a cylinder is driven. Using this copying machine, the initial bright area potential (V L ) and dark area potential (V D ) and the bright area potential (V L ) and dark area potential (V D ) after being used 5000 times were measured. The results are shown in Table 4.

【表】 第3表と第4表の結果より、本発明の製造法に
よる感光体は感度並びに耐久使用時の於けるVD
VLの安定性においても極めてすぐれていること
が判る。 実施例2〜8(比較例2〜4) 無水フタル酸148g、尿素180g、無水塩化第1
銅25g、モリブデン酸アンモニウム0.3gと安息
香酸370gを190℃で3.5時間加熱攪拌下で反応さ
せた。反応終了後安息香酸を減圧蒸留した後、水
洗過、酸洗過、水洗過を順次行ない粗製銅
フタロシアニン130gを得た。 この粗製フタロシアニンを濃硫酸1300gに溶解
し、常温で2時間攪拌した後、多量の氷水中に注
入し、析出した顔料を別した後、中性になるま
で水洗した。 次に、DMF2.6で6回攪拌過後、シクロヘ
キサノン2.6で2回攪拌過し、精製銅フタロ
シアニンのシクロヘキサノンペースト467g(固
形分27%、126g)を得た。 次に、セルロースアセテートブチレート樹脂を
添加量を変えてMEK95mlとシクロヘキサノン15
mlの混合溶媒に溶解し、上記顔料のシクロヘキサ
ノンペースト18.5g(固形分5g)を加えボール
ミルで40時間分散した。更にMEKで希釈し、固
形分濃度を減少させた分散液を調製し実施例2〜
8までの試料及び比較例2〜4までの試料を作成
した。これら分散液の分散比粘度と凝集性、粘度
との相関を実施例−1と同様の方法で行つたとこ
ろ表−5の結果を得た。
[Table] From the results in Tables 3 and 4, the photoreceptor manufactured by the manufacturing method of the present invention has a high sensitivity and V D ,
It can be seen that the stability of VL is also extremely excellent. Examples 2 to 8 (Comparative Examples 2 to 4) Phthalic anhydride 148g, urea 180g, anhydrous chloride No. 1
25 g of copper, 0.3 g of ammonium molybdate, and 370 g of benzoic acid were reacted at 190° C. for 3.5 hours with stirring. After the reaction was completed, benzoic acid was distilled under reduced pressure, followed by washing with water, washing with acid, and washing with water in order to obtain 130 g of crude copper phthalocyanine. This crude phthalocyanine was dissolved in 1,300 g of concentrated sulfuric acid, stirred at room temperature for 2 hours, poured into a large amount of ice water, and the precipitated pigment was separated and washed with water until it became neutral. Next, the mixture was stirred and filtered six times with DMF 2.6, and then twice with cyclohexanone 2.6 to obtain 467 g (solid content: 27%, 126 g) of a cyclohexanone paste of purified copper phthalocyanine. Next, add 95ml of MEK and 15ml of cyclohexanone by changing the amount of cellulose acetate butyrate resin added.
ml of mixed solvent, 18.5 g of cyclohexanone paste (solid content: 5 g) of the above pigment was added, and the mixture was dispersed in a ball mill for 40 hours. Further dilution with MEK was carried out to prepare a dispersion liquid with a reduced solid content concentration.
Samples up to 8 and samples up to Comparative Examples 2 to 4 were created. The correlation between the dispersion specific viscosity, cohesiveness, and viscosity of these dispersions was conducted in the same manner as in Example 1, and the results shown in Table 5 were obtained.

【表】 * 凝集開始までの期間は実施例1
の循環系モデルでの数値
表−5から分散比粘度2.5以下の分散液が著し
く安定であることがわかる。
[Table] *The period until the start of aggregation is as in Example 1.
Table 5 shows that dispersion liquids with a dispersion specific viscosity of 2.5 or less are extremely stable.

【図面の簡単な説明】[Brief explanation of drawings]

図面は実施例における循環系モデルの説明図で
ある。 1……循環槽、2……圧力計、3……フイルタ
ー、4……ポンプ、5……液だめ。
The drawing is an explanatory diagram of a circulatory system model in an example. 1...Circulation tank, 2...Pressure gauge, 3...Filter, 4...Pump, 5...Liquid reservoir.

Claims (1)

【特許請求の範囲】 1 下記により規定する分散比粘度が0.8〜2.5の
範囲にあることを特徴とする顔料分散液。 分散比粘度=顔料分散液の粘度/顔料成分を除いた溶液
の粘度
[Scope of Claims] 1. A pigment dispersion liquid characterized by having a dispersion specific viscosity as defined below in the range of 0.8 to 2.5. Dispersion specific viscosity = viscosity of pigment dispersion / viscosity of solution excluding pigment components
JP3363184A 1984-02-24 1984-02-24 Pigment dispersion liquid Granted JPS60177347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3363184A JPS60177347A (en) 1984-02-24 1984-02-24 Pigment dispersion liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3363184A JPS60177347A (en) 1984-02-24 1984-02-24 Pigment dispersion liquid

Publications (2)

Publication Number Publication Date
JPS60177347A JPS60177347A (en) 1985-09-11
JPH0452938B2 true JPH0452938B2 (en) 1992-08-25

Family

ID=12391795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3363184A Granted JPS60177347A (en) 1984-02-24 1984-02-24 Pigment dispersion liquid

Country Status (1)

Country Link
JP (1) JPS60177347A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203348A (en) * 1989-02-01 1990-08-13 Somar Corp Production of organic photosensitive body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573591A (en) * 1978-11-29 1980-06-03 Fuji Photo Film Co Ltd Photosensitive planographic printing plate
JPS5612646A (en) * 1979-07-13 1981-02-07 Ricoh Co Ltd Electrophotographic receptor
JPS5650334A (en) * 1979-09-29 1981-05-07 Matsushita Electric Ind Co Ltd Preparation of electrophotographic photosensitive coating material
JPS5660443A (en) * 1979-10-23 1981-05-25 Copyer Co Ltd Lamination type electrophotographic receptor
JPS57144560A (en) * 1981-03-03 1982-09-07 Canon Inc Production of electrophotographic receptor
JPS57176055A (en) * 1981-04-21 1982-10-29 Mitsubishi Chem Ind Ltd Electrophotographic receptor
JPS58182640A (en) * 1982-04-20 1983-10-25 Hitachi Ltd Electrophotographic receptor of composite type
JPS58194036A (en) * 1982-05-08 1983-11-11 Canon Inc Manufacture of photoconductive composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573591A (en) * 1978-11-29 1980-06-03 Fuji Photo Film Co Ltd Photosensitive planographic printing plate
JPS5612646A (en) * 1979-07-13 1981-02-07 Ricoh Co Ltd Electrophotographic receptor
JPS5650334A (en) * 1979-09-29 1981-05-07 Matsushita Electric Ind Co Ltd Preparation of electrophotographic photosensitive coating material
JPS5660443A (en) * 1979-10-23 1981-05-25 Copyer Co Ltd Lamination type electrophotographic receptor
JPS57144560A (en) * 1981-03-03 1982-09-07 Canon Inc Production of electrophotographic receptor
JPS57176055A (en) * 1981-04-21 1982-10-29 Mitsubishi Chem Ind Ltd Electrophotographic receptor
JPS58182640A (en) * 1982-04-20 1983-10-25 Hitachi Ltd Electrophotographic receptor of composite type
JPS58194036A (en) * 1982-05-08 1983-11-11 Canon Inc Manufacture of photoconductive composition

Also Published As

Publication number Publication date
JPS60177347A (en) 1985-09-11

Similar Documents

Publication Publication Date Title
JPH0480381B2 (en)
JPH0480384B2 (en)
JPH0236937B2 (en)
JPH0455505B2 (en)
JPH0723961B2 (en) Charge generation material and manufacturing method thereof
JPH0549229B2 (en)
US4615965A (en) Method of making photoconductive film and electrophotographic photosensitive member
JPH0452938B2 (en)
JPH0513508B2 (en)
JPH0441814B2 (en)
JPH0473140B2 (en)
JPH0243173B2 (en)
JPS60178456A (en) Manufacture of photoconductive composition
JPH0473873B2 (en)
JPH053586B2 (en)
JPH0473874B2 (en)
JPS6126043A (en) Preparation of photoconductive composition
JPH039459B2 (en)
JP2670821B2 (en) Electrophotographic photoreceptor
JPS6173960A (en) Photoconductive composition and electrophotographic sensitive body containing its composition
JPH0513507B2 (en)
JPS6327849A (en) Electrophotographic sensitive body
JPS60201352A (en) Preparation of photoconductive composition
JPH0441338B2 (en)
JPS5859451A (en) Electrophotographic receptor