JPH0513507B2 - - Google Patents

Info

Publication number
JPH0513507B2
JPH0513507B2 JP59248045A JP24804584A JPH0513507B2 JP H0513507 B2 JPH0513507 B2 JP H0513507B2 JP 59248045 A JP59248045 A JP 59248045A JP 24804584 A JP24804584 A JP 24804584A JP H0513507 B2 JPH0513507 B2 JP H0513507B2
Authority
JP
Japan
Prior art keywords
layer
charge
charge transport
coating
charge generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59248045A
Other languages
Japanese (ja)
Other versions
JPS61126554A (en
Inventor
Hajime Myazaki
Takao Takiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59248045A priority Critical patent/JPS61126554A/en
Publication of JPS61126554A publication Critical patent/JPS61126554A/en
Publication of JPH0513507B2 publication Critical patent/JPH0513507B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • G03G5/067Dyes containing a methine or polymethine group containing only one methine or polymethine group containing hetero rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0605Carbocyclic compounds
    • G03G5/0607Carbocyclic compounds containing at least one non-six-membered ring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0662Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic containing metal elements

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は新規な電子写真感光材料に関し、詳し
くは特定の分子構造を有するメタロセン化合物を
光導電層中に含有する高感度の電子写真感光体に
関するものである。 従来の技術 従来より、光導電性を示す顔料や染料について
は、数多くの文献などで発表されている。 例えば、RCA Review Vol.23、.413〜419
(1962.9)ではフタロシアニン顔料の光導電性に
ついての発表がなされており、又このフタロシア
ニン顔料を用いた電子写真感光体が米国特許第
3397086号公報、同第3816118号公報等に示されて
いる。その他に、電子写真感光体に用いる有機半
導体としては例えば米国特許第4315983号公報、
同第4327169号公報やReseach Disclosure 20517
(1981.5)に示されているピリリウム系染料、米
国特許第3824099号公報に示されているスクエア
リツク酸メチン染料、米国特許第3898084号公報、
同第4251613号公報等に示されたジスアゾ染料等
が挙げられる。このような有機半導体は、無機半
導体に比べて合成が容易で、しかも要求する波長
域の光に大して光導電性をもつような化合物とし
て合成することができ、このような有機半導体の
被膜を導電性基体に形成した電子写真感光体は、
感色性がよくなるという利点を有しているが、感
度及び耐久性において実用できるものは極く僅か
である。 発明が解決しようとする問題点 本発明者等は有機半導体材料の諸欠点を改良し
優れた電子写真特性を備えた光導電性材料を得べ
く鋭意研究の結果本発明を完成するに至つた。 本発明の第1の目的は新規な有機半導体被膜を
提供することである。第2の目的は現存するすべ
ての電子写真プロセスにおいても使用可能であ
り、かつ従来の欠点を改善してより高い電子写真
応答利得の得られる電子写真感光体を提供するこ
とである。 問題点を解決する手段、作用 本発明は導電性基体と光導電層を有する電子写
真感光体において、前記光導電層が 一般式 但し、式中mは0.1又は2の整数であり、Aは
イオウ原子又は酸素原子を示し、Bは置換基を有
してもよいベンゾチイリウム環、ベンゾオキソチ
イリウム環、ナフトチイリウム環又はナフトオキ
ソチイリウム環を形成するに必要な残基を示し、
置換基としてはメチル、エチル、プロピル又はブ
チル等の低級アルキル基、メトキシ、エトキシ、
プロポキシ又はブトキシ等の低級アルコキシ基、
フツ素、塩素、臭素又はヨウ素等のハロゲン原子
又はニトロ基等の官能基が挙げられる。 MはTi,V,Cr,Fe,Co,Ni及びRnから選
択される金属元素を示し、X-はアニオン官能基
を示し、具体例としてはCl-,Br-,I-,BF- 4
Cl0- 4,PF- 6
INDUSTRIAL APPLICATION FIELD The present invention relates to a new electrophotographic photosensitive material, and more particularly to a highly sensitive electrophotographic photoreceptor containing a metallocene compound having a specific molecular structure in a photoconductive layer. BACKGROUND ART Conventionally, pigments and dyes exhibiting photoconductivity have been published in numerous publications. For example, RCA Review Vol.23. 413~419
(1962.9) published on the photoconductivity of phthalocyanine pigments, and an electrophotographic photoreceptor using this phthalocyanine pigment was patented in the United States.
This is disclosed in Publication No. 3397086, Publication No. 3816118, etc. In addition, examples of organic semiconductors used in electrophotographic photoreceptors include US Pat. No. 4,315,983;
Publication No. 4327169 and Research Disclosure 20517
(1981.5), methine squaritate dye shown in US Pat. No. 3,824,099, US Pat. No. 3,898,084,
Examples include disazo dyes disclosed in Publication No. 4251613 and the like. Such organic semiconductors are easier to synthesize than inorganic semiconductors, and can be synthesized as compounds that are highly photoconductive to light in the required wavelength range. The electrophotographic photoreceptor formed on a transparent substrate is
Although it has the advantage of improved color sensitivity, there are very few that can be put to practical use in terms of sensitivity and durability. Problems to be Solved by the Invention The present inventors have completed the present invention as a result of intensive research aimed at improving the various drawbacks of organic semiconductor materials and obtaining a photoconductive material with excellent electrophotographic properties. A first object of the present invention is to provide a novel organic semiconductor coating. The second object is to provide an electrophotographic photoreceptor that can be used in all existing electrophotographic processes, improves the conventional drawbacks, and provides higher electrophotographic response gain. Means for Solving the Problems and Effects The present invention provides an electrophotographic photoreceptor having a conductive substrate and a photoconductive layer, wherein the photoconductive layer has the general formula However, in the formula, m is an integer of 0.1 or 2, A represents a sulfur atom or an oxygen atom, and B represents a benzothirium ring, a benzoxothiylium ring, a naphthothiylium ring, or a naphthothiylium ring which may have a substituent. Indicates the residues necessary to form a ring,
Substituents include lower alkyl groups such as methyl, ethyl, propyl or butyl, methoxy, ethoxy,
lower alkoxy groups such as propoxy or butoxy,
Examples include halogen atoms such as fluorine, chlorine, bromine or iodine, and functional groups such as nitro groups. M represents a metal element selected from Ti, V, Cr, Fe, Co, Ni and Rn, and X - represents an anionic functional group, specific examples include Cl - , Br - , I - , BF - 4 ,
Cl0-4 , PF - 6 ,

【式】,CH3 SO- 3,C2H5SO- 3,CH3SO- 4等のアニオンが含まれ
る、のメタロセン化合物を含有することを特徴と
する電子写真感光体から構成される。 本発明に用いられる一般式(I)のメタロセン
化合物の一般的な製法としては、 等の方法で合成される。 本発明で用いるメタロセン化合物の具体例を次
に列挙する。 上記例示化合物は本発明の特許請求の範囲を限
定するものではない。 前述のメタロセン化合物を有する被膜は光導電
性を示し、下述する電子写真感光体の感光層に用
いることができる。 すなわち本発明の具体例では導電性基体の上に
前記一般式(I)のメタロセン化合物を真空蒸着
法により被膜形成するか、あるいは適当なバイン
ダー中に分散含有させて被膜形成することにより
電子写真感光体を作成することができる。 本発明の好ましい具体例では、電子写真感光体
の感光層を電荷発生層と電荷輸送層に機能分離し
た電子写真感光体における電荷発生層として上記
光導電性被膜を適用することができる。 電荷発生層は、十分な吸光度を得るために、で
きる限り多くの上記光導電性を示す化合物を含有
し、かつ発生した電荷キヤリアの飛程を短くする
ために薄膜層、例えば5μ以下、好ましくは0.01〜
1μの膜厚をもつ薄膜層とすることが好ましい。
このことは、入射光線の大部分が電荷発生層で吸
収されて、多くの電荷キヤリアを生成すること、
さらに発生した電荷キヤリアを再結合や捕獲(ト
ラツプ)により失活することなく電荷輸送層に注
入する必要があることに起因している。 電荷発生層は、前述の化合物を適当なバインダ
ーに分散させ、これを導電性基体の上に塗工する
ことによつて形成でき、また真空蒸着装置により
蒸着膜を形成することによつて得ることができ
る。電荷発生層を塗工によつて形成する際に用い
得るバインダーとしては広範な絶縁性樹脂から選
択でき、またポリ−N−ビニルカルバゾール、ポ
リビニルアントラセンやポリビニルビレンなどの
有機光導電性ポリマーから選択できる。 好ましくはポリビニルブチラール、ポロアリレ
ート(ビスフエノールAとフタル酸の縮重合体な
ど)、ポリカーボネート、ポリエステル、フエノ
キシ樹脂、ポリ酢酸ビニル、アクリル樹脂、ポリ
アクリルアミド、ポリアミド、ポリビニルピリジ
ン、セルロース系樹脂、ウレタン樹脂、エポキシ
樹脂、カゼイン、ポリビニルアルコール、ポリビ
ニルピロリドン等の絶縁性樹脂を挙げることがで
きる。電荷発生層中に含有する樹脂は、80重量%
以下、好ましくは40重量%以下が適している。こ
ららの樹脂を溶解する溶剤は、樹脂の種類によつ
て異なり、また下述の電荷輸送層や下引層を溶解
しないものから選択することが好ましい。 具体的な有機溶剤としてはメタノール、エタノ
ール、イソプロパノール等のアルコール類、アセ
トン、メチルエチルケトン、シクロヘキサノン等
のケトン類、N,N−ジメチルホルムアミド、
N,N−ジメチルアセトアミド、等のアミド類、
ジメチルスルホキシド等のスルホキシド類、テト
ラヒドロフラン、ジオキサン、エチレングリコー
ルモノメチルエーテル等のエーテル類、酢酸メチ
ル、酢酸エチル等のエステル類、クロロホルム、
塩化メチレン、ジクロルエチレン、四塩化炭素、
トリクロルエチレン等の脂肪族ハロゲン化炭化水
素類あるいはベンゼン、トルエン、キシレン、リ
グロイン、モノクロルベンゼン、ジクロルベンゼ
ン等の芳香族類等を用いることができる。 塗工は、浸漬コーテイング法、スプレーコーテ
イング法、スピンナーコーテイング法、ビードコ
ーテイング法、マイヤーバーコーテイング法、ブ
レードコーテイング法、ローラーコーテイング
法、カーテイングコーテイング法等のコーテイン
グ法を用いて行なうことができる。 乾燥は室温における指触乾燥後、加熱乾燥する
方法が好ましい。加熱乾燥は30〜200℃で5分〜
2時間の範囲で静止又は送風下で行なうことがで
きる。 電荷輸送層は、前述の電荷発生層と電気的に接
続されており、電界の存在下で電化発生層から注
入された電荷キヤリアを受け取るとともに、これ
らの電荷キヤリアを表面まで輸送できる機能を有
している。この際、この電荷輸送層は電荷発生層
の上に積層されてもよく、又その下に積層されて
いてもよい。 電荷輸送層における電荷キヤリアを輸送する物
質(以下、電荷輸送物質という)は、前述の電荷
発生層が感応する電磁波の波長域に実質的に非感
応性であることが好ましい。 ここで言う「電磁波」とはγ線、X線、紫外
線、可視光線、近赤外線、赤外線、遠赤外線など
を包含する広義の「光線」の定義を包含する。電
荷輸送層の光感応性波長域が電荷発生層のそれと
一致又はオーバーラツプする時には、両者で発生
した電荷キヤリアが相互に捕獲し合い、結果的に
は感度の低下の原因となる。 電荷輸送物質としては電子輸送物質と正孔輸送
物質があり、電子輸送物質としては、クロルアニ
ル、ブロモアニル、テトラシアノエチレン、テト
ラシアノキノジメタン、2,4,7−トリニトロ
−9−フルオレノン、2,4,5,7−テトラニ
トロ−9−フルオレノン、2,4,7−トリニト
ロ−9−ジシアノメチレンフルオレノン、2,
4,5,7−テトラニトロキサントン、2,4,
8−トリニトロチオキサントン等の電子吸引性物
質やこれ等電子吸引性物質を高分子化したもの等
がある。 正孔輸送物質としては、ピレン、N−エチルカ
ルバゾール、N−イソプロピルカルバソール、N
−メチル−N−フエニルヒドラジノ−3−メチリ
デン−9−エチルカルバゾール、N,N−ジフエ
ニルヒドラジノ−3−メチリデン−9−エチルカ
ルバゾール、N,N−ジフエニルヒドラジノ−3
−メチリデン−10−エチルフエノチアジン、N,
N−ジフエニルヒドラジノ−3−メチリデン−10
−エチルフエノキサジン、P−ジエチルアミノベ
ンズアルデヒド−N,N−ジフエニルヒドラゾ
ン、P−ジエチルアミノベンズアルデヒド−N−
α−ナフチル−N−フエニルヒドラゾン、P−ピ
ロリジノベンズアルデヒド−N,N−ジフエニル
ヒドラゾン、1,3,3−トリメチルインドレニ
ン−ω−アルデヒド−N,N−ジフエニルヒドラ
ゾン、P−ジエチルベンズアルデヒド−3−メチ
ルベンズチアゾリノン−2−ヒドラゾン等のヒド
ラゾン類、2,5−ビス(P−ジエチルアミノフ
エニル)−1,3,4−オキサジアゾール、1−
フエニル−3−(P−ジエチルアミノスチリル)−
5−(P−ジエチルアミノフエニル)ピラゾリン、
1−[キノリル(2))]−3−(P−ジエチルアミノス
チリル)−5−(P−ジエチルアミノフエニル)ピ
ラゾリン、1−[ピリジル(2)]−3−(P−ジエチ
ルアミノスチリル)−5−(P−ジエチルアミノフ
エニル)ピラゾリン、1−[6−メトキシ−ピリ
ジル(2)]−3−(P−ジエチルアミノスチリル)−
5−(−ジエチルアミノフエニル)ピラゾリン、
1−[ピリジル(3)]−3−(P−ジエチルアミノス
チリル)−5−(P−ジエチルアミノフエニル)ピ
ラゾリン1−[レピジル(2)]−3−(−ジエチルア
ミノスチリル)−5−(P−ジエチルアミノフエニ
ル)ピラゾリン、1−[ピリジル(2)]−3−(P−
ジエチルアミノスチリル)−4−メチル−5−(P
−ジエチルアミノフエニル)ピラゾリン、1−
[ピリジル(2)]−3−(α−メチル−p−ジエチル
アミノスチリル)−5−(P−ジエチルアミノフエ
ニル)ピラゾリン、1−フエニル−3−(P−ジ
エチルアミノスチリル)−4−メチル−5−(P−
ジエチルアミノフエニル)ピラゾリン、1−フエ
ニル−3−(α−ベンジル−p−ジエチルアミノ
スチリル)−5−(P−ジエチルアミノフエニル)
ピラゾリン、スピロピラゾリン等のピラゾリン
類、2−(P−ジエチルアミノスチリル)−6−ジ
エチルアミノベンズオキサゾール、2−(P−ジ
エチルアミノフエニル)−4−(P−ジメチルアミ
ノフエニル)−5−(2−クロロフエニル)オキサ
ゾール等のオキサゾール系化合物、2−(P−ジ
エチルアミノスチリル)−6−ジエチルアミノベ
ンゾチアゾール等のチアゾール系化合物、ビス
(4−ジエチルアミノ−2−メチルフエニル)−フ
エニルメタン等のトリアリールメタン系化合物、
1,1−ビス(4−N,N−ジエチルアミノ−2
−メチルフエニル)ヘプタン、1,1,2,2−
テトラキス(4−N,N−ジメチルアミノ−2−
メチルフエニル)エタン等のポリアリールアルカ
ン類、トリフエニルアミン、ポリ−N−ビニルカ
ルバゾール、ポリビニルピレン、ピリビニルアン
トラセン、ポリビニルアクリジン、ポリ−9−ビ
ニルフエニルアントラセン、ピレン−ホルムアル
デヒド樹脂、エチルカルバゾール−ホルムアルデ
ヒド樹脂等がある。これらの有機電荷輸送物質の
他にセレン、セレン−テルル、アモルフアスシリ
コン、硫化カドミウム等の無機材料も用いること
ができる。 又、これらの電荷輸送物質は1種又は2種以上
組合せて用いることができる。 電荷輸送物質に成膜性を有していない時には、
適当なバインダーを選択することによつて被膜形
成できる。バインダーとして使用できる樹脂は、
例えばアクリル樹脂、ポリアリレート、ポリエス
テル、ポリカーボネート、ポリスチレン、アクリ
ロニトリル−スチレンコポリマー、アクリロニト
リル−ブタジエンコポリマー、ポリビニルブチラ
ール、ポリビニルホルマール、ポリスルホン、ポ
リアクリルアミド、ポリアミド、塩素化ゴム等の
絶縁性樹脂あるいはポリ−N−ビニルカルバゾー
ル、ポリビニルアントラセン、ポリビニルピレン
等の有機光導電性ポリマーを挙げることができ
る。 電荷輸送層は、電荷キヤリアを輸送できる限界
があるので、必要以上に膜厚を厚くすることがで
きない。一般的には5〜30μであるが、好ましい
範囲は8〜20μである。塗工によつて電荷輸送層
を形成する際には、前述したような適当なコーテ
イング法を用いることができる。 このような電荷発生層と電荷輸送層の積層構造
からなる感光層は、導電層を有する基体の上に設
けられる。導電層を有する基体としては、基体自
体が導電性をもつもの、例えばアルミニウム、ア
ルミニウム合金、銅、亜鉛、ステンレス、バナジ
ウム、モリブデン、クロム、チタン、ニツケル、
インジウム、金、や白金等を用いることができ、
その他にアルミニウム、アルミニウム合金、酸化
インジウム、酸化錫、酸化インジウム−酸化錫合
金などを真空蒸着法によつて被膜形成された層を
有するプラスチツク例えばポリエチレン、ポリプ
ロピレン、ポリ塩化ビニル、ポリエチレンテレフ
タレート、アクリル樹脂、ポリフツ化エチレン
等)、導電性粒子(例えばカーボンブラツク、銀
粒子等)を適当なバインダーとともにプラスチツ
クの上に被覆した基体、導電性粒子をプラスチツ
クや紙に含浸した基体や導電性ポリマーを有する
プラスチツク等を用いることができる。 導電層と感光層の中間に、バリヤー機能と接着
機能をもつ下引層を設けることもできる。 下引層はカゼイン、ポリビニルアルコール、ニ
トロセルロース、エチレン−アクリル酸コポリマ
ー、ポリアミド、(ナイロン6、ナイロン66、ナ
イロン610、共重合ナイロン、アルコキシメチル
化ナイロン等)、ポリウレタン、ゼラチン、酸化
アルミニウム等によつて形成できる。 下引層の膜厚は0.1〜5μ、好ましくは0.5〜3μが
適当である。 導電層、電荷発生層、電荷輸送層の順に積層し
た感光体を使用する場合において電荷輸送物質が
電子輸送性物質からなるときは、電荷輸送層表面
を正に帯電する必要があり、帯電後露光すると露
光部では電荷発生層において生成した電子が電荷
輸送層に注入され、その後表面に達して正電荷を
中和し、表面電位の減衰が生じ未露光部との間に
静電コントラストが生じる。 このようにしてできた静電潜像を負荷電性のト
ナーで現像すれば可視像が得られる。これを直接
定着するか、あるいはトナー像を紙やプラスチツ
クフイルム等に転写後、現像して定着することが
できる。又、感光体上の静電潜像を転写紙の絶縁
層上に転写後現像し、定着する方法もとれる。 現像剤の種類や現像方法定着方法は公知のもの
や公知の方法のいずれを採用してもよく、特定の
ものに限定されるものではない。 一方、電荷輸送物質が正孔輸送物質から成る場
合、電荷輸送層表面を負に帯電する必要があり、
帯電後、露光すると露光部では電荷発生層におい
て生成した正孔が電荷輸送層に注入され、その後
表面に達して負電荷を中和し、表面電位の減衰が
生じ未露光部との間に静電コントラストが生じ
る。現像時には電子輸送物質を用いた場合とは逆
に正電荷性トナーを用いる必要がある。 導電層、電荷輸送層、電荷発生層の順に積層し
た感光体を使用する場合において電荷輸送物質が
電子輸送性物質からなるときは、電荷発生層負に
帯電する必要があり、帯電後露光すると露光部で
は電荷発生層において生成した電子は電荷輸送層
に注入されそのあと基体に達する。一方、電荷発
生層において生成した正孔は表面に達し表面電位
の減衰が生じ未露光部との間に静電コントラスト
が生じる。このようにしてできた静電潜像を正荷
電性のトナーで現像すれば可視像が得られる。 これを直接定着するか、あるいはトナー像を紙
やプラスチツクフイルム等に転写後現像し定着す
ることができる。 又、感光体上の静電潜像を転写紙の絶縁層上に
転写後現像し、定着する方法もとれる。現像剤の
種類や現像方法、定着方法は公知のものや公知の
方法のいずれを採用してもよく、特定のものに限
定されるものではない。 一方、電荷輸送物質が正孔輸送物質からなると
きは、電荷発生層表面を正に帯電する必要があり
帯電後露光すると、露光部では電荷発生層におい
て生成した正孔は電荷輸送層に注入されその後基
体に達する。一方電荷発生層において生成した電
子は表面に達し、表面電位の減衰が生じ未露光部
との間に静電コントラストが生じる。 現像時には電子輸送性物質を用いた場合とは逆
に負電荷性トナーを用いる必要がある。 又、本発明の別の具体例では、前述のヒドラゾ
ン類、ピラゾリン類、オキサゾール類、チアゾー
ル類、トリアリールメタン類、ポリアリールアル
カン類、トリフエニルアミン、ポリ−N−ビニル
カルバゾール類等有機光導電性物質や酸化亜鉛、
硫化カドミウム、セレン等の無機光導電性物質の
増感剤として前述のメタロセン化合物を含有させ
た感光被膜とすることができる。この感光被膜
は、これらの光導電性物質と前述のメタロセン化
合物をバインダーとともに塗工によつて被膜形成
される。 又本発明の別の具体例としては特開昭49−
916483号公報(光導電性部材)に開示されている
ような電荷移動錯体中に電荷発生材料を添加した
タイプの感光体として使用することもできる。 いずれの感光体においても、本発明の一般式
(I)で示される化合物から選ばれる少なくとも
1種類のメタロセン化合物を含有し必要に応じて
光吸収の異なる他の光導電性顔料や染料を組合せ
て使用することによつて、この感光体の感度を高
めたり、あるいはパンクロマチツクな感光体とし
て作成することも可能である。 本発明の電子写真感光体は電子写真複写機に利
用するのみならず、レーザープリンターやCRT
プリンター等の電子写真応用分野にも広く用いる
ことができる。 以下、本発明を実施例により説明する。 実施例 1〜15 アルミ板上にカゼインのアンモニア水溶液(カ
ゼイン11.2g、28%アンモニア水1g、水222ml)を
マイヤーバーで、乾燥後の膜厚が1.0μとなるよう
に塗布し、乾燥した。 次に、ブチラール樹脂(ブチラール化度63モル
%)2gをイソプロピルアルコール95mlで溶かし
た溶液に、具体例として挙げた15種のメタロセン
化合物5gを夫々加えて15種の塗工液を調製した。 各塗工液をサンドミル分散した後、夫々前述の
カゼイン下引層の上に乾燥後の膜厚が0.1μとなる
ようにマイヤーバーで塗布し、乾燥して電荷発生
層を形成させた。 次いで、P−ジエチルアミノベンズアルデヒド
−N−α−ナフチル−N−フエニルヒドラゾンを
5gとポリメチルメタクリレート(数平均分子量
10万)5gをベンゼン70mlに溶解し、これを電荷
発生層の上に乾燥後の膜厚が12μとなるようにマ
イヤーバーで塗布し、乾燥して電荷輸送層を形成
した。 このようにして作成した15種の電子写真感光体
を川口電気(株)製静電複写紙試験装置Model SP−
428を用いてダイナミツク方式で−5KVでコロナ
帯電し、暗所で1秒間保持した後、照度5luxで4
秒間露光し、帯電特性を調べた。 帯電特性としては、初期帯電電位(Vo)と1
秒間暗減衰させた時の電位を1/2に減衰するに必
要な露光量(E1/2)を測定した。又20lux,
sec露光後の残留電位をVRで表わした。 この結果を第1表に示す。
An electrophotographic photoreceptor characterized by containing a metallocene compound of the formula: CH 3 SO - 3 , C 2 H 5 SO - 3 , CH 3 SO - 4 and other anions. A general method for producing the metallocene compound of general formula (I) used in the present invention is as follows: Synthesized using methods such as Specific examples of the metallocene compounds used in the present invention are listed below. The above exemplified compounds do not limit the scope of the claims of the present invention. The film containing the metallocene compound described above exhibits photoconductivity and can be used in the photosensitive layer of the electrophotographic photoreceptor described below. That is, in a specific example of the present invention, the metallocene compound of the general formula (I) is formed as a film on a conductive substrate by vacuum evaporation, or is dispersed in a suitable binder to form a film, thereby producing an electrophotographic sensitizer. body can be created. In a preferred embodiment of the present invention, the photoconductive coating described above can be applied as a charge generation layer in an electrophotographic photoreceptor in which the photosensitive layer of the electrophotographic photoreceptor is functionally separated into a charge generation layer and a charge transport layer. The charge generation layer contains as much of the above-mentioned photoconductive compound as possible in order to obtain sufficient absorbance, and is a thin film layer, for example, 5μ or less, preferably in order to shorten the range of the generated charge carriers. 0.01〜
A thin film layer having a thickness of 1 μm is preferable.
This means that most of the incident light is absorbed by the charge generation layer, producing many charge carriers;
Furthermore, this is due to the fact that the generated charge carriers need to be injected into the charge transport layer without being deactivated by recombination or trapping. The charge generation layer can be formed by dispersing the above-mentioned compound in a suitable binder and coating it on a conductive substrate, or it can be obtained by forming a vapor deposited film using a vacuum vapor deposition apparatus. I can do it. Binders that can be used to form the charge generating layer by coating can be selected from a wide variety of insulating resins, and can also be selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene, and polyvinylpyrene. . Preferably polyvinyl butyral, polyarylate (condensation polymer of bisphenol A and phthalic acid, etc.), polycarbonate, polyester, phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide, polyamide, polyvinylpyridine, cellulose resin, urethane resin, Examples include insulating resins such as epoxy resin, casein, polyvinyl alcohol, and polyvinylpyrrolidone. The resin contained in the charge generation layer is 80% by weight.
Below, preferably 40% by weight or less is suitable. Solvents that dissolve these resins vary depending on the type of resin, and are preferably selected from those that do not dissolve the charge transport layer or undercoat layer described below. Specific organic solvents include alcohols such as methanol, ethanol and isopropanol, ketones such as acetone, methyl ethyl ketone and cyclohexanone, N,N-dimethylformamide,
Amides such as N,N-dimethylacetamide,
Sulfoxides such as dimethyl sulfoxide, ethers such as tetrahydrofuran, dioxane, and ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, chloroform,
methylene chloride, dichloroethylene, carbon tetrachloride,
Aliphatic halogenated hydrocarbons such as trichloroethylene, aromatics such as benzene, toluene, xylene, ligroin, monochlorobenzene, dichlorobenzene, etc. can be used. Coating can be carried out using coating methods such as dip coating, spray coating, spinner coating, bead coating, Meyer bar coating, blade coating, roller coating, and carting coating. For drying, it is preferable to dry to the touch at room temperature and then heat dry. Heat drying at 30-200℃ for 5 minutes
It can be carried out stationary or under ventilation for a period of 2 hours. The charge transport layer is electrically connected to the charge generation layer described above, and has the function of receiving charge carriers injected from the charge generation layer in the presence of an electric field and transporting these charge carriers to the surface. ing. At this time, this charge transport layer may be laminated on or under the charge generation layer. The substance that transports charge carriers in the charge transport layer (hereinafter referred to as charge transport substance) is preferably substantially insensitive to the wavelength range of electromagnetic waves to which the charge generation layer is sensitive. The term "electromagnetic waves" as used herein includes a broad definition of "light rays" including gamma rays, X-rays, ultraviolet rays, visible light, near infrared rays, infrared rays, far infrared rays, and the like. When the photosensitive wavelength range of the charge transport layer coincides with or overlaps that of the charge generation layer, charge carriers generated in both layers capture each other, resulting in a decrease in sensitivity. Charge transport substances include electron transport substances and hole transport substances, and electron transport substances include chloranil, bromoanil, tetracyanoethylene, tetracyanoquinodimethane, 2,4,7-trinitro-9-fluorenone, 2, 4,5,7-tetranitro-9-fluorenone, 2,4,7-trinitro-9-dicyanomethylenefluorenone, 2,
4,5,7-tetranitroxanthone, 2,4,
Examples include electron-withdrawing substances such as 8-trinitrothioxanthone, and polymerization of these electron-withdrawing substances. As the hole transport substance, pyrene, N-ethylcarbazole, N-isopropylcarbazole, N
-Methyl-N-phenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-3
-methylidene-10-ethylphenothiazine, N,
N-diphenylhydrazino-3-methylidene-10
-Ethylphenoxazine, P-diethylaminobenzaldehyde-N,N-diphenylhydrazone, P-diethylaminobenzaldehyde-N-
α-Naphthyl-N-phenylhydrazone, P-pyrrolidinobenzaldehyde-N,N-diphenylhydrazone, 1,3,3-trimethylindolenine-ω-aldehyde-N,N-diphenylhydrazone, P-diethylbenzaldehyde -Hydrazones such as 3-methylbenzthiazolinone-2-hydrazone, 2,5-bis(P-diethylaminophenyl)-1,3,4-oxadiazole, 1-
Phenyl-3-(P-diethylaminostyryl)-
5-(P-diethylaminophenyl)pyrazoline,
1-[quinolyl(2))]-3-(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-3-(P-diethylaminostyryl)-5- (P-diethylaminophenyl)pyrazoline, 1-[6-methoxy-pyridyl(2)]-3-(P-diethylaminostyryl)-
5-(-diethylaminophenyl)pyrazoline,
1-[pyridyl(3)]-3-(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline 1-[lepidyl(2)]-3-(-diethylaminostyryl)-5-(P- diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-3-(P-
diethylaminostyryl)-4-methyl-5-(P
-diethylaminophenyl)pyrazoline, 1-
[Pyridyl(2)]-3-(α-methyl-p-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-phenyl-3-(P-diethylaminostyryl)-4-methyl-5- (P-
diethylaminophenyl) pyrazoline, 1-phenyl-3-(α-benzyl-p-diethylaminostyryl)-5-(P-diethylaminophenyl)
Pyrazolines such as pyrazoline and spiropyrazoline, 2-(P-diethylaminostyryl)-6-diethylaminobenzoxazole, 2-(P-diethylaminophenyl)-4-(P-dimethylaminophenyl)-5-(2-chlorophenyl) ) Oxazole compounds such as oxazole, thiazole compounds such as 2-(P-diethylaminostyryl)-6-diethylaminobenzothiazole, triarylmethane compounds such as bis(4-diethylamino-2-methylphenyl)-phenylmethane,
1,1-bis(4-N,N-diethylamino-2
-methylphenyl)heptane, 1,1,2,2-
Tetrakis (4-N,N-dimethylamino-2-
Polyarylalkanes such as methylphenyl)ethane, triphenylamine, poly-N-vinylcarbazole, polyvinylpyrene, pyrivinylanthracene, polyvinylacridine, poly-9-vinylphenylanthracene, pyrene-formaldehyde resin, ethylcarbazole-formaldehyde resin etc. In addition to these organic charge transport materials, inorganic materials such as selenium, selenium-tellurium, amorphous silicon, and cadmium sulfide can also be used. Further, these charge transport substances can be used alone or in combination of two or more. When the charge transport material does not have film-forming properties,
A film can be formed by selecting an appropriate binder. Resins that can be used as binders are:
For example, insulating resins such as acrylic resin, polyarylate, polyester, polycarbonate, polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene copolymer, polyvinyl butyral, polyvinyl formal, polysulfone, polyacrylamide, polyamide, chlorinated rubber, or poly-N-vinyl. Organic photoconductive polymers such as carbazole, polyvinylanthracene, polyvinylpyrene and the like may be mentioned. Since the charge transport layer has a limit in its ability to transport charge carriers, it cannot be made thicker than necessary. Generally it is 5 to 30μ, but the preferred range is 8 to 20μ. When forming the charge transport layer by coating, an appropriate coating method as described above can be used. A photosensitive layer having such a laminated structure of a charge generation layer and a charge transport layer is provided on a substrate having a conductive layer. Examples of the substrate having a conductive layer include those whose substrate itself is conductive, such as aluminum, aluminum alloy, copper, zinc, stainless steel, vanadium, molybdenum, chromium, titanium, nickel,
Indium, gold, platinum, etc. can be used,
In addition, plastics having a layer formed by vacuum evaporation of aluminum, aluminum alloy, indium oxide, tin oxide, indium oxide-tin oxide alloy, etc., such as polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, acrylic resin, (polyfluorinated ethylene, etc.), a substrate made of plastic coated with conductive particles (e.g. carbon black, silver particles, etc.) together with a suitable binder, a substrate made of plastic or paper impregnated with conductive particles, a plastic containing a conductive polymer, etc. can be used. A subbing layer having barrier and adhesive functions can also be provided between the conductive layer and the photosensitive layer. The undercoat layer is made of casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymer, polyamide, (nylon 6, nylon 66, nylon 610, copolymerized nylon, alkoxymethylated nylon, etc.), polyurethane, gelatin, aluminum oxide, etc. It can be formed by The appropriate thickness of the undercoat layer is 0.1 to 5 microns, preferably 0.5 to 3 microns. When using a photoreceptor in which a conductive layer, a charge generation layer, and a charge transport layer are laminated in this order, and the charge transport material is an electron transport material, the surface of the charge transport layer must be positively charged, and exposure after charging is required. Then, in the exposed area, electrons generated in the charge generation layer are injected into the charge transport layer, and then reach the surface and neutralize the positive charges, causing attenuation of the surface potential and creating an electrostatic contrast with the unexposed area. A visible image is obtained by developing the electrostatic latent image thus formed with a negatively charged toner. This can be directly fixed, or the toner image can be transferred to paper, plastic film, etc. and then developed and fixed. Alternatively, a method may be used in which the electrostatic latent image on the photoreceptor is transferred onto an insulating layer of transfer paper, then developed and fixed. The type of developer, developing method, and fixing method may be any known developer or known method, and are not limited to a specific one. On the other hand, when the charge transport material consists of a hole transport material, the surface of the charge transport layer must be negatively charged.
After charging, when exposed to light, holes generated in the charge generation layer in the exposed area are injected into the charge transport layer, and then reach the surface and neutralize the negative charge, causing a decrease in surface potential and static electricity between the exposed area and the unexposed area. Electrocontrast occurs. During development, it is necessary to use a positively charged toner, contrary to the case where an electron transport material is used. When using a photoreceptor in which a conductive layer, a charge transport layer, and a charge generation layer are laminated in this order, and the charge transport material is made of an electron transport material, the charge generation layer must be negatively charged, and when exposed after being charged, it is exposed to light. In this case, electrons generated in the charge generation layer are injected into the charge transport layer and then reach the substrate. On the other hand, holes generated in the charge generation layer reach the surface and the surface potential is attenuated, creating an electrostatic contrast with the unexposed area. A visible image is obtained by developing the electrostatic latent image thus formed with a positively charged toner. This can be directly fixed, or the toner image can be transferred to paper, plastic film, etc. and then developed and fixed. Alternatively, a method may be used in which the electrostatic latent image on the photoreceptor is transferred onto an insulating layer of transfer paper, then developed and fixed. The type of developer, the developing method, and the fixing method may be any known ones or methods, and are not limited to specific ones. On the other hand, when the charge transport material is a hole transport material, it is necessary to positively charge the surface of the charge generation layer, and when exposed to light after charging, the holes generated in the charge generation layer are injected into the charge transport layer in the exposed area. Then it reaches the substrate. On the other hand, electrons generated in the charge generation layer reach the surface, causing attenuation of the surface potential and creating an electrostatic contrast with the unexposed area. During development, it is necessary to use a negatively charged toner, contrary to the case where an electron transporting substance is used. In another specific example of the present invention, organic photoconductive materials such as the aforementioned hydrazones, pyrazolines, oxazoles, thiazoles, triarylmethanes, polyarylalkanes, triphenylamines, poly-N-vinylcarbazoles, etc. sexual substances and zinc oxide,
The photosensitive coating may contain the metallocene compound described above as a sensitizer for inorganic photoconductive substances such as cadmium sulfide and selenium. This photosensitive film is formed by coating these photoconductive substances and the above-mentioned metallocene compound together with a binder. Another specific example of the present invention is disclosed in Japanese Unexamined Patent Application Publication No. 1986-
It can also be used as a type of photoreceptor in which a charge generating material is added to a charge transfer complex as disclosed in Japanese Patent No. 916483 (photoconductive member). Each of the photoreceptors contains at least one metallocene compound selected from the compounds represented by the general formula (I) of the present invention, and is optionally combined with other photoconductive pigments or dyes having different light absorption properties. By using this, the sensitivity of this photoreceptor can be increased or it can be made into a panchromatic photoreceptor. The electrophotographic photoreceptor of the present invention can be used not only for electrophotographic copying machines, but also for laser printers and CRTs.
It can also be widely used in electrophotographic applications such as printers. The present invention will be explained below using examples. Examples 1 to 15 An ammonia aqueous solution of casein (11.2 g of casein, 1 g of 28% ammonia water, 222 ml of water) was applied onto an aluminum plate using a Mayer bar so that the film thickness after drying was 1.0 μm, and dried. Next, 5 g of the 15 metallocene compounds listed as specific examples were added to a solution of 2 g of butyral resin (degree of butyralization: 63 mol %) dissolved in 95 ml of isopropyl alcohol to prepare 15 types of coating liquids. After each coating solution was dispersed in a sand mill, it was applied onto the casein subbing layer described above using a Mayer bar so that the film thickness after drying was 0.1 μm, and dried to form a charge generation layer. Then, P-diethylaminobenzaldehyde-N-α-naphthyl-N-phenylhydrazone was added.
5g and polymethyl methacrylate (number average molecular weight
100,000) was dissolved in 70 ml of benzene, and this was applied onto the charge generation layer using a Mayer bar so that the film thickness after drying was 12μ, and dried to form a charge transport layer. The 15 types of electrophotographic photoreceptors created in this way were tested using an electrostatic copying paper tester Model SP- manufactured by Kawaguchi Electric Co., Ltd.
428 using the dynamic method at -5KV, held in a dark place for 1 second, and then charged at 4KV with an illuminance of 5lux.
It was exposed to light for a second and the charging characteristics were examined. The charging characteristics are the initial charging potential (Vo) and 1
The amount of exposure (E1/2) required to attenuate the potential to 1/2 when dark decaying for a second was measured. Also 20lux,
The residual potential after sec exposure was expressed as VR . The results are shown in Table 1.

【表】【table】

【表】【table】

【表】 比較例 1〜5 上記比較化合物を、実施例1のメタロセン化合
物に代えて、その他は実施例1と全く同様にして
感光体を作成し、特性を調べ、その結果を第2表
に示した。
[Table] Comparative examples 1 to 5 A photoreceptor was prepared in the same manner as in Example 1 except that the metallocene compound of Example 1 was used as the comparative compound, and the characteristics were investigated. The results are shown in Table 2.

【表】 比較例は、いずれも感度が本発明の実施例より
も低く、残留電位が大きい。 さらに実施例1で用いた帯電測定装置を用い、
ダイナミツク方式で実施例1と同じ帯電露光操作
を5000回繰り返し帯電初期電位Voと露光後の残
留電位VRの変化を調べ、第3表に示した。 なお実施例3、9、11の感光体についても同じ
測定を実施した。
[Table] All of the comparative examples have lower sensitivity and larger residual potential than the examples of the present invention. Furthermore, using the charge measuring device used in Example 1,
The same charging and exposing operation as in Example 1 was repeated 5000 times using a dynamic method, and the changes in the initial charging potential Vo and the residual potential VR after exposure were investigated and are shown in Table 3. Note that the same measurements were performed on the photoreceptors of Examples 3, 9, and 11.

【表】 比較例の感光体がいずれも初期残留電位が高い
のに対応して繰り返し使用時の残留電位が著しく
高く、それに押し上げられてVpも高く実用上安
定性に欠け大きな問題である。 それに反し、本発明の実施例のものは、繰り返
し使用後も極めて安定であり、実用上すぐれた特
性を具備していることが明白である。 実施例 16〜18 実施例1と同様にしてアルミ板上にカゼインの
下引層を塗布した。 次に実施例1で用いたヒドラゾン化合物を電荷
輸送物質とする電荷輸送層を乾燥後の膜厚が12μ
となるようにマイヤーバーで塗布し、乾燥して電
荷輸送層を形成した。 次いで実施例3、9、11の3種の塗工液を電荷
輸送層の上に乾燥後の膜厚が0.1μとなるようにマ
イヤーバーで塗布し、乾燥して電荷発生層を形成
した。このようにして作成した3種の電子写真感
光体を実施例1と同様にして帯電特性を調べた。
この+5KVでコロナ帯電した。この結果を第4
表に示す。
[Table] Although the photoreceptors of the comparative examples all have high initial residual potentials, the residual potentials during repeated use are extremely high, and this pushes up the V p as well, which is a major problem due to lack of stability in practical use. On the contrary, it is clear that the examples of the present invention are extremely stable even after repeated use and have excellent properties in practical use. Examples 16 to 18 A casein subbing layer was coated on an aluminum plate in the same manner as in Example 1. Next, a charge transport layer containing the hydrazone compound used in Example 1 as a charge transport substance had a film thickness of 12 μm after drying.
It was coated with a Mayer bar to give the following properties and dried to form a charge transport layer. Next, the three coating solutions of Examples 3, 9, and 11 were applied onto the charge transport layer using a Mayer bar so that the film thickness after drying was 0.1 μm, and dried to form a charge generation layer. The charging characteristics of the three types of electrophotographic photoreceptors thus prepared were examined in the same manner as in Example 1.
This +5KV caused a corona charge. This result is the fourth
Shown in the table.

【表】 実施例 19 ポリ−N−ビニルカルバゾールの1gと前記例
示メタロセン化合物No.3の5gを1,2−ジクロ
ルエタン10gに加えた後、十分に攪拌した。 こうして調製した塗工液をアルミ蒸着したポリ
エチレンテレフタレートフイルムの上に乾燥膜厚
が15μになるようにドクターブレードにより塗布
した。 この感光体の帯電特性を実施例1と同様の方法
によつて測定した。但し、帯電極性はプラスとし
た。この結果Vpは+585、E1/2は3.1lux,sec
であつた。 実施例 20 前記実施例19の電子写真感光体の作成に使用し
た例示メタロセン化合物No.3に代え前記例示メタ
ロセン化合物No.9を用いた他は実施例19と全く同
様の方法で感光体を作成した後、この感光体の帯
電特性を測定した。但し、帯電極性をプラスとし
た。この結果は、Vpは+570V、E1/2は3.1lux,
secであつた。 実施例 21 微粒子酸化亜鉛(堺化学(株)製Sazex2000)10g、
アクリル系樹脂(三菱レーヨン(株)製ダイヤナール
LR009)4g、トルエン10g及び前記例示メタロセ
ン化合物No.8を10mgをボールミル中で十分に混合
し、得られた塗工液をアルミ蒸着したポリエチレ
ンテレフタレートフイルムの上にドクターブレー
ドにより乾燥膜厚が21μになるように塗布し、乾
燥して電子写真感光体を作成した。 この電子写真感光体の分光感度を電子写真法の
分光写真により測定したところ、前述のメタロセ
ン化合物を含有していない酸化亜鉛被膜に比較し
て、本実施例の感光体は、長波長側に感度を有し
ていることが判明した。 実施例 22 厚さ100μ厚のアルミ板上にカゼインのアンモ
ニア水溶液を塗布し、乾燥して膜厚1.1μの下引層
を形成した。 次に2,4,7−トリニトロ−9−フルオレノ
ン5gとポリ−N−ビニルカルバゾール(数平均
分子量30万)5gをテトラヒドロフラン70mlに溶
かして電荷移動錯化合物を形成した。この電荷移
動錯化合物と前記例示メタロセン化合物No.15の
1gをポリエステル(バイロン、東洋紡績(株)製)
5gをテトラヒドロフラン70mlに溶かした液に加
え、分散した。この分散液を下引層の上に乾燥後
の膜厚が12μとなるように塗布し、乾燥した。こ
うして作成した感光体の帯電特性を実施例1と同
様の方法で測定した。但し帯電極性はプラスとし
た。この結果は、Vpは+560V、E1/2は5.0lux,
secを示した。 実施例 23 アルミ蒸着ポリエチレンテレフタレートフイル
ムのアルミ面上に膜厚1.1μのポリビニルアルコー
ルの被膜を形成した。次に実施例4で用いた前述
のメタロセン化合物No.4の分散液を先に形成した
ポリビニルアルコール層の上に、乾燥後の膜厚が
0.5μとなるようにマイヤーバーで塗布し、乾燥し
て電荷発生層を形成した。 次に1−[ピリジル(2)]−3−(P−ジエチルア
ミノスチリル)−5−(P−ジエチルアミノフエニ
ル)ピラゾリンの5gとポリアリレート(ビスフ
エノールAとテレフタル酸−イソフタル酸の縮重
合体)5gをテトラヒドロフラン70mlに溶かした
液を電荷発生層の上に乾燥後の膜厚が10μとなる
ように塗布し、乾燥して電荷輸送層を形成した。 こうして作成した電子写真感光体の帯電特性を
実施例1と同様の方法によつて測定した。この結
果は次のとおりであつた。 Vp:−605V、E1/2:3.4lux,sec 発明の効果 以上で明らかなように、本発明は前記特定のメ
タロセン化合物を用いることで、高感度かつ繰り
返し特性が良く、又、どのような帯電モードにお
いても使用できる電子写真感光体を得ることがで
きたものである。
[Table] Example 19 1 g of poly-N-vinylcarbazole and 5 g of the above-mentioned exemplified metallocene compound No. 3 were added to 10 g of 1,2-dichloroethane, and then thoroughly stirred. The coating solution thus prepared was applied onto a polyethylene terephthalate film on which aluminum was vapor-deposited using a doctor blade so that the dry film thickness was 15 μm. The charging characteristics of this photoreceptor were measured in the same manner as in Example 1. However, the charging polarity was set to be positive. As a result, V p is +585, and E1/2 is 3.1lux, sec
It was hot. Example 20 A photoreceptor was prepared in exactly the same manner as in Example 19, except that the exemplified metallocene compound No. 9 was used in place of the exemplified metallocene compound No. 3 used in the preparation of the electrophotographic photoreceptor in Example 19. After that, the charging characteristics of this photoreceptor were measured. However, the charging polarity was set as positive. This result shows that V p is +570V, E1/2 is 3.1lux,
It was hot in sec. Example 21 10 g of fine particle zinc oxide (Sazex2000 manufactured by Sakai Chemical Co., Ltd.),
Acrylic resin (Dyanal manufactured by Mitsubishi Rayon Co., Ltd.)
4g of LR009), 10g of toluene, and 10mg of the above-mentioned exemplified metallocene compound No. 8 were thoroughly mixed in a ball mill, and the resulting coating solution was applied to a polyethylene terephthalate film coated with aluminum using a doctor blade to a dry film thickness of 21μ. An electrophotographic photoreceptor was prepared by coating the film and drying it. When the spectral sensitivity of this electrophotographic photoreceptor was measured using spectrophotography using electrophotography, it was found that the photoreceptor of this example was more sensitive on the long wavelength side than the zinc oxide coating that did not contain the metallocene compound mentioned above. It was found that it has. Example 22 An ammonia aqueous solution of casein was coated on an aluminum plate with a thickness of 100 μm and dried to form a subbing layer with a thickness of 1.1 μm. Next, 5 g of 2,4,7-trinitro-9-fluorenone and 5 g of poly-N-vinylcarbazole (number average molecular weight: 300,000) were dissolved in 70 ml of tetrahydrofuran to form a charge transfer complex compound. This charge transfer complex compound and the above-mentioned exemplified metallocene compound No. 15
1g of polyester (Byron, manufactured by Toyobo Co., Ltd.)
It was added to a solution in which 5 g was dissolved in 70 ml of tetrahydrofuran and dispersed. This dispersion was applied onto the undercoat layer so that the film thickness after drying was 12μ, and dried. The charging characteristics of the photoreceptor thus prepared were measured in the same manner as in Example 1. However, the charging polarity was set to be positive. This result shows that V p is +560V, E1/2 is 5.0lux,
It showed sec. Example 23 A polyvinyl alcohol film having a thickness of 1.1 μm was formed on the aluminum surface of an aluminum vapor-deposited polyethylene terephthalate film. Next, the above-mentioned dispersion of metallocene compound No. 4 used in Example 4 was placed on the polyvinyl alcohol layer formed earlier so that the film thickness after drying was
It was coated with a Mayer bar to a thickness of 0.5μ and dried to form a charge generation layer. Next, 5 g of 1-[pyridyl(2)]-3-(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline and polyarylate (condensation polymer of bisphenol A and terephthalic acid-isophthalic acid) A solution obtained by dissolving 5 g in 70 ml of tetrahydrofuran was applied onto the charge generation layer so that the film thickness after drying was 10 μm, and dried to form a charge transport layer. The charging characteristics of the electrophotographic photoreceptor thus prepared were measured in the same manner as in Example 1. The results were as follows. V p : -605V, E1/2: 3.4lux, sec Effects of the Invention As is clear from the above, the present invention has high sensitivity and good repeatability by using the specific metallocene compound. It was possible to obtain an electrophotographic photoreceptor that can be used even in charging mode.

Claims (1)

【特許請求の範囲】 1 導電性基体と光導電層を有する電子写真感光
体において、前記光導電層が 一般式 但し、式中mは0.1又は2の整数であり、Aは
イオウ原子又は酸素原子を示し、Bは置換基を有
してもよいベンゾチイリウム環、ベンゾオキソチ
イリウム環、ナフトチイリウム環又はナフトオキ
ソチイリウム環を形成するに必要な残基を示し、
MはTi,V,Cr,Fe,Co,Ni及びRnから選択
される金属元素を示し、X-はアニオン官能基を
示す、のメタロセン化合物を含有することを特徴
とする電子写真感光体。
[Scope of Claims] 1. An electrophotographic photoreceptor having a conductive substrate and a photoconductive layer, wherein the photoconductive layer has the general formula However, in the formula, m is an integer of 0.1 or 2, A represents a sulfur atom or an oxygen atom, and B represents a benzothirium ring, a benzoxothiylium ring, a naphthothiylium ring, or a naphthothiylium ring which may have a substituent. Indicates the residues necessary to form a ring,
An electrophotographic photoreceptor comprising a metallocene compound, wherein M represents a metal element selected from Ti, V, Cr, Fe, Co, Ni, and Rn, and X - represents an anionic functional group.
JP59248045A 1984-11-26 1984-11-26 Electrophotographic sensitive body Granted JPS61126554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59248045A JPS61126554A (en) 1984-11-26 1984-11-26 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59248045A JPS61126554A (en) 1984-11-26 1984-11-26 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS61126554A JPS61126554A (en) 1986-06-14
JPH0513507B2 true JPH0513507B2 (en) 1993-02-22

Family

ID=17172371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59248045A Granted JPS61126554A (en) 1984-11-26 1984-11-26 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS61126554A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237355A (en) * 1988-07-27 1990-02-07 Idemitsu Kosan Co Ltd Production of electrophotographic sensitive body
US7811732B2 (en) * 2008-03-31 2010-10-12 Xerox Corporation Titanocene containing photoconductors

Also Published As

Publication number Publication date
JPS61126554A (en) 1986-06-14

Similar Documents

Publication Publication Date Title
JPH0480384B2 (en)
JPH0513508B2 (en)
JPH0513507B2 (en)
JPH0211139B2 (en)
JPH0448217B2 (en)
JPH0514897B2 (en)
JPH0477903B2 (en)
JPS61126556A (en) Electrophotographic sensitive body
JPS61177462A (en) Electrophotographic sensitive body
JPS63218960A (en) Electrophotographic sensitive body
JPH0448226B2 (en)
JP2670821B2 (en) Electrophotographic photoreceptor
JPH0448222B2 (en)
JPH0448220B2 (en)
JPS60177355A (en) Electrophotographic sensitive body
JPH0477908B2 (en)
JPS61194447A (en) Electrophotographic sensitive body
JPS62283344A (en) Electrophotographic sensitive body
JPH0789227B2 (en) Electrophotographic photoreceptor
JPH0833670B2 (en) Electrophotographic photoreceptor
JPH0833673B2 (en) Electrophotographic photoreceptor
JPH0448225B2 (en)
JPS61149964A (en) Electrophotographic sensitive body
JPH01140164A (en) Electrophotographic sensitive body
JPH0473779B2 (en)