JPH0448226B2 - - Google Patents

Info

Publication number
JPH0448226B2
JPH0448226B2 JP27338484A JP27338484A JPH0448226B2 JP H0448226 B2 JPH0448226 B2 JP H0448226B2 JP 27338484 A JP27338484 A JP 27338484A JP 27338484 A JP27338484 A JP 27338484A JP H0448226 B2 JPH0448226 B2 JP H0448226B2
Authority
JP
Japan
Prior art keywords
layer
charge
charge transport
ring
generation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27338484A
Other languages
Japanese (ja)
Other versions
JPS61151546A (en
Inventor
Takao Takiguchi
Hajime Myazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27338484A priority Critical patent/JPS61151546A/en
Publication of JPS61151546A publication Critical patent/JPS61151546A/en
Publication of JPH0448226B2 publication Critical patent/JPH0448226B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0672Dyes containing a methine or polymethine group containing two or more methine or polymethine groups
    • G03G5/0674Dyes containing a methine or polymethine group containing two or more methine or polymethine groups containing hetero rings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は新芏な電子写真感光材料を䜿甚した電
子写真感光䜓に関するものであり、曎に詳しくは
特定の分子構造を有するチむリりム塩化合物を光
導電局䞭に含有する高感床の電子写真甚感光䜓に
関するものである。 〔埓来の技術〕 埓来より、光導電性を瀺す顔料や染料に぀いお
は、数倚くの文献等で発衚されおいる。 䟋えば、「アヌルシヌ゚ヌ レビナヌ」〓
RCA Review”Vol.23、P.413〜P.4191962.9
ではフタロシアニン顔料の光導電性に぀いおの発
衚がなされおおり、又このフタロシアニン顔料を
甚いた電子写真感光䜓が米囜特蚱第3397086号公
報や米囜特蚱第3816118号公報等に瀺されおいる。
その他に、電子写真感光䜓に甚いる有機半導䜓ず
しおは、䟋えば米囜特蚱第4315983号公報、米囜
特蚱第4327169号公報や「リサヌチデむスクロヌ
ゞダヌ」〓Reseach Disclosure”20517
1981.5に瀺されおいるビリリりム系染料、米
囜特蚱第3824099号公報に瀺されおいるスク゚ア
リツク酞メチン染料、米囜特蚱3898084号公報、
米囜特蚱第4251613号公報に瀺されたゞスアゟ顔
料などが挙げられる。 この様な有機半導䜓は、無機半導䜓に范べお合
成が容易で、しかも芁求する波長域の光に察しお
光導電性をも぀様な化合物ずしお合成するこずが
でき、この様な有機半導䜓の被膜を導電性支持䜓
に圢成した電子写真感光䜓は、感色性が良くなる
ずいう利点を有しおいるが、感床および耐久性に
おいお実甚できるものは、ごく僅かである。 〔発明が解決しようずする問題点〕 本発明者らは有機半導䜓材料の諞欠点を改良し
優れた電子写真特性を備えた光導電性材料を埗べ
く鋭意研究の結果本発明を完成するに至぀た。 本発明の第䞀の目的は新芏な有機半導䜓被膜を
提䟛するこずである。 本発明の第二の目的は珟存するすべおの電子写
真プロセスにおいおも䜿甚可胜でありか぀埓来の
欠点を改善しおより高い電子写真応答利埗の埗ら
れる電子写真感光䜓を提䟛するこずにある。 〔問題点を解決するための手段〕 本発明に埓぀お、導電性基板䞊に䞋蚘の䞀般匏
〔〕で瀺されるチむリりム塩化合物を含有する
光導電局を有するこずを特城ずする電子写真感光
䜓が提䟛される。 䞀般匏〔〕 ただし、匏䞭はの敎数を瀺
し、は眮換基を有しおも良いベンゟチむリりム
環、ベンゟオキサチむリりム環、ナフトゞチむリ
りム環、ナフトオキサチむリりム環を圢成するに
必芁な残基を瀺し、眮換基ずしおはメチル、゚チ
ル、プロピル、ブチル等の䜎玚アルキル基、メト
キシ、゚トキシ、プロポキシ、ブトキシ等の䜎玚
アルコキシ基、フツ玠、塩玠、臭玠、ペり玠等の
ハロゲン原子又はニトロ基等の官胜基が包含され
る。A1A2はむオりあるいは酞玠原子を瀺し、
X-はアニオン官胜基を瀺し、具䜓䟋ずしおはI-
Br-Cl-ClO4 -BF4 -PF6 -
[Industrial Application Field] The present invention relates to an electrophotographic photoreceptor using a novel electrophotographic photosensitive material, and more specifically to a high-sensitivity electrophotographic photoreceptor containing a thiillium salt compound having a specific molecular structure in a photoconductive layer. The present invention relates to an electrophotographic photoreceptor. [Prior Art] Pigments and dyes exhibiting photoconductivity have been published in numerous publications. For example, "R.C.A. Review" (〓
RCA Review”) Vol.23, P.413-P.419 (1962.9)
published on the photoconductivity of phthalocyanine pigments, and electrophotographic photoreceptors using these phthalocyanine pigments have been disclosed in US Pat. No. 3,397,086 and US Pat. No. 3,816,118.
In addition, examples of organic semiconductors used in electrophotographic photoreceptors include US Pat. No. 4,315,983, US Pat. No. 4,327,169, and "Research Disclosure" 20517
(1981.5), methine squaritate dye shown in US Pat. No. 3,824,099, US Pat. No. 3,898,084,
Examples include disazo pigments disclosed in US Pat. No. 4,251,613. Such organic semiconductors are easier to synthesize than inorganic semiconductors, and can be synthesized as compounds that have photoconductivity for light in the required wavelength range. An electrophotographic photoreceptor formed on a conductive support has the advantage of improved color sensitivity, but only a few of them are practical in terms of sensitivity and durability. [Problems to be Solved by the Invention] The present inventors have completed the present invention as a result of intensive research aimed at improving the various drawbacks of organic semiconductor materials and obtaining a photoconductive material with excellent electrophotographic properties. Ivy. The first object of the present invention is to provide a novel organic semiconductor coating. A second object of the present invention is to provide an electrophotographic photoreceptor that can be used in all existing electrophotographic processes, improves the conventional drawbacks, and provides higher electrophotographic response gain. [Means for Solving the Problems] According to the present invention, there is provided an electrophotographic photoreceptor comprising a photoconductive layer containing a thiillium salt compound represented by the following general formula [] on a conductive substrate. is provided. General formula [] (However, in the formula, m and n represent integers of 0, 1, and 2, and B forms a benzothiylium ring, benzoxathiylium ring, naphthodithylium ring, or naphthoxathiylium ring that may have a substituent. Substituents include lower alkyl groups such as methyl, ethyl, propyl, butyl, lower alkoxy groups such as methoxy, ethoxy, propoxy, butoxy, and halogens such as fluorine, chlorine, bromine, and iodine. Atoms or functional groups such as nitro groups are included. A 1 and A 2 represent sulfur or oxygen atoms,
X - represents an anionic functional group, specific examples include I - ,
Br - , Cl - , ClO 4 - , BF 4 - , PF 6 - ,

【匏】CH3SO3 -C2H5SO3 - CH3SO4 -等のアニオンが含たれる。は眮換さ
れおもよいベンれン、ナフタレン、アントラセ
ン、ピロヌル、フラン、チオプン、む゜オキサ
ゟヌル残基を瀺し、眮換基ずしおはメチル、゚チ
ル、プロピル、ブチル等の䜎玚アルキル基、メト
キシ、゚トキシ、プロポキシ、ブトキシ等の䜎玚
アルコキシ基、フツ玠、塩玠、臭玠、ペり玠等の
ハロゲン原子又はニトロ基等の官胜基が包含され
る。R1R2R3R4はこのうち少くずも぀が
氎玠原子以倖の眮換基であるこずを瀺し、メチ
ル、゚チル、プロピル、ブチル等の䜎玚アルキル
基、メトキシ、゚トキシ、プロポキシ、ブトキシ
等の䜎玚アルコキシ基、フツ玠、塩玠、ペり玠等
のハロゲン原子、シアノ基が包含される。 次に本発明に甚いられるチむリりム塩化合物の
䞀般的な補法に぀いお述べる。 䞀般匏〔〕で瀺される化合物は 等の方法で䞀般的に合成される。 以䞋本発明で甚いるチむリりム塩化合物の具䜓
䟋を列挙する。 䞊蚘構造を有するチむリりム化合物は本発明の
特蚱請求の範囲を限定するものではない。 前述のチむリりム塩化合物を有する被膜は光導
電性を瀺し、埓぀お䞋述する電子写真感光䜓の感
光局、蚀いかえれば光導電局に甚いるこずができ
る。 すなわち、本発明の具䜓䟋では導電性支持䜓の
䞊に前述のチむリりム塩化合物を真空蒞着法によ
り被膜圢成するか、あるいは適圓なバむンダヌ䞭
に分散含有させお被膜圢成するこずにより電子写
真感光䜓を調補するこずができる。 本発明の奜たしい具䜓䟋では、電子写真感光䜓
の感光局を電荷発生局ず電荷茞送局に機胜分離し
た電子写真感光䜓における電荷発生局ずしお、前
述の光導電性被膜を適甚するこずができる。 電荷発生局は、十分な吞光床を埗るために、で
きる限り倚くの前述の光導電性を瀺す化合物を含
有し、䞔぀発生した電荷キダリアの飛皋を短かく
するために薄膜局、䟋えば5Ό以䞋、奜たしくは
0.01〜1Όの膜厚をも぀薄膜局ずするこずが奜たし
い。このこずは、入射光量の倧郚分が電荷発生局
で吞収されお、倚くの電荷キダリアを生成するこ
ず、さらに発生した電荷キダリアを再結合や捕獲
トラツプにより倱掻するこずなく電荷茞送局
に泚入する必芁があるこずに垰因しおいる。 電荷発生局は、前述の化合物を適圓なバむンダ
ヌに分散させ、これを基䜓の䞊に塗工するこずに
よ぀お圢成でき、たた真空蒞着装眮により蒞着膜
を圢成するこずによ぀お埗るこずができる。電荷
発生局を塗工によ぀お圢成する際に甚いうるバむ
ンダヌずしおは広範な絶瞁性暹脂から遞択でき、
たたポリ−−ビニルカルバゟヌル、ポリビニル
アントラセンやポリビニルピレンなどの有機光導
電性ポリマヌから遞択できる。奜たしくは、ポリ
ビニルプチラヌル、ポリアリレヌトビスプノ
ヌルずフタル酞の瞮重合䜓など。ポリカヌボ
ネヌト、ポリ゚ステル、プノキシ暹脂、ポリ酢
酞ビニル、アクリル暹脂、ポリアクリルアミド暹
脂、ポリアミド、ポリビニルピリゞン、セルロヌ
ス系暹脂、りレタン暹脂、゚ポキシ暹脂、カれむ
ン、ポリビニルアルコヌル、ポリビニルピロリド
ンなどの絶瞁性暹脂を挙げるこずができる。電荷
発生局䞭に含有する暹脂は、80重量以䞋、奜た
しくは40重量以䞋が適しおいる。 これらの暹脂を溶解する溶剀は、暹脂の皮類に
よ぀お異なり、たた䞋述の電荷茞送局や䞋匕局を
溶解しないものから遞択するこずが奜たしい。具
䜓的な有機溶剀ずしおは、メタノヌル、゚タノヌ
ル、む゜プロパノヌルなどのアルコヌル類、アセ
トン、メチル゚チルケトン、シクロヘキサノンな
どのケトン類、−ゞメチルホルムアミド、
−ゞメチルアセトアミドなどのアミド類、
ゞメチルスルホキシドなどのスルホキシド類、テ
トラヒドロフラン、ゞオキサン、゚チレングリコ
ヌルモノメチル゚ヌテルなどの゚ヌテル類、酢酞
メチル、酢酞゚チルなどの゚ステル類、クロロホ
ルム、塩化メチレン、ゞクロル゚チレン、四塩化
炭玠、トリクロル゚チレンなどの脂肪族ハロゲン
化炭化氎玠類あるいはベンれン、トル゚ン、キシ
レン、リグロむン、モノクロルベンれン、ゞクロ
ルベンれンなどの芳銙族類を甚いるこずができ
る。 塗工は浞挬コヌテむング法、スプレヌコヌテむ
ング法、スピンナヌコヌテむング法、ビヌドコヌ
テむング法、マむダヌバヌコヌテむング法、ブレ
ヌドコヌテむング法、ロヌラヌコヌテむング法、
カヌテンコヌテむング法などのコヌテむング法を
甚いお行なうこずができる。也燥は、宀枩におけ
る指觊也燥埌、加熱也燥する方法が奜たしい。加
熱也燥は、30℃〜200℃の枩床で分〜時間の
範囲の時間で、静止たたは送颚䞋で行なうこずが
できる。 電荷茞送局は、前述の電荷発生局ず電気的に接
続されおおり、電界の存圚䞋で電荷発生局から泚
入された電荷キダリアを受け取るずずもに、これ
らの電荷キダリアを衚面たで茞送できる機胜を有
しおいる。この際、この電荷茞送局は、電荷発生
局の䞊に積局されおいおもよくたたその䞋に積局
されおいおもよい。 電荷茞送局における電荷キダリアを茞送する物
質以䞋、単に電荷茞送物質ずいうは、前述の
電荷発生局が感応する電磁波の波長域に実質的に
非感応性であるこずが奜たしい。ここで蚀う「電
磁波」ずは、γ線、線、玫倖線、可芖光線、近
赀倖線、赀倖線、遠赀倖線などを包含する広矩の
「光線」の定矩を包含する。電荷茞送局の光感応
性波長域が電荷発生局のそれず䞀臎たたはオヌバ
ヌラツプする時には、䞡者で発生した電荷キダリ
アが盞互に捕獲し合い、結果的には感床の䜎䞋の
原因ずなる。 電荷茞送物質ずしおは電子茞送性物質ず正孔茞
送性物質があり、電子茞送性物質ずしおは、クロ
ルアニル、ブロモアニル、テトラシアノ゚チレ
ン、テトラシアノキノゞメタン、−ト
リニトロ−−フルオレノン、−
テトラニトロ−−フルオレノン、−
トリニトロ−−ゞシアノメチレンフルオレノ
ン、−テトラニトロキサントン、
−トリニトロチオキサントン等の電子
吞匕性物質やこれら電子吞匕性物質を高分子化し
たもの等がある。 正孔茞送性物質ずしおは、ピレン、−゚チル
カルバゟヌル、−む゜プロピルカルバゟヌル、
−メチル−−プニルヒドラゞノ−−メチ
リデン−−゚チルカルバゟヌル、−ゞフ
゚ニルヒドラゞノ−−メチリデン−−゚チル
カルバゟヌル、−ゞプニルヒドラゞノ−
−メチリデン−10−゚チルプノチアゞン、
−ゞプニルヒドラゞノ−−メチリデン
−10−゚チルプノキサゞン、−ゞ゚チルアミ
ノベンズアルデヒド−−ゞプニルヒドラ
ゟン、−ゞ゚チルアミノベンズアルデヒド−
−α−ナフチル−−プニルヒドラゟン、−
ピロリゞノベンズアルデヒド−−ゞプニ
ルヒドラゟン、−トリメチルむンドレ
ニン−ω−アルデヒド−−ゞプニルヒド
ラゟン、−ゞ゚チルベンズアルデヒド−−メ
チルベンズチアゟリノン−−ヒドラゞン等のヒ
ドラゟン類、−ビス−ゞ゚チルアミノ
プニル−−オキサゞアゟヌル、
−プニル−−−ゞ゚チルアミノスチリル
−−−ゞ゚チルアミノプニルピラゟリ
ン、−〔キノリル(2)〕−−−ゞ゚チルアミ
ノスチリル−−−ゞ゚チルアミノプニ
ルピラゟリン、−〔ピリゞル(2)〕−−−
ゞ゚チルアミノスチリル−−−ゞ゚チルア
ミノプニルピラゟリン、−〔−メトキシ
−ピリゞル(2)〕−−−ゞ゚チルアミノスチリ
ル−−−ゞ゚チルアミノプニルピラゟ
リン、−〔ピリゞル(3)〕−−−ゞ゚チルア
ミノスチリル−−−ゞ゚チルアミノプニ
ルピラゟリン、−〔レピゞル(2)〕−−−
ゞ゚チルアミノスチリル−−−ゞ゚チルア
ミノプニルピラゟリン、−〔ピリゞル(2)〕−
−−ゞ゚チルアミノスチリル、−メチル
−−−ゞ゚チルアミノプニルピラゟリ
ン、−〔ピリゞル(2)〕−−α−メチル−−
ゞ゚チルアミノスチリル−−−ゞ゚チルア
ミノプニルピラゟリン、−プニル−−
−ゞ゚チルアミノスチリル−−メチル−
−−ゞ゚チルアミノプニルピラゟリン、
−プニル−−α−ベンゞル−−ゞ゚チ
ルアミノスチリル−−−ゞ゚チルアミノフ
゚ニルピラゟリン、スピラゟリンなどのピラゟ
リン類、−−ゞ゚チルアミノスチリル−
−ゞ゚チルアミノベンズオキサゟヌル、−
−ゞ゚チルアミノプニル−−−ゞメチル
アミノプニル−−−クロロプニルオ
キサゟヌル等のオキサゟヌル系化合物、−
−ゞ゚チルアミノスチリル−−ゞ゚チルアミ
ノベンゟチアゟヌル等のチアゟヌル系化合物、ビ
ス−ゞ゚チルアミノ−−メチルプニル
−プニルメタン等のトリアヌルメタン系化合
物、−ビス−−ゞ゚チルアミノ
−−メチルプニルヘプタン、
−テトラキス−−ゞメチルアミノ−
−メチルプニル゚タン等のポリアリヌルア
ルカン類、トリプニルアミン、ポリ−−ビニ
ルカルバゟヌル、ポリビニルピレン、ポリビニル
アントラセン、ポリビニルアクリゞン、ポリ−
−ビニルプニルアントラセン、ピレン−ホルム
アルデヒド暹脂、゚チルカルバゟヌルホルムアル
デヒド暹脂等がある。 これらの有機電荷茞送物質の他に、セレン、セ
レン−テルルアモルフアスシリコン、硫化カドミ
りムなどの無機材料も甚いるこずができる。 たた、これらの電荷茞送物質は、皮たたは
皮以䞊組合せお甚いるこずができる。 電荷茞送物質に成膜性を有しおいない時には、
適圓なバむンダヌを遞択するこずによ぀お被膜圢
成できる。バむンダヌずしお䜿甚できる暹脂は、
䟋えばアクリル暹脂、ポリアリレヌト、ポリ゚ス
テル、ポリカヌボネヌト、ポリスチレン、アクリ
ロニトリル−スチレンコポリマヌ、アクリロニト
リル−ブタゞ゚ンコポリマヌ、ポリビニルブチラ
ヌル、ポリビニルホルマヌル、ポリスルホン、ポ
リアクリルアミド、ポリアミド、塩玠化ゎムなど
の絶瞁性暹脂、あるいはポリ−−ビニルカルバ
ゟヌル、ポリビニルアントラセン、ポリビニルピ
レンなどの有機光導電性ポリマヌを挙げるこずが
できる。 電荷茞送局は、電荷キダリアを茞送できる限界
があるので、必芁以䞊に膜厚を厚くするこずがで
きない。䞀般的には、〜30Όであるが、奜たし
い範囲は〜20Όである。塗工によ぀お電荷茞送
局を圢成する際には、前述した様な適圓なコヌテ
むング法を甚いるこずができる。 この様な電荷発生局ず電荷茞送局の積局構造か
らなる感光局は、導電局を有する基䜓の䞊に蚭け
られる。導電局を有する基䜓すなわち導電性基䜓
ずしおは、基䜓自䜓が導電性をも぀もの、䟋えば
アルミニりム、アルミニりム合金、銅、亜鉛、ス
テンレス、バナゞりム、モリブデン、クロム、チ
タン、ニツケル、むンゞりム、金や癜金などを甚
いるこずができ、その他にアルミニりム、アルミ
ニりム合金、酞化むンゞりム、酞化錫、酞化むン
ゞりム−酞化錫合金などを真空蒞着法によ぀お被
膜圢成された局を有するプラスチツク䟋えばポ
リ゚チレン、ポリプロピレン、ポリ塩化ビニル、
ポリ゚チレンテレフタレヌト、アクリル暹脂、ポ
リフツ化゚チレンなど、導電性粒子䟋えば、
カヌボンブラツク、銀粒子などを適圓なバむン
ダヌずずもにプラスチツクの䞊に被芆した基䜓、
導電性粒子をプラスチツクや玙に含浞した基䜓や
導電性ポリマヌを有するプラスチツクなどを甚い
るこずができる。 導電局ず感光局の䞭間に、バリダヌ機胜ず接着
機胜をも぀䞋匕局を蚭けるこずもできる。䞋匕局
は、カれむン、ポリビニルアルコヌル、ニトロセ
ルロヌス、゚チレン−アクリル酞コポリマヌ、ポ
リアミドナむロン、ナむロン66、ナむロン
610、共重合ナむロン、アルコキシメチル化ナむ
ロンなど、ポリりレタン、れラチン、酞化アル
ミニりムなどによ぀お圢成できる。 䞋匕局の膜厚は、0.1〜5Ό、奜たしくは0.5〜3ÎŒ
が適圓である。 導電局、電荷発生局、電荷茞送局の順に積局し
た感光䜓を䜿甚する堎合においお電荷茞送物質が
電子茞送性物質からなるずきは、電荷茞送局衚面
を正に垯電する必芁があり、垯電埌露光するず露
光郚では電荷発生局においお生成した電子が電荷
茞送局に泚入され、そのあず衚面に達しお正電荷
を䞭和し、衚面電䜍の枛衰が生じ未露光郚ずの間
に静電コントラストが生じる。この様にしおでき
た静電朜像を負荷電性のトナヌで珟像すれば可芖
像が埗られる。これを盎接定着するか、あるいは
トナヌ像を玙やプラスチツクフむルム等に転写
埌、珟像し定着するこずができる。 たた、感光䜓䞊の静電朜像を転写玙の絶瞁局䞊
に転写埌珟像し、定着する方法もずれる。珟像剀
の皮類や珟像方法、定着方法は公知のものや公知
の方法のいずれを採甚しおも良く、特定のものに
限定されるものではない。 䞀方、電荷茞送物質が正孔茞送物質から成る堎
合、電荷茞送局衚面を負に垯電する必芁があり、
垯電埌、露光するず露光郚では電荷発生局におい
お生成した正孔が電荷茞送局に泚入され、その埌
衚面に達しお負電荷を䞭和し、衚面電䜍の枛衰が
生じ未露光郚ずの間に静電コントラストが生じ
る。珟像時には電子茞送性物質を甚いた堎合ずは
逆に正電荷性トナヌを甚いる必芁がある。 導電局、電荷茞送局、電荷発生局の順に積局し
た感光䜓を䜿甚する堎合においお、電荷茞送物質
が電子茞送性物質からなるずきは、電荷発生局衚
面を負に垯電する必芁があり、垯電埌露光するず
露光郚では電荷発生局においお生成した電子は電
荷茞送局に泚入され、そのあず基盀に達する䞀方
電荷発生局においお生成した正孔は衚面に達し、
衚面電䜍の枛衰が生じ未露光郚ずの間に静電コン
トラストが生じる。この様にしおできた静電朜像
を正荷電性のトナヌで珟像すれば可芖像が埗られ
る。これを盎接定着するか、あるいはトナヌ像を
玙やプラスチツクフむルム等に転写埌珟像し定着
するこずができる。 たた、感光䜓䞊の静電朜像を転写玙の絶瞁局䞊
に転写埌珟像し、定着する方法もずれる。珟像剀
の皮類や珟像方法、定着方法は公知のものや公知
の方法のいずれを採甚しおも良く、特定のものに
限定されるものではない。 䞀方、電荷茞送物質が正孔茞送性物質からなる
ずきは、電荷発生局衚面を正に垯電する必芁があ
り垯電埌露光するず露光郚では電荷発生局におい
お生成した正孔は電荷茞送局に泚入され、そのあ
ず基盀に達する䞀方電荷発生局においお生成した
電子は衚面に達し衚面電䜍の枛衰が生じ未露光郚
ずの間に静電コントラストが生じる。 珟像時には電子茞送性物質を甚いた堎合ずは逆
に負電荷性トナヌを甚いる必芁がある。 たた、本発明の別の具䜓䟋では、前述のヒドラ
ゟン類、ピラゟリン類、オキサゟヌル類、チアゟ
ヌル類、トリアリヌルメタン類、ポリアリヌルア
ルカン類、トリプニルアミン、ポリ−−ビニ
ルカルバゟヌル類など有機光導電性物質や酞化亜
鉛、硫化カドミりム、セレンなどの無機光導電性
物質の増感剀ずしお前述のチむリりム塩化合物を
含有させた感光被膜ずするこずができる。この感
光被膜は、これらの光導電性物質ず前述のチむリ
りム塩化合物をバむンダヌずずもに塗工によ぀お
被膜圢成される。 たた本発明の別の具䜓䟋ずしおは特開昭49−
916483公報光導電性郚材に開瀺されおいる様
な電荷移動錯䜓䞭に電荷発生材料を添加したタむ
プの感光䜓ずしお䜿甚するこずもできる。いずれ
の感光䜓においおも、䞀般匏〔〕で瀺される化
合物から遞ばれる少なくずも皮類のチむリりム
塩化合物を含有し必芁に応じお光吞収の異なる他
の光導電性顔料や染料を組合せお䜿甚するこずに
よ぀お、この感光䜓の感床を高めたり、あるいは
バンクロマチツクな感光䜓ずしお調補するこずも
可胜である。 本発明の電子写真感光䜓は電子写真耇写機に利
甚するのみならず、レヌザヌプリンタヌやCRT
プリンタヌなどの電子写真応甚分野にも広く甚い
るこずができる。 以䞋、本発明を実斜䟋に埓぀お説明する。 実斜䟋 〜21 アルミ板䞊にカれむンのアンモニア氎溶液カ
れむン11.2、28アンモニア氎、氎222ml
をマむダヌバヌで、也燥埌の膜厚が1.0Όずなる様
に塗垃し、也燥した。 次に、ブチラヌル暹脂ブチラヌル化床63モル
をむ゜プロピルアルコヌル95mlで溶かし
た溶液に、具䜓䟋に挙げた21皮類のチむリりム塩
化合物を各々加えお21皮の塗工液を調補し
た。 各塗工液をサンドミル分散した埌、それぞれ前
述のカれむン䞋匕局の䞊に也燥埌の膜厚が0.1Όず
なる様にマむダヌバヌで塗垃し、也燥しお電荷発
生局を圢成させた。 次いで、構造匏 のヒドラゞン化合物ずポリメチルメタクリレ
ヌト暹脂数平均分子量100000をベンれン
70mlに溶解し、これを電荷発生局の䞊に也燥埌の
膜厚が12Όずなる様にマむダヌバヌで塗垃し、也
燥しお電荷茞送局を圢成した。 この様にしお䜜成した21皮の電子写真感光䜓を
川口電機(æ ª)補静電耇写玙詊隓装眮Model SP−
428を甚いおダむナミツク方匏で−5kVでコロナ
垯電し、暗所で秒間保持した埌、照床5luxで
秒間露光し垯電特性を調べた。 垯電特性ずしおは、初期垯電電䜍V0ず秒間
暗枛衰させた時の電䜍を1/2に枛衰するに必芁な
露光量E1/2を枬定した。この結果を第衚に
瀺す。又、20lux・sec露光埌の残留電䜍をVRで
衚わした。
[Formula] Contains anions such as CH 3 SO 3 - , C 2 H 5 SO 3 - , CH 3 SO 4 - , etc. Q represents an optionally substituted benzene, naphthalene, anthracene, pyrrole, furan, thiophene, or isoxazole residue, and substituents include lower alkyl groups such as methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, and butoxy. It includes lower alkoxy groups such as, halogen atoms such as fluorine, chlorine, bromine, and iodine, and functional groups such as nitro groups. R 1 , R 2 , R 3 , and R 4 indicate that at least one of them is a substituent other than a hydrogen atom, and includes a lower alkyl group such as methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy It includes lower alkoxy groups such as, halogen atoms such as fluorine, chlorine, and iodine, and cyano groups. Next, a general method for producing the thiillium salt compound used in the present invention will be described. The compound represented by the general formula [] is It is generally synthesized by methods such as Specific examples of the thiillium salt compounds used in the present invention are listed below. The thiillium compound having the above structure does not limit the scope of the claims of the present invention. The film containing the thiillium salt compound described above exhibits photoconductivity, and therefore can be used as a photosensitive layer, in other words, a photoconductive layer, of the electrophotographic photoreceptor described below. That is, in a specific example of the present invention, an electrophotographic photoreceptor is formed by forming a film of the above-mentioned thiylium salt compound on a conductive support by vacuum evaporation, or by dispersing it in a suitable binder and forming a film. It can be prepared. In a preferred embodiment of the present invention, the photoconductive coating described above can be applied as a charge generation layer in an electrophotographic photoreceptor in which the photosensitive layer is functionally separated into a charge generation layer and a charge transport layer. The charge generation layer contains as much of the above-mentioned photoconductive compound as possible in order to obtain sufficient absorbance, and is a thin film layer, for example, 5Ό or less, in order to shorten the range of the generated charge carriers. Preferably
A thin film layer having a thickness of 0.01 to 1 ÎŒm is preferable. This means that most of the incident light is absorbed by the charge generation layer, generating many charge carriers, and that the generated charge carriers are not deactivated by recombination or trapping, but are transferred to the charge transport layer. This is due to the need for injection. The charge generation layer can be formed by dispersing the above-mentioned compound in a suitable binder and coating it on the substrate, or it can be obtained by forming a vapor deposited film using a vacuum vapor deposition apparatus. . The binder that can be used when forming the charge generation layer by coating can be selected from a wide range of insulating resins.
It can also be selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene and polyvinylpyrene. Preferably, polyvinylbutyral, polyarylate (condensation polymer of bisphenol A and phthalic acid, etc.) polycarbonate, polyester, phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide resin, polyamide, polyvinylpyridine, cellulose resin, Examples include insulating resins such as urethane resin, epoxy resin, casein, polyvinyl alcohol, and polyvinylpyrrolidone. The resin contained in the charge generation layer is suitably 80% by weight or less, preferably 40% by weight or less. The solvent that dissolves these resins varies depending on the type of resin, and is preferably selected from those that do not dissolve the charge transport layer or undercoat layer described below. Specific organic solvents include alcohols such as methanol, ethanol, and isopropanol, ketones such as acetone, methyl ethyl ketone, and cyclohexanone, N,N-dimethylformamide,
Amides such as N,N-dimethylacetamide,
Sulfoxides such as dimethyl sulfoxide, ethers such as tetrahydrofuran, dioxane, and ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, aliphatic halogens such as chloroform, methylene chloride, dichloroethylene, carbon tetrachloride, and trichloroethylene. Hydrocarbons or aromatics such as benzene, toluene, xylene, ligroin, monochlorobenzene, dichlorobenzene, etc. can be used. Coating methods include dip coating method, spray coating method, spinner coating method, bead coating method, Meyer bar coating method, blade coating method, roller coating method,
This can be done using a coating method such as a curtain coating method. For drying, it is preferable to dry to the touch at room temperature and then heat dry. Heat drying can be carried out at a temperature of 30° C. to 200° C. for a period of time ranging from 5 minutes to 2 hours, either stationary or under ventilation. The charge transport layer is electrically connected to the charge generation layer described above, and has the function of receiving charge carriers injected from the charge generation layer in the presence of an electric field and transporting these charge carriers to the surface. ing. At this time, this charge transport layer may be laminated on or under the charge generation layer. The substance that transports charge carriers in the charge transport layer (hereinafter simply referred to as charge transport substance) is preferably substantially insensitive to the wavelength range of electromagnetic waves to which the charge generation layer is sensitive. The term "electromagnetic waves" used herein includes a broad definition of "light rays" that includes gamma rays, X-rays, ultraviolet rays, visible light, near infrared rays, infrared rays, far infrared rays, and the like. When the photosensitive wavelength range of the charge transport layer coincides with or overlaps that of the charge generation layer, charge carriers generated in both trap each other, resulting in a decrease in sensitivity. Charge transport substances include electron transport substances and hole transport substances, and electron transport substances include chloranil, bromoanil, tetracyanoethylene, tetracyanoquinodimethane, and 2,4,7-trinitro-9-fluorenone. , 2, 4, 5, 7-
Tetranitro-9-fluorenone, 2,4,7-
trinitro-9-dicyanomethylenefluorenone, 2,4,5,7-tetranitroxanthone,
Examples include electron-withdrawing substances such as 2,4,8-trinitrothioxanthone, and polymerization of these electron-withdrawing substances. Examples of hole-transporting substances include pyrene, N-ethylcarbazole, N-isopropylcarbazole,
N-Methyl-N-phenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-
3-methylidene-10-ethylphenothiazine,
N,N-diphenylhydrazino-3-methylidene-10-ethylphenoxazine, p-diethylaminobenzaldehyde-N,N-diphenylhydrazone, p-diethylaminobenzaldehyde-N
-α-naphthyl-N-phenylhydrazone, p-
Pyrrolidinobenzaldehyde-N,N-diphenylhydrazone, 1,3,3-trimethylindolenine-ω-aldehyde-N,N-diphenylhydrazone, p-diethylbenzaldehyde-3-methylbenzthiazolinone-2-hydrazine hydrazones such as 2,5-bis(p-diethylaminophenyl)-1,3,4-oxadiazole, 1
-Phenyl-3-(p-diethylaminostyryl)
-5-(p-diethylaminophenyl)pyrazoline, 1-[quinolyl(2)]-3-(p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]- 3-(p-
diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[6-methoxy-pyridyl(2)]-3-(p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1- [Pyridyl(3)]-3-(p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[Lepidyl(2)]-3-(p-
diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-
3-(p-diethylaminostyryl, 4-methyl-5-(p-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-3-(α-methyl-p-
diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-phenyl-3-
(p-diethylaminostyryl)-4-methyl-5
-(p-diethylaminophenyl)pyrazoline,
1-Phenyl-3-(α-benzyl-p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, spirazoline and other pyrazolines, 2-(p-diethylaminostyryl)-6
-diethylaminobenzoxazole, 2-(p
Oxazole compounds such as -diethylaminophenyl)-4-(p-dimethylaminophenyl)-5-(2-chlorophenyl)oxazole, 2-(p-dimethylaminophenyl)-5-(2-chlorophenyl)oxazole,
-diethylaminostyryl) -thiazole compounds such as 6-diethylaminobenzothiazole, bis(4-diethylamino-2-methylphenyl)
-Trialmethane compounds such as phenylmethane, 1,1-bis(4-N,N-diethylamino-2-methylphenyl)heptane, 1,1,2,
2-tetrakis(4-N,N-dimethylamino-
Polyarylalkanes such as 2-methylphenyl)ethane, triphenylamine, poly-N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, polyvinylacridine, poly-9
-Vinylphenylanthracene, pyrene-formaldehyde resin, ethylcarbazole formaldehyde resin, etc. In addition to these organic charge transport materials, inorganic materials such as selenium, selenium-tellurium amorphous silicon, and cadmium sulfide can also be used. Moreover, these charge transport substances may be one or two types.
More than one species can be used in combination. When the charge transport material does not have film-forming properties,
A film can be formed by selecting an appropriate binder. Resins that can be used as binders are:
For example, insulating resins such as acrylic resin, polyarylate, polyester, polycarbonate, polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene copolymer, polyvinyl butyral, polyvinyl formal, polysulfone, polyacrylamide, polyamide, chlorinated rubber, or poly-N- Mention may be made of organic photoconductive polymers such as vinylcarbazole, polyvinylanthracene, polyvinylpyrene. Since the charge transport layer has a limit in its ability to transport charge carriers, it cannot be made thicker than necessary. Generally, it is 5-30Ό, but the preferred range is 8-20Ό. When forming the charge transport layer by coating, an appropriate coating method as described above can be used. A photosensitive layer having such a laminated structure of a charge generation layer and a charge transport layer is provided on a substrate having a conductive layer. The substrate having a conductive layer, that is, the conductive substrate, is one that itself has conductivity, such as aluminum, aluminum alloy, copper, zinc, stainless steel, vanadium, molybdenum, chromium, titanium, nickel, indium, gold, and platinum. In addition, plastics (e.g., polyethylene, polypropylene, polyvinyl chloride,
polyethylene terephthalate, acrylic resin, polyethylene fluoride, etc.), conductive particles (e.g.
A substrate made of plastic coated with carbon black, silver particles, etc.) along with a suitable binder,
A substrate made of plastic or paper impregnated with conductive particles, a plastic containing a conductive polymer, etc. can be used. A subbing layer having barrier and adhesive functions can also be provided between the conductive layer and the photosensitive layer. The subbing layer is made of casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymer, polyamide (nylon 6, nylon 66, nylon
610, copolymerized nylon, alkoxymethylated nylon, etc.), polyurethane, gelatin, aluminum oxide, etc. The thickness of the undercoat layer is 0.1 to 5Ό, preferably 0.5 to 3Ό.
is appropriate. When using a photoreceptor in which a conductive layer, a charge generation layer, and a charge transport layer are laminated in this order, and the charge transport material is an electron transport material, the surface of the charge transport layer must be positively charged, and exposure after charging is required. Then, in the exposed area, electrons generated in the charge generation layer are injected into the charge transport layer, and then reach the surface and neutralize the positive charge, causing a decrease in surface potential and creating an electrostatic contrast with the unexposed area. . A visible image can be obtained by developing the electrostatic latent image thus formed with a negatively charged toner. This can be directly fixed, or the toner image can be transferred to paper, plastic film, etc. and then developed and fixed. Alternatively, a method may be used in which the electrostatic latent image on the photoreceptor is transferred onto an insulating layer of transfer paper, then developed and fixed. The type of developer, the developing method, and the fixing method may be any known ones or known methods, and are not limited to specific ones. On the other hand, when the charge transport material consists of a hole transport material, the surface of the charge transport layer must be negatively charged.
After charging, when exposed to light, holes generated in the charge generation layer in the exposed area are injected into the charge transport layer, and then reach the surface and neutralize the negative charge, causing a decrease in the surface potential and static electricity between the exposed area and the unexposed area. Electrocontrast occurs. During development, it is necessary to use a positively charged toner, contrary to the case where an electron transporting substance is used. When using a photoreceptor in which a conductive layer, a charge transport layer, and a charge generation layer are laminated in this order, if the charge transport substance is an electron transport substance, the surface of the charge generation layer must be negatively charged, and after charging, When exposed to light, in the exposed area, electrons generated in the charge generation layer are injected into the charge transport layer and then reach the substrate, while holes generated in the charge generation layer reach the surface.
Attenuation of the surface potential occurs and electrostatic contrast occurs between the surface potential and the unexposed area. A visible image can be obtained by developing the electrostatic latent image thus formed with a positively charged toner. This can be directly fixed, or the toner image can be transferred to paper, plastic film, etc. and then developed and fixed. Alternatively, a method may be used in which the electrostatic latent image on the photoreceptor is transferred onto an insulating layer of transfer paper, then developed and fixed. The type of developer, the developing method, and the fixing method may be any known ones or known methods, and are not limited to specific ones. On the other hand, when the charge transport material is a hole transport material, it is necessary to positively charge the surface of the charge generation layer, and when exposed to light after charging, the holes generated in the charge generation layer are injected into the charge transport layer in the exposed area. After that, the electrons generated in the charge generation layer reach the surface, and the surface potential attenuates, creating an electrostatic contrast with the unexposed area. During development, it is necessary to use a negatively charged toner, contrary to the case where an electron transporting substance is used. In another specific example of the present invention, organic photoconductive materials such as the aforementioned hydrazones, pyrazolines, oxazoles, thiazoles, triarylmethanes, polyarylalkanes, triphenylamines, poly-N-vinylcarbazoles, etc. The photosensitive film may contain the above-described thiillium salt compound as a sensitizer for inorganic photoconductive substances such as photoconductive substances, zinc oxide, cadmium sulfide, and selenium. This photosensitive film is formed by coating these photoconductive substances and the above-mentioned thiillium salt compound together with a binder. Further, as another specific example of the present invention, JP-A-49-
It can also be used as a type of photoreceptor in which a charge generating material is added to a charge transfer complex as disclosed in Publication No. 916483 (Photoconductive Member). Any photoreceptor should contain at least one type of thiillium salt compound selected from the compounds represented by the general formula [], and if necessary, be used in combination with other photoconductive pigments or dyes with different light absorption. Depending on the method, the sensitivity of this photoreceptor can be increased or it can be prepared as a bank chromatic photoreceptor. The electrophotographic photoreceptor of the present invention can be used not only for electrophotographic copying machines, but also for laser printers and CRTs.
It can also be widely used in electrophotographic applications such as printers. Hereinafter, the present invention will be explained according to examples. Examples 1 to 21 Ammonia aqueous solution of casein (11.2 g of casein, 1 g of 28% ammonia water, 222 ml of water) on an aluminum plate
was applied with a Mayer bar so that the film thickness after drying was 1.0Ό, and dried. Next, to a solution of 2 g of butyral resin (degree of butyralization: 63 mol %) dissolved in 95 ml of isopropyl alcohol, 5 g of each of the 21 types of thiillium salt compounds mentioned in the specific examples were added to prepare 21 types of coating liquids. After dispersing each coating solution in a sand mill, each coating solution was applied onto the casein undercoat layer using a Mayer bar so that the film thickness after drying was 0.1 Όm, and dried to form a charge generation layer. Then, the structural formula 5 g of hydrazine compound and 5 g of polymethyl methacrylate resin (number average molecular weight 100,000) were added to benzene.
The solution was dissolved in 70 ml and applied onto the charge generation layer using a Mayer bar so that the film thickness after drying was 12Ό, and dried to form a charge transport layer. The 21 types of electrophotographic photoreceptors prepared in this way were tested using an electrostatic copying paper tester Model SP- manufactured by Kawaguchi Electric Co., Ltd.
428 using the dynamic method at -5kV, held in the dark for 1 second, and then charged at 4kV with an illuminance of 5lux.
It was exposed to light for seconds and the charging characteristics were examined. As for the charging characteristics, the initial charging potential V 0 and the exposure amount (E 1/2 ) required to attenuate the potential by 1/2 when dark decaying for 1 second were measured. The results are shown in Table 1. In addition, the residual potential after 20 lux·sec exposure was expressed as VR .

【衚】【table】

【衚】【table】

【衚】 䞊蚘比范化合物を実斜䟋のチむリりム塩化合
物に代え、実斜䟋ず党く同様に感光䜓を䜜成し
特性を調べその結果を第衚に瀺した。
[Table] A photoreceptor was prepared in exactly the same manner as in Example 1 except that the above comparative compound was replaced with the thiillium salt compound of Example 1, and the characteristics were investigated and the results are shown in Table 2.

【衚】 比范䟋はいずれも感床が実斜䟋よりも䜎く残留
電䜍が倧きい。曎に実斜䟋の垯電枬定装眮を甚
い、ダむナミツク方匏で実斜䟋ず同じ垯電露光
操䜜を5000回繰り返し、垯電初期電䜍V0ず露光
埌の残留電䜍VRの倉化を調べ第衚に瀺した。
なお、実斜䟋、20、21の感光䜓に぀いおも同じ
枬定を行぀た。
[Table] All comparative examples have lower sensitivity and higher residual potential than the examples. Furthermore, using the charge measuring device of Example 1, the same charge exposure operation as in Example 1 was repeated 5000 times using a dynamic method, and the changes in the initial charging potential V 0 and the residual potential V R after exposure were investigated and shown in Table 3. .
Note that the same measurements were performed on the photoreceptors of Examples 1, 20, and 21.

【衚】 比范䟋の感光䜓がいずれも初期残留電䜍が高い
のに察応しお繰り返し䜿甚時の残留電䜍が著しく
高く、それに抌し䞊げられおV0も高く実甚䞊安
定性に欠け倧きな問題である。 それに反し本発明による実斜䟋は繰り返し䜿甚
埌の特性も極めお安定であり、実甚䞊すぐれた特
性を具備しおいる事は明癜である。 実斜䟋 25〜27 実斜䟋ず同様にしおアルミ板䞊にカれむンの
䞋匕き局を塗垃した。 次に実斜䟋で甚いたヒドラゞン化合物を電荷
茞送物質ずする電荷茞送局を也燥埌の膜厚が12ÎŒ
ずなるようにマむダヌバヌで塗垃し也燥しお電荷
茞送局を圢成させた。 次いで実斜䟋、、16の皮の塗工液を電荷
茞送局の䞊に也燥埌の膜厚が0.1Όずなる様にマむ
ダヌバヌで塗垃し、也燥しお電荷発生局を圢成し
た。 この様にしお䜜成した皮の電子写真感光䜓を
実斜䟋ず同様にしお垯電特性を調べた。この堎
合5kVでコロナ垯電した。この結果を第衚に
瀺した。
[Table] Although the photoreceptors of the comparative examples all have high initial residual potentials, the residual potentials during repeated use are extremely high, and this pushes up the V 0 as well, which is a major problem due to lack of stability in practical use. On the other hand, the properties of the examples according to the present invention are extremely stable even after repeated use, and it is clear that they have excellent properties in practical use. Examples 25 to 27 A casein subbing layer was coated on an aluminum plate in the same manner as in Example 1. Next, the charge transport layer containing the hydrazine compound used in Example 1 as a charge transport material was dried to a thickness of 12 ÎŒm.
A charge transport layer was formed by coating with a Mayer bar and drying. Next, the three coating solutions of Examples 1, 9, and 16 were applied onto the charge transport layer using a Mayer bar so that the film thickness after drying was 0.1 ÎŒm, and dried to form a charge generation layer. The charging characteristics of the three types of electrophotographic photoreceptors thus prepared were examined in the same manner as in Example 1. In this case, it was corona charged at +5kV. The results are shown in Table 4.

〔発明の効果〕〔Effect of the invention〕

本発明によれば繰り返し䜿甚埌の特性も極めお
安定であり、実甚䞊極めおすぐれた特性を具備し
た電子写真感光䜓を埗るこずができる。
According to the present invention, it is possible to obtain an electrophotographic photoreceptor that has extremely stable properties even after repeated use and has extremely excellent properties for practical use.

Claims (1)

【特蚱請求の範囲】  導電性基䜓䞊に䞋蚘の䞀般匏〔〕で瀺され
るチむリりム塩化合物を含有する光導電局を有す
るこずを特城ずする電子写真感光䜓。 䞀般匏〔〕 ただし匏䞭、はの敎数を瀺し、
は眮換基を有しおも良いベンゟチむリりム環、
ベンゟオキサチむリりム環、ナフトゞチむリりム
環、ナフトオキサチむリりム環を圢成するに必芁
な残基を瀺し、A1A2はむオりあるいは酞玠原
子を瀺し、X-はアニオン官胜基を瀺す。は眮
換されおもよいベンれン、ナフタレン、アントラ
セン、ピロヌル、フラン、チオプン残基を瀺
し、R1R2R3R4はこのうち少なくずも぀
が氎玠原子以倖の眮換基であるこずを瀺す。
[Scope of Claims] 1. An electrophotographic photoreceptor comprising a photoconductive layer containing a thiillium salt compound represented by the following general formula [] on a conductive substrate. General formula [] (However, in the formula, m and n represent integers of 0, 1, and 2,
B is a benzothirium ring which may have a substituent,
It shows the residues necessary to form a benzoxathylium ring, a naphthodithyllium ring, and a naphthoxathiylium ring, A 1 and A 2 represent sulfur or oxygen atoms, and X - represents an anionic functional group. Q represents an optionally substituted benzene, naphthalene, anthracene, pyrrole, furan, or thiophene residue, and R 1 , R 2 , R 3 , and R 4 represent at least one substituent other than a hydrogen atom. show. )
JP27338484A 1984-12-26 1984-12-26 Electrophotographic sensitive body Granted JPS61151546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27338484A JPS61151546A (en) 1984-12-26 1984-12-26 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27338484A JPS61151546A (en) 1984-12-26 1984-12-26 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS61151546A JPS61151546A (en) 1986-07-10
JPH0448226B2 true JPH0448226B2 (en) 1992-08-06

Family

ID=17527143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27338484A Granted JPS61151546A (en) 1984-12-26 1984-12-26 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS61151546A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6346085B2 (en) 2014-12-26 2018-06-20 トペタ玡織株匏䌚瀟 Vehicle seat

Also Published As

Publication number Publication date
JPS61151546A (en) 1986-07-10

Similar Documents

Publication Publication Date Title
JPH01241564A (en) Electrophotographic sensitive body
JPH0441336B2 (en)
JPH0513508B2 (en)
JPH0211139B2 (en)
JPH0448226B2 (en)
JPH0448217B2 (en)
JPH0477903B2 (en)
JPH0513507B2 (en)
JPS61126556A (en) Electrophotographic sensitive body
JPS63218960A (en) Electrophotographic sensitive body
JPH0514897B2 (en)
JPH0448220B2 (en)
JPH0434742B2 (en)
JPH0448222B2 (en)
JPS58178361A (en) Electrophotographic receptor
JPH0477908B2 (en)
JPH0448219B2 (en)
JPS60177355A (en) Electrophotographic sensitive body
JPH0473779B2 (en)
JPH0448225B2 (en)
JPS62283344A (en) Electrophotographic sensitive body
JPH0448223B2 (en)
JPS61194447A (en) Electrophotographic sensitive body
JPH0448221B2 (en)
JPH01292352A (en) Electrophotographic sensitive body