JPH0452897B2 - - Google Patents

Info

Publication number
JPH0452897B2
JPH0452897B2 JP59107020A JP10702084A JPH0452897B2 JP H0452897 B2 JPH0452897 B2 JP H0452897B2 JP 59107020 A JP59107020 A JP 59107020A JP 10702084 A JP10702084 A JP 10702084A JP H0452897 B2 JPH0452897 B2 JP H0452897B2
Authority
JP
Japan
Prior art keywords
airflow
heating wire
temperature
air flow
anemometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59107020A
Other languages
Japanese (ja)
Other versions
JPS60250260A (en
Inventor
Seiro Katagiri
Masatoshi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP10702084A priority Critical patent/JPS60250260A/en
Publication of JPS60250260A publication Critical patent/JPS60250260A/en
Publication of JPH0452897B2 publication Critical patent/JPH0452897B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Description

【発明の詳細な説明】 本発明は、気流中の局所の速度を計測する熱電
式風速計において、電気加熱される電熱線を横断
する方向に挿通した気流通路の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an airflow passage inserted in a direction transverse to an electrically heated heating wire in a thermoelectric anemometer that measures local velocity in an airflow.

従来、この種の熱電式風速計は、特開昭56−
79258号公報に示されているように、基本の上に
電気加熱される電熱線を上下方向に張設し、気流
の速度に応じて冷却される電熱線と同温になる風
速測定用高温接点と、気流と同温になる風温補正
用低温接点を基体の上に配設した熱電対を設け、
基体に熱電対の高温接点と低温接点及び電熱線を
覆う門形のフードを取付けて、電熱線を横断する
前後方向に挿通した長方形断面図の気流通路を形
成している。
Conventionally, this type of thermoelectric anemometer was developed in Japanese Patent Application Laid-open No.
As shown in Publication No. 79258, a high-temperature contact for measuring wind speed has an electrically heated heating wire stretched vertically on top of the base and has the same temperature as the heating wire, which is cooled according to the speed of the airflow. and a thermocouple with a low-temperature contact on the base for wind temperature correction that has the same temperature as the airflow,
A gate-shaped hood that covers the hot and cold contacts of the thermocouple and the heating wire is attached to the base, forming an air flow passageway with a rectangular cross-section that is inserted in the front-rear direction across the heating wire.

この従来品においては、気流の方向が長方形断
面の気流通路の挿通方向から電熱線に沿つた縦方
向又は電熱線と直交する横方向に偏向していると
きにも、風速を正確に測定することができる。
With this conventional product, it is possible to accurately measure the wind speed even when the direction of the airflow is deflected from the insertion direction of the rectangular cross-sectional airflow passage to the vertical direction along the heating wire or the horizontal direction perpendicular to the heating wire. I can do it.

しかし、測定誤差が小さい気流の許容偏向角度
は、縦方向では35〜40度位であり、横方向では25
〜30度位であり、まだ十分に広いとは言い難い。
However, the allowable deflection angle of airflow with small measurement error is about 35 to 40 degrees in the vertical direction and 25 degrees in the horizontal direction.
The temperature is around 30 degrees, so it is still not wide enough.

また、気流の方向が長方形断面の気流通路の挿
通方向から縦方向と横方向の中間の斜め方向に偏
向しているときには、長方形断面の気流通路に流
入する気流が通路の入口の隅角部によつて乱さ
れ、気流による電熱線の冷却が促進されるので、
風速を正確に測定することができず、測定誤差が
小さい気流の斜め方向への許容偏向角度は狭い。
In addition, when the direction of the airflow is deflected diagonally from the insertion direction of the airflow passageway with a rectangular cross section in a diagonal direction midway between the vertical and horizontal directions, the airflow flowing into the airflow passageway with a rectangular crosssection will flow into the corner of the entrance of the passageway. The airflow is disturbed and the cooling of the heating wire by the airflow is promoted.
It is not possible to accurately measure the wind speed, and the permissible angle of deflection of the airflow in an oblique direction with a small measurement error is narrow.

本発明の目的は、上記のような従来の課題を解
決することである。
An object of the present invention is to solve the conventional problems as described above.

本発明は、電気加熱される電熱線を張設し、気
流の速度に応じて冷却される電熱線と同温になる
高温接点と、気流と同温になる低温接点を設けた
熱電対を構成し、熱電対の高温接点と低温接点及
び電熱線を覆うフードを設けて、電熱線を横断す
る方向に挿通した気流通路を形成した電熱式風速
計において、 気流通路の断面形状を円形に形成し、気流通路
の入口側に、入口に近ずくに従つて大径になる円
形断面の導入部を形成したことを特徴とする電熱
式風速計の気流通路構造である。
The present invention comprises a thermocouple in which a heating wire that is electrically heated is stretched, and a high temperature contact that has the same temperature as the heating wire that is cooled according to the speed of the airflow, and a low temperature contact that has the same temperature as the airflow. However, in an electrothermal anemometer in which a hood is provided to cover the hot and cold contacts of the thermocouple and the heating wire, and an airflow passage is formed that extends in a direction transverse to the heating wire, the cross-sectional shape of the airflow passage is formed into a circular shape. This is an air flow passage structure for an electrothermal anemometer, characterized in that an introduction part having a circular cross section that becomes larger as it approaches the inlet is formed on the inlet side of the air flow passage.

本発明においては、測定誤差が小さい気流の縦
方向又は横方向若しくは斜め方向への許容偏向角
度が広い。
In the present invention, the permissible deflection angle of the airflow in the vertical direction, the horizontal direction, or the diagonal direction with small measurement error is wide.

次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.

第1実施例(第1図乃至第4図参照) 本例の気流通路構造を備えた熱電式風速計は、
第1図に示すように、絶縁体の角棒状基体1の先
端面2の中央部と風下側端部にそれぞれ燐青銅の
直柱状支柱3、逆L形状支柱4を突設し、風上側
に突出した逆L形状支柱4の先端とこの真下に位
置する直柱状支柱3の先端間にニクロム線の電熱
線5を接続して、電気加熱される電熱線5を基体
の先端面2と直角になる方向に張設し、基本の先
端面2の両支柱3,4中間位置と風上側端部にそ
れぞれアルメルの第1支柱6、第2支柱7を突設
し、電熱線5の中央に一端8を接続したアルメル
の第1熱電対線9の他端を第1支柱6の先端に接
続し、第1熱電対線9の電熱線接続端8に近接し
た位置に一端10を接続したクロルメルの第2熱
電対線11の他端を第2支柱7の先端に接続して
いる。
First Example (See Figures 1 to 4) The thermoelectric anemometer with the air flow passage structure of this example is as follows:
As shown in Fig. 1, a phosphor bronze straight columnar column 3 and an inverted L-shaped column 4 are protruded from the center and leeward end of the tip surface 2 of an insulating square rod-shaped base 1, respectively. A heating wire 5 made of nichrome wire is connected between the tip of the protruding inverted L-shaped column 4 and the tip of the straight columnar column 3 located directly below, and the heating wire 5 to be electrically heated is made perpendicular to the tip surface 2 of the base. The first and second columns 6 and 7 of alumel are respectively protruded from the intermediate position of both columns 3 and 4 on the basic tip surface 2 and at the windward end, and one end is placed in the center of the heating wire 5. The other end of the first thermocouple wire 9 made of alumel, to which 8 was connected, is connected to the tip of the first support 6, and one end 10 of the first thermocouple wire 9 is connected to a position close to the heating wire connection end 8 of chlormel. The other end of the second thermocouple wire 11 is connected to the tip of the second support column 7.

従つて、アメルの第1熱電対線9、第1支柱
6、第2支柱7とクロメルの第2熱電対線11に
よつて熱電対を構成し、気流の速度に応じて冷却
される電熱線5の中央と同温になる第1、第2熱
電対線9,11の接続点10の熱電対6,7,
9,11の風速測定用高温接点とし、気流と同温
になる第2熱電対線11と第2支柱7の接続点1
2を熱電対6,7,9,11の風温補正用低温接
点としてなる。なお、電熱線用の両支柱3,4の
末端間には電熱線5を加熱する電源が接続され、
熱電対用の両支柱6,7の末端間には熱電対6,
7,9,11の熱起電力を測定する風速指示計が
接続される。
Therefore, the first thermocouple wire 9 of Amel, the first support 6, the second support 7 and the second thermocouple wire 11 of Chromel constitute a thermocouple, and the heating wire is cooled according to the speed of the airflow. The thermocouples 6, 7, at the connection point 10 of the first and second thermocouple wires 9, 11 have the same temperature as the center of the thermocouples 5,
Connection point 1 between the second thermocouple wire 11 and the second pillar 7, which is used as a high temperature contact for measuring wind speed, and has the same temperature as the airflow.
2 serves as a low temperature contact point for correcting the wind temperature of the thermocouples 6, 7, 9, and 11. In addition, a power source for heating the heating wire 5 is connected between the ends of both the heating wire supports 3 and 4,
A thermocouple 6,
Wind speed indicators measuring the thermoelectromotive force of Nos. 7, 9, and 11 are connected.

基本1の先端部には、第1図と第2図に示すよ
うに、基本の先端面2上の各支柱3,4,6,7
と電熱線5及び各熱電対線9,11を覆う円筒状
のフード13を取付けて、電熱線5と直交する方
向に挿通した円形断面の気流通路14を形成し、
気流通路14の入口側に、入口15に近づくに従
つて大径になる朝顔形ないしベルマウス形の円形
断面の導入部16を形成している。
At the tip of the base 1, as shown in FIGS. 1 and 2, each strut 3, 4, 6, 7
and a cylindrical hood 13 covering the heating wire 5 and each thermocouple wire 9, 11 is attached to form an airflow passage 14 with a circular cross section inserted in a direction perpendicular to the heating wire 5,
On the inlet side of the airflow passage 14, an introduction part 16 is formed which has a circular cross section in the shape of a morning glory or a bell mouth and whose diameter increases as it approaches the inlet 15.

なお、各部の寸法は、気流通路14の長さが
11.5mmで、その径が6mmであり、導入部16の長
さが5.5mmで、入口15の径が15mmであり、電熱
線用の逆L形状支柱4の高さが5mmであり、電熱
線5の奥行が入口15から9.1mmである。
The dimensions of each part are based on the length of the airflow passage 14.
11.5 mm, its diameter is 6 mm, the length of the introduction part 16 is 5.5 mm, the diameter of the inlet 15 is 15 mm, the height of the inverted L-shaped support 4 for the heating wire is 5 mm, and the heating wire The depth of No. 5 is 9.1 mm from entrance No. 15.

気流の許容偏向角度の実験 本例の熱電式風速計と前記した長方形断面の気
流通路付の従来の熱電式風速計をそれぞれ用い、
10m/sec位の一定速度に維持した気流の方向を、
各支柱3,4,6,7と電熱線5を含む平面と平
行に保持し、気流通路14に入る前の気流の方向
が電熱線5と直交する気流通路14の方向から電
熱線に沿つた縦方向にずれる偏向角度θを各値に
設定して、その各値についてそれぞれ気流の速度
を測定した。第3図は、この測定結果を示し、縦
軸に測定風速Vを、横軸に上記の偏向角度θをそ
れぞれ採り、本例の風速計の測定結果を黒丸付実
線で、従来のそれを白丸付破線でそれぞれ示す。
Experiment on the allowable deflection angle of airflow Using the thermoelectric anemometer of this example and the conventional thermoelectric anemometer with an airflow passage with a rectangular cross section described above,
The direction of the airflow maintained at a constant speed of about 10m/sec,
It is held parallel to the plane containing each support 3, 4, 6, 7 and the heating wire 5, and the direction of the airflow before entering the airflow path 14 is perpendicular to the heating wire 5. The deflection angle θ, which is shifted in the vertical direction, was set to each value, and the velocity of the airflow was measured for each value. Figure 3 shows the measurement results, with the vertical axis representing the measured wind speed V and the horizontal axis representing the deflection angle θ. Each is indicated by a dashed line.

第3図の線図から明らかなように、測定誤差が
小さい気流の縦方向への許容偏向角度は、従来品
においては35乃至40度位であるのに対し、発明品
においては70度位であり、発明品の方が広い。
As is clear from the diagram in Figure 3, the permissible vertical deflection angle of the airflow with small measurement error is about 35 to 40 degrees for the conventional product, while it is about 70 degrees for the invented product. Yes, inventions are more widespread.

また、10m/sec位の一定速度に維持した気流
の方向を電熱線5と直交する平面と平行に保持
し、気流通路14に入る前の気流の方向が気流通
路14の方向から電熱線5と直交する横方向にず
れる偏向角度αを各値に設定して、その各値につ
いてそれぞれ気流の速度を測定した。第4図は、
この測定結果を第3図と同様にして示す。
In addition, the direction of the airflow maintained at a constant speed of about 10 m/sec is kept parallel to a plane perpendicular to the heating wire 5, and the direction of the airflow before entering the airflow passage 14 is changed from the direction of the airflow passage 14 to the heating wire 5. The deflection angle α shifted in orthogonal lateral directions was set to each value, and the airflow velocity was measured for each value. Figure 4 shows
The measurement results are shown in the same manner as in FIG.

第4図の線図から明らかなように、気流の横方
向への許容偏向角度は、従来品においては25乃至
30度位であるのに付し、発明品においては60乃至
80度位であり、発明品の方が広い。
As is clear from the diagram in Figure 4, the permissible horizontal deflection angle of the airflow is 25 to 25 in the conventional product.
Although it is about 30 degrees, the invention product has a temperature of 60 to 30 degrees.
It is about 80 degrees, and the invented product is wider.

また、本例の電熱式風速計においては、気流通
路の導入部16の断面形状が円形であるので、長
方形である従来品におけるのとは異なり、気流通
路の導入部16に流入する気流を乱す隅角部がな
く、気流が縦方向と横方向の中間の斜め方向に偏
向しているときにも、風速を正確に測定すること
ができ、気流の斜め方向への許容偏向角度は広
い。
In addition, in the electrothermal anemometer of this example, since the cross-sectional shape of the introduction part 16 of the airflow passage is circular, unlike in conventional products which are rectangular, the airflow flowing into the introduction part 16 of the airflow passage is disturbed. Since there are no corners, the wind speed can be accurately measured even when the airflow is deflected diagonally between the vertical and horizontal directions, and the allowable angle of deflection of the airflow in the diagonal direction is wide.

第2実施例(第5図と第3図、第4図参照) 本例の気流通路構造を備えた熱電式風速計は、
第5図に示すように、気流通路14の入口15側
に設けた円形断面の導入部16を開き角が60度の
円錐筒形状ないしテーパ孔形状に形成したもので
ある。その他の点は、前例におけるのと同様であ
るので、第5図に同一符号を付して説明を省略す
る。
Second embodiment (see Figures 5, 3, and 4) The thermoelectric anemometer with the air flow passage structure of this example is as follows:
As shown in FIG. 5, an introduction part 16 with a circular cross section provided on the inlet 15 side of the airflow passage 14 is formed into a conical cylinder shape or a tapered hole shape with an opening angle of 60 degrees. Other points are the same as those in the previous example, so the same reference numerals are given to FIG. 5 and the explanation will be omitted.

本例の熱電式風速計について前例におけるのと
同様に気流の許容偏向角度の実験を行い、第3図
と第4図に半黒丸付鎖線で示す測定結果を得た。
For the thermoelectric anemometer of this example, experiments were conducted on the allowable deflection angle of the airflow in the same manner as in the previous example, and the measurement results shown in FIGS. 3 and 4 by the dashed line with half-black circles were obtained.

第3図と第4図の線図から明らかなように、本
例の熱電式風速計における気流の縦方向又は横方
向への許容偏向角度は、前例におけるのと同様に
広い。また、気流の斜め方向への許容偏向角度
も、前例におけるのと同様に広い。
As is clear from the diagrams in FIGS. 3 and 4, the permissible angle of vertical or lateral deflection of the air flow in the thermoelectric anemometer of this example is as wide as in the previous example. Also, the allowable angle of deflection of the airflow in the diagonal direction is also wide as in the previous example.

上記の各実施例の熱電式風速計において、気流
通路の出口の格子や網のような気流抵抗体を取付
けると、気流通路の出口に近接した位置に気流を
乱す物体が存在する場合、その気流の乱れが気流
通路内に波及せず、風速を正確に測定することが
できる。
In the thermoelectric anemometers of the above embodiments, if an airflow resistor such as a grid or net is installed at the outlet of the airflow passage, if there is an object that disturbs the airflow near the outlet of the airflow passage, the airflow turbulence does not spread into the airflow path, allowing accurate measurement of wind speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の熱電式風速計の
気流通路構造の一部縦断側面図であり、第2図は
同気流通路構造の正面図である。第3図は発明品
と従来品における測定風速Vと気流の縦方向への
偏向角度θの関係を示す線図であり、第4図は発
明品と従来品における測定風速Vと気流の横方向
への偏向角度αの関係を示す線図である。第5図
は本発明の第2実施例の熱電式風速計の気流通路
構造の一部縦断側面図である。 5:電熱線、6,7,9,11:熱電対、1
0:高温接点、12:低温接点、13:フード、
14:気流通路、15:入口、16:導入部。
FIG. 1 is a partially longitudinal side view of the air flow passage structure of a thermoelectric anemometer according to the first embodiment of the present invention, and FIG. 2 is a front view of the same air flow passage structure. Figure 3 is a diagram showing the relationship between the measured wind speed V and the deflection angle θ in the vertical direction of the airflow in the invention and the conventional product, and Figure 4 is a diagram showing the relationship between the measured wind speed V and the horizontal direction of the airflow in the invention and the conventional product. FIG. 3 is a diagram showing the relationship of the deflection angle α to FIG. 5 is a partially vertical side view of the airflow passage structure of the thermoelectric anemometer according to the second embodiment of the present invention. 5: Heating wire, 6, 7, 9, 11: Thermocouple, 1
0: High temperature contact, 12: Low temperature contact, 13: Hood,
14: Airflow passage, 15: Inlet, 16: Introduction section.

Claims (1)

【特許請求の範囲】 1 電気加熱される電熱線を張設し、気流の速度
に応じて冷却される電熱線と同温になる高温接点
と、気流と同温になる低温接点を設けた熱電対を
構成し、熱電対の高温接点と低温接点及び電熱線
を覆うフードを設けて、電熱線を横断する方向に
挿通した気流通路を形成した電熱式風速計におい
て、 気流通路の断面形状を円形に形成し、気流通路
の入口側に、入口に近ずくに従つて大径になる円
形断面の導入部を形成したことを特徴とする電熱
式風速計の気流通路構造。
[Claims] 1. A thermoelectric device in which a heating wire that is electrically heated is stretched, and a high temperature contact that has the same temperature as the heating wire and a low temperature contact that has the same temperature as the air flow is provided. In an electrothermal anemometer in which a hood is provided to cover the high-temperature and low-temperature contacts of the thermocouples and the heating wire, and an airflow passage is formed that extends in a direction transverse to the heating wire, the cross-sectional shape of the airflow passageway is circular. An air flow passage structure for an electrothermal anemometer, characterized in that an introduction part having a circular cross section that becomes larger in diameter as it approaches the inlet is formed on the inlet side of the air flow passage.
JP10702084A 1984-05-25 1984-05-25 Current passage construction of thermoelectric type anemometer Granted JPS60250260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10702084A JPS60250260A (en) 1984-05-25 1984-05-25 Current passage construction of thermoelectric type anemometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10702084A JPS60250260A (en) 1984-05-25 1984-05-25 Current passage construction of thermoelectric type anemometer

Publications (2)

Publication Number Publication Date
JPS60250260A JPS60250260A (en) 1985-12-10
JPH0452897B2 true JPH0452897B2 (en) 1992-08-25

Family

ID=14448474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10702084A Granted JPS60250260A (en) 1984-05-25 1984-05-25 Current passage construction of thermoelectric type anemometer

Country Status (1)

Country Link
JP (1) JPS60250260A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ2013672A3 (en) * 2013-09-03 2014-10-22 České vysoké učení technické v Praze, Fakulta strojní, Ústav mechaniky tekutin a termodynamiky Flow meter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437333U (en) * 1977-08-12 1979-03-12
JPS5439749A (en) * 1977-07-07 1979-03-27 Greene Jerome Flexible joint
JPS5679258A (en) * 1979-11-30 1981-06-29 Toyota Central Res & Dev Lab Inc Detecting body for thermoelectric and air-temperature anemometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439749A (en) * 1977-07-07 1979-03-27 Greene Jerome Flexible joint
JPS5437333U (en) * 1977-08-12 1979-03-12
JPS5679258A (en) * 1979-11-30 1981-06-29 Toyota Central Res & Dev Lab Inc Detecting body for thermoelectric and air-temperature anemometer

Also Published As

Publication number Publication date
JPS60250260A (en) 1985-12-10

Similar Documents

Publication Publication Date Title
US5302026A (en) Temperature probe with fast response time
US2870305A (en) Constructions for anemometers of the hot wire type
CN209214792U (en) Boiler furnace flue gas temperature measuring equipment and boiler
JPH0452897B2 (en)
US2314877A (en) Fluid velocity measuring device
JP3112183B2 (en) Flat temperature sensor
JPS6047989B2 (en) Detector for thermoelectric anemometer
US3592058A (en) Omnidirectional fluid velocity measuring device
KR100386822B1 (en) Gas flux distribution meter
JPS6014304B2 (en) Detector for thermoelectric wind temperature anemometer
US2403843A (en) Resistance bulb thermostat
JPH0439576Y2 (en)
JPH0523137U (en) Wind direction wind speed measurement detector for rotating body
Haman A new thermometric instrument for airborne measurements in clouds
JPS6126936Y2 (en)
JP2550435B2 (en) Flow sensor
JP3070885B2 (en) Hot wire type flow sensor
CN212807369U (en) Infrared temperature thermocouple
JPH0439578Y2 (en)
Voisin et al. Exploration of the atmospheric lower layer thermal turbulences by means of microthermocouples
SU1015308A1 (en) Device for measuring flow speed
JPS6349703Y2 (en)
JPS6349700Y2 (en)
JPH0621804B2 (en) Measuring method of flow velocity distribution of fluid
JPH0547859U (en) Small wind velocity meter