JPH0439576Y2 - - Google Patents

Info

Publication number
JPH0439576Y2
JPH0439576Y2 JP5768386U JP5768386U JPH0439576Y2 JP H0439576 Y2 JPH0439576 Y2 JP H0439576Y2 JP 5768386 U JP5768386 U JP 5768386U JP 5768386 U JP5768386 U JP 5768386U JP H0439576 Y2 JPH0439576 Y2 JP H0439576Y2
Authority
JP
Japan
Prior art keywords
sensor
fluid
fixed
metal wire
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5768386U
Other languages
Japanese (ja)
Other versions
JPS62168469U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5768386U priority Critical patent/JPH0439576Y2/ja
Priority to US07/039,198 priority patent/US4856330A/en
Publication of JPS62168469U publication Critical patent/JPS62168469U/ja
Application granted granted Critical
Publication of JPH0439576Y2 publication Critical patent/JPH0439576Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は特願昭59−207780号に開示した各種液
体や気体の流れる速度あるいは粒体や粉体の移動
速度を測定する装置における流体速度測定用プロ
ーブの改良に関する。
[Detailed description of the invention] [Industrial application field] The present invention discloses the fluid velocity in an apparatus for measuring the flow velocity of various liquids and gases, or the moving velocity of particles and powder, as disclosed in Japanese Patent Application No. 59-207780. Concerning improvement of measurement probes.

〔従来の技術〕[Conventional technology]

上記技術は、ある温度領域を越えるとゲルマニ
ユウムの抵抗値が一定関数に従つて減少する特性
を利用したもので、ゲルマニユウム単結晶の小片
をセンサとし、これに電流を流して一定温度に昇
温させ、該昇温したセンサを流体に接触させるこ
とにより流体の速度変化に応じてセンサが温度変
化をし、抵抗値が変化する。このセンサの抵抗変
化に伴つて変化する電流は、電圧または電力を測
定することによつて流体の速度を測定するもので
ある。
The above technology utilizes the property that the resistance value of germanium decreases according to a fixed function when a certain temperature range is exceeded.A small piece of germanium single crystal is used as a sensor, and a current is passed through it to raise the temperature to a constant temperature. By bringing the heated sensor into contact with a fluid, the temperature of the sensor changes in response to changes in the speed of the fluid, and the resistance value changes. The current, which changes as the resistance of the sensor changes, measures fluid velocity by measuring voltage or power.

この装置で使用されているプローブは、第2図
に示すようにゲルマニユウム単結晶の小片でなる
センサaの下面をセンサaと略同一の端面を有す
る絶縁材でかつ熱伝導不良材料でなる支持体bの
上面に接着剤等を介して固着し、支持体bの両側
にそれぞれリード線d,eを蒸着等して固着し、
この支持体bは下端面で流体の力に充分に耐えう
る太さの電気絶縁物の基台cの上面に立設されて
いた。
As shown in Fig. 2, the probe used in this device has a lower surface of the sensor a made of a small piece of germanium single crystal, and a support made of an insulating material and a material with poor thermal conductivity, which has an end surface that is approximately the same as that of the sensor a. It is fixed to the upper surface of support b using an adhesive or the like, and lead wires d and e are fixed to both sides of support b by vapor deposition or the like,
The lower end of this support b was erected on the upper surface of an electrically insulating base c having a thickness sufficient to withstand the force of the fluid.

〔従来技術の問題点〕[Problems with conventional technology]

上記のプローブは熱線風速計の持つ問題点を解
消したものであるが、その後、更に精度を上げる
ために種々実験および研究した結果、以下の改良
すべき点を知見した。即ち、上記プローブは支持
体bと支柱cの接合面が大きいため熱伝導性が高
く、昇温されたセンサaの熱が支持体bを介して
支柱cに伝導し、センサaの温度が低下するに従
つて、順次抵抗値、電力消費量、発熱量が増加
し、測定誤差が生じることになるうえに下方から
の流体速度を測定するのは支柱c及び支持体bが
邪魔になり測定誤差が生じていた。
The above probe solved the problems of hot wire anemometers, but as a result of various experiments and research to further improve accuracy, we discovered the following points that should be improved. That is, the probe has high thermal conductivity because the joint surface between support b and column c is large, and the heated heat of sensor a is conducted to column c via support b, causing the temperature of sensor a to decrease. As the flow rate increases, the resistance value, power consumption, and heat generation value increase, resulting in measurement errors.In addition, when measuring the fluid velocity from below, struts c and supports b get in the way, resulting in measurement errors. was occurring.

このような問題点に鑑み、本考案はセンサと支
柱の接触面積を微小にして、センサの熱を支柱等
の部材に伝導せず全方位に大して測定誤差のない
流体速度測定用プローブを提供せんとする。
In view of these problems, the present invention provides a probe for measuring fluid velocity that minimizes the contact area between the sensor and the support, does not conduct the heat of the sensor to members such as the support, and has no significant measurement errors in all directions. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本考案の流体速度
測定用プローブは、基台上面に互いに離間して立
設される電気良導体でなる二本の支柱と、 該支柱の適所に固着される電気良導体でなる金
属線と、 該金属線間に固着される単結晶ゲルマニユウム
の小片からなるセンサと、 よりなり前記センサに電圧を印加して流体との接
触により温度変化に伴い変化するセンサの抵抗値
を電流、電圧又は電力量の変化に変換し、流体の
速度を測定することを特徴とする。
In order to achieve the above object, the fluid velocity measurement probe of the present invention includes two pillars made of a good electrical conductor that are set apart from each other on the top surface of a base, and a good electrical conductor that is fixed at a suitable position on the pillars. A sensor consisting of a metal wire consisting of a small piece of single crystal germanium fixed between the metal wires, and a voltage applied to the sensor to measure the resistance value of the sensor which changes with temperature change due to contact with a fluid. It is characterized by converting it into changes in current, voltage, or electric power and measuring the velocity of the fluid.

〔作用〕[Effect]

上述のように、二本の支柱間にセンサが電気良
導体の金属線で固着されているため、支柱とセン
サ間の接触面積が単に両者間に介在する金属線の
みであり、センサの熱が支柱に逃げるのをほぼ完
璧に近く防止して、熱容量が少なくて熱応答速度
が良くするうえに流体が通過するのを妨げる部材
がなくなり、センサ以外の部材により発生する乱
流を防止し、流体速度測定における誤差を極めて
小さくすることができるとともにセンサの外面が
全方向に位置されるために、あらゆる角度からの
流体の速度が測定することが可能になる。
As mentioned above, since the sensor is fixed between the two pillars with a metal wire that is a good electrical conductor, the contact area between the pillar and the sensor is simply the metal wire interposed between them, and the heat from the sensor is transferred to the pillar. It almost completely prevents the fluid from escaping, has a low heat capacity, improves the thermal response speed, and eliminates the need for any parts to obstruct the passage of the fluid, preventing turbulence caused by parts other than the sensor, and increasing the fluid velocity. Errors in the measurements can be extremely small and the outer surface of the sensor can be positioned in all directions, making it possible to measure the velocity of the fluid from all angles.

〔実施例〕〔Example〕

本考案の流体測定用プローブを実施例に記載し
た図面に基づき説明する。
The fluid measurement probe of the present invention will be explained based on the drawings described in Examples.

図中、1はゲルマニユウムの単結晶からなる直
方体状のセンサで、このセンサ1の上端面と下端
面から電気良導体でなる金属線2A,2Bを蒸着
等して引き出し、この金属線2A,2Bを後述の
二本支柱に蒸着等して固着するものである。
In the figure, reference numeral 1 denotes a rectangular parallelepiped sensor made of a single crystal of germanium. Metal wires 2A and 2B made of a good electrical conductor are drawn out by vapor deposition from the upper and lower end surfaces of this sensor 1. It is fixed to the two pillars described later by vapor deposition or the like.

ここで用いられる金属線は金、銀等の良導体も
使用しうるが、流体速度が大きい場合や流体が粘
性の高い場合には強度のある白金またはタングス
テンを使用するのが最も望ましい。また、センサ
1の形状は球形、円筒形各種のものが採用されう
る。
The metal wire used here may be made of a good conductor such as gold or silver, but it is most desirable to use strong platinum or tungsten when the fluid velocity is high or the fluid is highly viscous. Further, the sensor 1 may have various shapes such as spherical and cylindrical.

3A,3Bは支柱で、ステンレス等の導電率が
高く且つ腐食可能性が少ない金属製の円筒2本を
基台5に立設し、この支柱の適所で互いの端部4
A,4Bが垂直線上に並ぶように折曲して折曲部
3a,3bを設け、この折曲部3aの端部4Aに
金属線2Aを一直線上に張つた状態にして半田付
するか導電性接着材で接着等して固着し、他方の
折曲部3bの端部4Bに前記金属線2Aを固着し
たのと同様に金属線2Bを固着する。但し、支柱
3A,3Bは流体に対して、変形または破損され
ないものであればよく、長さ、太さ等は特に限定
されるものではない。ここに発明者が実験した流
体速度測定プローブの一例を示せば、センサ1の
形状が0.3mm×0.3mm×1.0mmの直方体のもので、支
柱3Aが直径0.5mm、長さが8.5mmで支柱3Bが直
径0.5mm、長さが6.5mmのものを使用して、流体が
空気で速度0〜40m/秒の条件で実験した結果で
は何の異常も認められなかつた。
3A and 3B are pillars, and two cylinders made of metal such as stainless steel with high conductivity and low possibility of corrosion are erected on the base 5, and the ends 4 of each other are attached at appropriate places on the pillars.
A and 4B are bent so that they are aligned on a vertical line to form bent parts 3a and 3b, and the metal wire 2A is stretched in a straight line on the end 4A of the bent part 3a and soldered or conductive. The metal wire 2B is fixed to the end portion 4B of the other bent portion 3b in the same manner as the metal wire 2A was fixed to the end portion 4B of the other bent portion 3b. However, the struts 3A and 3B may be of any type as long as they are not deformed or damaged by fluid, and their length, thickness, etc. are not particularly limited. Here is an example of a fluid velocity measurement probe that the inventor experimented with: Sensor 1 has a rectangular parallelepiped shape of 0.3 mm x 0.3 mm x 1.0 mm, and strut 3A has a diameter of 0.5 mm and a length of 8.5 mm. 3B with a diameter of 0.5 mm and a length of 6.5 mm was used, the fluid was air, and the speed was 0 to 40 m/sec. No abnormality was observed.

基台5は上記でなる測定用主体を固定するもの
で、流体速度測定のための実験装置に取付けられ
たり、屋外で測定する際に装置等に装備されるも
ので、その形状は測定装置により決定されるため
限定されない。
The base 5 is used to fix the measurement main body described above, and is attached to an experimental device for measuring fluid velocity, or is installed in a device when measuring outdoors, and its shape depends on the measuring device. Not limited as it is determined.

しかして、本考案に係る流体速度測定用プロー
ブで流体速度の測定は、支柱3A,3B間に電圧
を印加し、支柱3A→金属線2A→センサ1→金
属線2B→支柱3Bで構成する閉回路に電流が流
れ、センサ1は抵抗熱1発生し、測定基準温度ま
で上昇され、この測定基準温度が流体との接触に
より下降し、ゲルマニユウム単結晶の抵抗が高く
なりセンサ1の両端の電位変化を測定することに
より達成される。ここで、センサ1と支柱3A,
3B間に介在物は金属線2A,2Bのみであるた
め測定基準温度に設定されたセンサ1の熱が殆ど
外部に逃げることがなく、測定誤差が生じるのを
防止したうえに熱容量が少なく熱応答性が極めて
よくなつた。また、流体の向きに対しては、セン
サ1の近傍には金属線2A,2Bが配置されてい
るのみであるため、全ての方向から吹きつけられ
る流体に対して敏感に反応させることができ、無
指向性の流体速度測定用プローブが提供できる。
Therefore, fluid velocity can be measured using the fluid velocity measuring probe according to the present invention by applying a voltage between the pillars 3A and 3B, and by constructing a closed circuit consisting of the pillar 3A → metal wire 2A → sensor 1 → metal wire 2B → pillar 3B. When a current flows through the circuit, the sensor 1 generates resistance heat 1 and is raised to the measurement reference temperature.This measurement reference temperature is lowered by contact with the fluid, and the resistance of the germanium single crystal increases, causing a potential change at both ends of the sensor 1. This is achieved by measuring the Here, sensor 1 and column 3A,
Since the only inclusions between 3B are the metal wires 2A and 2B, almost no heat from the sensor 1 set at the measurement reference temperature escapes to the outside, preventing measurement errors and reducing heat capacity and thermal response. My sexuality has improved tremendously. In addition, regarding the direction of the fluid, since only the metal wires 2A and 2B are placed near the sensor 1, it is possible to react sensitively to fluid sprayed from all directions. An omnidirectional fluid velocity measurement probe can be provided.

〔考案の効果〕[Effect of idea]

本考案に係る流体速度測定用プローブはセンサ
を直接支持する部材が金属線のみであるため、セ
ンサの熱が支柱に逃げることを防止して、流体速
度の測定誤差を減少せしめたとともに熱容量が少
なく熱応答性がよくし、且つ、センサの外面を全
方向に対向させることにより無指向性の流体速度
測定用プローブを提供することができたのであ
る。
Since the fluid velocity measurement probe according to the present invention has only a metal wire as the member that directly supports the sensor, it prevents the heat of the sensor from escaping to the support column, reduces fluid velocity measurement errors, and has a small heat capacity. It was possible to provide an omnidirectional fluid velocity measuring probe with good thermal response and by arranging the outer surfaces of the sensor to face each other in all directions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案に係る流体速度測定用プロー
ブの実施例の斜視図、第2図は従来例の正面図で
ある。 1……センサ、2A,2B……金属線、3A,
3B……支柱、5……基台。
FIG. 1 is a perspective view of an embodiment of a probe for measuring fluid velocity according to the present invention, and FIG. 2 is a front view of a conventional example. 1...Sensor, 2A, 2B...Metal wire, 3A,
3B... Support, 5... Base.

Claims (1)

【実用新案登録請求の範囲】 1 基台上面に互いに離間して立設される電気良
導体でなる二本の支柱と、 該支柱の適所に固着される電気良導体でなる
金属線と、 該金属線間に固着される単結晶ゲルマニユウ
ムの小片からなるセンサと、 よりなり前記センサに電圧を印加して流体との
接触により温度変化に伴い変化するセンサの抵
抗値を電流、電圧又は電力量の変化に変換し、
流体の速度を測定する流体速度測定用プロー
ブ。 2 センサが棒状に構成され、その長さ方向の両
端が金属線に固着された実用新案登録請求の範
囲第1項記載の流体速度測定用プローブ。
[Scope of Claim for Utility Model Registration] 1. Two pillars made of a good electrical conductor that are erected on the top surface of a base at a distance from each other, a metal wire made of a good electrical conductor that is fixed in place on the pillar, and the metal wire. A sensor consisting of a small piece of single-crystal germanium fixed in between; and a voltage is applied to the sensor to change the resistance value of the sensor, which changes with temperature changes due to contact with a fluid, to changes in current, voltage, or electric energy. Converted,
A fluid velocity measurement probe that measures the velocity of a fluid. 2. The probe for fluid velocity measurement according to claim 1, wherein the sensor is formed into a rod shape, and both longitudinal ends of the sensor are fixed to metal wires.
JP5768386U 1986-04-17 1986-04-17 Expired JPH0439576Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5768386U JPH0439576Y2 (en) 1986-04-17 1986-04-17
US07/039,198 US4856330A (en) 1986-04-17 1987-04-16 Fluid speed or direction measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5768386U JPH0439576Y2 (en) 1986-04-17 1986-04-17

Publications (2)

Publication Number Publication Date
JPS62168469U JPS62168469U (en) 1987-10-26
JPH0439576Y2 true JPH0439576Y2 (en) 1992-09-16

Family

ID=30887617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5768386U Expired JPH0439576Y2 (en) 1986-04-17 1986-04-17

Country Status (1)

Country Link
JP (1) JPH0439576Y2 (en)

Also Published As

Publication number Publication date
JPS62168469U (en) 1987-10-26

Similar Documents

Publication Publication Date Title
US4244217A (en) Gas flow monitor
US3592055A (en) Directional sensor
SE7910056L (en) ANEMOMETEROMVANDLARE
JPH0439576Y2 (en)
US4856330A (en) Fluid speed or direction measuring apparatus
US4154087A (en) Microrheoscopic detector for gases
JPH0439578Y2 (en)
JPH0521019Y2 (en)
USRE24436E (en) Sensitive heat exchange detector
CN213091014U (en) Rebound displacement type temperature sensor
JPH0256612B2 (en)
CN112880847A (en) Temperature detection device and system
SU1015308A1 (en) Device for measuring flow speed
CN2173402Y (en) Multi-function heat conductor conductivity measurer
CN219422221U (en) Temperature detection heating component and heating non-combustion device
JP2673550B2 (en) Probe for fluid sample of thermal constant measuring device and method for measuring thermal constant of fluid sample
CN108469308B (en) Surface thermometer
JPS6381268A (en) Composite probe for fluid speed measurement
JPH0642209Y2 (en) Flow sensor
JPH02110322A (en) Probe for measuring fluid velocity
JPH0521008Y2 (en)
JPS60250260A (en) Current passage construction of thermoelectric type anemometer
JPS6184563A (en) Method and instrument for measuring fluid velocity
CN208109869U (en) A kind of hot-wire anemometer
JPS5939643Y2 (en) thermal anemometer