JPH0523137U - Wind direction wind speed measurement detector for rotating body - Google Patents

Wind direction wind speed measurement detector for rotating body

Info

Publication number
JPH0523137U
JPH0523137U JP7721891U JP7721891U JPH0523137U JP H0523137 U JPH0523137 U JP H0523137U JP 7721891 U JP7721891 U JP 7721891U JP 7721891 U JP7721891 U JP 7721891U JP H0523137 U JPH0523137 U JP H0523137U
Authority
JP
Japan
Prior art keywords
rotating body
wind
wind speed
temperature
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7721891U
Other languages
Japanese (ja)
Inventor
孝 志満津
晴郎 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP7721891U priority Critical patent/JPH0523137U/en
Publication of JPH0523137U publication Critical patent/JPH0523137U/en
Pending legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

(57)【要約】 【目的】 気流が測定平面となす角0°から幅方向に偏
向する場合にも気流の風向風速を正確で効率良く計測で
きる回転体用風風向速測定検出体を提供する。 【構成】 回転体に装着する基体2における該回転体R
の回転方向に対しほぼ直交する面3に、該回転体Rの回
転方向に対しほぼ平行な面内でかつ当該回転方向に突出
して電気加熱される熱電線を互いに非平行に配列して設
けると共に、気流Fの方向と速度に応じて冷却される電
熱線と同温になる風向風速測定用高温接点19、20
と、気流と同温になる風温補正用低温接点21、22を
前記基体2に配設した熱電対を両側の角電熱線7、8に
ついてそれぞれ設け、回転体Rにおける同一局所の風向
風速を同時に、連続的に計測する。
(57) [Abstract] [Purpose] To provide a wind velocity measuring sensor for a rotating body, which can accurately and efficiently measure the wind velocity of the airflow even when the airflow is deflected in the width direction from an angle of 0 ° with the measurement plane. . [Structure] The rotating body R in the base body 2 to be mounted on the rotating body
On the surface 3 which is substantially orthogonal to the rotation direction of the rotating body R, the heating electric wires which are electrically heated in a plane substantially parallel to the rotation direction of the rotating body R and projecting in the rotation direction are arranged non-parallel to each other. , High temperature contacts 19 and 20 for measuring wind direction and wind speed, which have the same temperature as the heating wire cooled according to the direction and speed of the air flow F
And the low temperature contacts 21 and 22 for air temperature correction which become the same temperature as the air flow are provided for the square heating wires 7 and 8 on both sides, respectively, and the thermocouples having the same temperature direction as the air current direction in the rotating body R are provided. At the same time, measure continuously.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、回転するダクト内等の例えば、ディスクブレーキのディスクロータ といった温度、風速が変動する回転体における同一局所の風向風速を同時に、か つ連続的に計測する回転体用風向風速測定検出体に関する。 The present invention is a wind direction and wind speed measurement detector for a rotating body that simultaneously and continuously measures the same local wind direction and wind speed in a rotating body such as a disk rotor of a disk brake where the temperature and wind speed fluctuate in a rotating duct or the like. Regarding

【0002】[0002]

【従来の技術】[Prior Art]

従来、気流によって冷却される電熱線の温度を熱電対によって検出する熱電式 の風向風速風温を同時に計測する熱電式の風向風速センサ用検出体がある(特公 平2−7431号)。しかし、この風向風速風温センサ用検出体は、平面上おけ る計測に有効であり、回転するダクト内等の風向風速を測定することには適さな い。また測定平面とかなりの角度をもった流れに対しては、2本のセンサの冷却 割合が変化するため正確な測定が不可能である。また風向風速測定用高温接点が 測定平面下方に位置し、風向風速測定用高温接点が直接冷却され風向風速測定に 影響を与える等の実用上の不都合がある。 BACKGROUND ART Conventionally, there is a thermoelectric wind sensor for detecting the temperature of a heating wire cooled by an air flow by a thermocouple, and a thermoelectric sensor for a wind sensor that simultaneously measures the wind temperature (Japanese Patent Publication No. 2-7431). However, this detector for the wind direction and air temperature sensor is effective for measurement on a flat surface, and is not suitable for measuring the wind direction and wind speed inside a rotating duct. In addition, for a flow with a considerable angle to the measurement plane, the cooling rate of the two sensors changes, making accurate measurement impossible. Further, there is a practical inconvenience that the high temperature contact for wind direction and wind speed measurement is located below the measurement plane, and the high temperature contact for wind direction and wind speed measurement is directly cooled and affects the wind direction and wind speed measurement.

【0003】 一方、圧力式の風向風速センサ用検出体として3孔ピトー管がある。しかし、 このピトー管は、検出端が大きくて測定個所の流れを乱す等、測定上に問題があ る。また、気流温度の変化幅が大きい測定に対して物性値等の補正を行なうこと が難しいといった実用上解決すべき問題がある。また、回転するダクトのような 回転体の流れを計測することは圧力管のとりまわし上できない。さらに、ピトー 管の性質上応答性が鈍く早いレンジで変化する流れ等の測定に向かないため連続 的な風向風速測定ができない等の欠点がある。On the other hand, there is a three-hole Pitot tube as a pressure-type detector for a wind direction and wind speed sensor. However, this Pitot tube has problems in measurement, such as the large detection end disturbing the flow at the measurement point. In addition, there is a problem to be solved practically that it is difficult to correct the physical property values and the like for measurements in which the change in airflow temperature is large. Moreover, it is impossible to measure the flow of a rotating body such as a rotating duct because of the pressure pipe. In addition, the Pitot tube has a responsiveness that is not responsive and is not suitable for measuring flows that change in a fast range. Therefore, continuous wind direction and wind speed cannot be measured.

【0004】 また、熱線式の風向風速センサ用検出体としてX型熱線風向風速計がある。こ のX型熱線風向風速計は、気流温度による補正が必要となり測定時に気流温度が 変化する様な環境での測定に向かない。また回転体の測定を行なうときに用いる 水銀スリップリング等の接続において、熱線式センサはその出力が小さいためノ イズに弱く実際測定できない等の欠点がある。 また、従来の熱電式風速センサの測定システムでは各センサの出力をデータロ ガー等により数点測定し、その平均によってある風向風速を計算する。しかし回 転体のように遠心力等の回転数に影響を受ける力が働くような現象では、上述の ような定常的な現象と異なり、従来の測定システムでは測定できない欠点がある 。Further, there is an X-type hot-wire anemometer as a detector for the hot-wire wind-direction anemometer. This X-type hot-wire anemometer is not suitable for measurement in an environment where the temperature of the airflow changes during measurement because it requires correction by the airflow temperature. In addition, the connection of a mercury slip ring, which is used when measuring a rotating body, has the disadvantage that the heat-wire type sensor is weak in noise and cannot be actually measured because of its small output. Further, in the conventional thermoelectric wind speed sensor measurement system, the output of each sensor is measured at several points by a data logger and the average wind speed is calculated. However, the phenomenon in which a force such as a centrifugal force that is affected by the number of revolutions acts like a rotating body has a drawback that the conventional measurement system cannot measure, unlike the steady phenomenon described above.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

本考案は、従来の技術の問題点を解決するためになされたもので、気流が測定 平面となす角0°から幅方向に偏向しているとにも気流の風向風速を正確で、か つ効率良く計測することのできる回転体用風向風速測定検出体を提供することを 目的とする。 The present invention was made in order to solve the problems of the conventional technology. Even if the airflow is deflected in the width direction from an angle of 0 ° with the measurement plane, the wind direction of the airflow can be accurately measured. It is an object of the present invention to provide a wind direction and wind speed measuring / detecting body for a rotating body, which enables efficient measurement.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

本考案の回転体用風向風速測定検出体は、回転体に装着する基体における該回 転体の回転方向に対しほぼ直交する面に、該回転体の回転方向に対しほぼ平行な 面内で、かつ当該回転面内に突出して電気加熱される電熱線を互いに非平行に配 列して設けると共に、気流の方向と速度に応じて冷却される電熱線と同温になる 風向風速測定用高温接点と、気流と同温になる風温補正用低温接点を前記基体に 配置した熱電対を両側の各電熱線についてそれぞれ設けた構成からなる。 The wind direction and wind velocity measuring detector for a rotating body according to the present invention, in a plane substantially orthogonal to the rotating direction of the rotating body in a base body mounted on the rotating body, in a plane substantially parallel to the rotating direction of the rotating body, In addition, the heating wires that project into the rotating surface and are electrically heated are arranged non-parallel to each other, and have the same temperature as the heating wires that are cooled according to the direction and speed of the airflow. And a low-temperature contact for air temperature correction, which has the same temperature as the airflow, is provided on the base body for each heating wire on both sides.

【0007】[0007]

【考案の効果・作用】[Effects and effects of the device]

上記構成からなる本考案の回転体用風向風速測定検出体は、回転体に装着する ことにより、気流の方向と速度に応じて冷却される両側の各電熱線の温度をそれ ぞれ各熱電対によって検出して、気流中の同一局所の風向と風速を同時に正確で 、かつ効率良く計測することができる。また、本考案の検出体は、構成が簡素で 、小型にして測定箇所の流れの乱れを極めて小さくすることができ、測定平面に 直交する各種の影響を防止することが出来る。さらに、本考案の検出体は出力が 大きいためノイズに強く、水銀スリップリング等による測定が可能であり、回転 体に装着して回転するダクト内の流れを精度良く計測することができる。しかも 、本考案の検出体は、各電熱線の温度を風温を基準にして測定するため、風温の 影響を受けず、測定中温度変化などの発生する環境において極めて有効で実用上 優れた幾多の作用効果を奏する。また、本考案の検出体は複数個を同時に回転体 に連接装備して使用すれば、多点同時計測を高精度で信頼性良好に実奏すること ができる。 The wind direction / velocity measuring / detecting body for a rotating body of the present invention having the above-described structure is mounted on the rotating body to measure the temperature of each heating wire on both sides cooled according to the direction and speed of the air flow. It is possible to simultaneously and accurately detect the wind direction and the wind speed of the same local area in the air flow. Further, the detector of the present invention has a simple structure and can be made compact to minimize the turbulence of the flow at the measurement point, and prevent various influences orthogonal to the measurement plane. Further, the detector of the present invention has a large output and is resistant to noise, and can be measured by a mercury slip ring or the like, and the flow in a rotating duct can be accurately measured by mounting it on a rotor. Moreover, since the detector of the present invention measures the temperature of each heating wire with reference to the air temperature, it is not affected by the air temperature and is extremely effective and practical in an environment where temperature changes occur during measurement. It has many actions and effects. In addition, if a plurality of detectors of the present invention are connected to a rotating body at the same time and used, multi-point simultaneous measurement can be performed with high accuracy and good reliability.

【0008】[0008]

【実施例】【Example】

本考案の実施例を図面に基づき説明する。本実施例の回転体用風向風速測定用 検出体は、図1に示すように、セラミックや合成樹脂のような電気絶縁体から成 り、温度と風速が変動する回転体(図示せず)に装着される長方形状の基体2の 一方の端部3にその風上側端部と中央部と風下側端部にそれぞれ電熱線用の燐青 銅製の直柱状支柱5の先端部、逆L形状支柱4、6の先端部を突出して成る。こ の基体2の端部3は、回転体の回転方向に対しほぼ直交関係にあり、また前記各 支柱4、5、6は回転体の回転方向に対しほぼ平行面内でかつ当該回転面内に突 設されている。風上側へ突き出た逆L形状支柱6の先端部は直柱状支柱5の真上 に、また風上側へ突き出た逆L形状支柱4は直柱状支柱5の真上より風上側に配 置されている。風上側へ突き出た逆L形状支柱4、6の先端間および風上側へ突 き出た逆L形状支柱4と直柱状支柱5の先端間には、それぞれニクロム線の電熱 線7、8を接続してなる。電気加熱される電熱線7、8は基体2の端部3と±4 5°になる位置に互いに非平行に張架し、上下の両電熱線7、8を同一平面上に 直交状態に配置している。 An embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the detector for wind direction and wind speed measurement for a rotating body of the present embodiment is made of an electrical insulator such as ceramic or synthetic resin, and is a rotating body (not shown) in which temperature and wind speed fluctuate. At one end 3 of the rectangular base 2 to be mounted, the tip end of the columnar pillar 5 made of phosphor bronze for heating wire, and the inverted L-shaped pillar at the windward end, the center, and the leeward end, respectively. The tips of 4 and 6 are projected. The end portion 3 of the base body 2 is substantially orthogonal to the rotating direction of the rotating body, and the columns 4, 5 and 6 are substantially parallel to the rotating direction of the rotating body and within the rotating surface. Has been installed in. The tip portion of the inverted L-shaped support column 6 protruding to the windward side is arranged directly above the straight columnar support column 5, and the inverted L-shaped support column 4 protruding to the windward side is arranged on the windward side above the straight columnar support column 5. There is. Nichrome heating wires 7 and 8 are connected between the tips of the inverted L-shaped columns 4 and 6 protruding to the windward side and between the tips of the inverted L-shaped column 4 and the columnar columns 5 protruding to the windward side, respectively. I will do it. The heating wires 7 and 8 to be electrically heated are stretched non-parallel to each other at a position of ± 45 ° with the end portion 3 of the base body 2, and the upper and lower heating wires 7 and 8 are arranged on the same plane in an orthogonal state. is doing.

【0009】 また、基体2の端部3の直柱状支柱5と逆L形状支柱4の間と逆L形状支柱4 、6の間には、それぞれ熱電対用のアルメル製の第1支柱9、10と第2支柱1 1、12の先端部を右側が長くなるように段差的に突出して成る。そして、下側 電熱線7の中央と下側の第1支柱9の先端間及び上側の電熱線8の中央と上側の 第1支柱10の先端間にはそれぞれアルメル線の第1熱電対線13、14を接続 する。下側の第1熱電対線13の電熱線接続端15に近接した位置と下側の第2 支柱11の先端間及び上側の第1熱電対線14の電熱線接続端16に近接した位 置と上側の第2支柱12の先端間には、それぞれクロメル線の第2熱電対線17 、18を接続する。そして、下側のアルメル線の第1熱電対線13、アルメル製 第1支柱9、アルメル製第2支柱11とクロメル線の第2熱電対線17によって 、また、上側の第1熱電対線14、第1支柱10、第2支柱12、第2熱電対線 18によってそれぞれ熱電対を構成する。Further, between the columnar column 5 and the inverted L-shaped column 4 and between the inverted L-shaped columns 4 and 6 at the end 3 of the base body 2, the first column 9 made of alumel for thermocouple, respectively. The tip end portions of 10 and the second support columns 11 and 12 are stepwise projected so that the right side becomes longer. The first thermocouple wire 13 of the alumel wire is provided between the center of the lower heating wire 7 and the tip of the lower first strut 9 and between the center of the upper heating wire 8 and the tip of the upper first strut 10, respectively. , 14 are connected. A position close to the heating wire connection end 15 of the lower first thermocouple wire 13, a position between the tips of the lower second support 11 and a position close to the heating wire connection end 16 of the upper first thermocouple wire 14. The second thermocouple wires 17 and 18 of chromel wires are connected between the upper ends of the upper and second upper columns 12, respectively. The first thermocouple wire 13 of the lower alumel wire, the first pillar 9 made of alumel, the second pillar 11 made of alumel and the second thermocouple wire 17 of the chromel wire, and the first thermocouple wire 14 of the upper side. , The first strut 10, the second strut 12, and the second thermocouple wire 18 constitute thermocouples, respectively.

【0010】 気流Fの方向と速度に応じて冷却される下側の電熱線7の中央と同温になる下 側の第1と第2の両熱電対線13、17の接続点19及び同様な上側の第1と第 2の両熱電対線14、18の接続点20をそれぞれ下側の熱電対13、9 、1 1、17、上側の熱電対14、10、12、18の風向風速測定用高温接点とす る。気流Fと同温になる下側の第2熱電対線17と第2支柱11の接続点21及 び同様な上側の第2熱電対線18と第2支柱12の接続点22をそれぞれ下側の 熱電対13、9、11、17と、上側の熱電対14、10、12、18の風温補 正用低温接点としている。A connection point 19 between the lower first and second thermocouple wires 13 and 17 that has the same temperature as the center of the lower heating wire 7 that is cooled according to the direction and speed of the air flow F, and the like. The connecting points 20 of the upper first and second thermocouple wires 14 and 18 are connected to the lower thermocouples 13, 9 and 11, 17, respectively, and the wind direction and wind speed of the upper thermocouples 14, 10, 12, and 18 are set. Use as a high temperature contact for measurement. The second thermocouple wire 17 on the lower side and the connection point 21 between the second support 11 and the similar second thermocouple wire 18 and the connection point 22 on the second support 12 on the lower side, which have the same temperature as the air flow F, are respectively located on the lower side. The thermocouples 13, 9, 11, and 17 and the upper thermocouples 14, 10, 12, and 18 are used as the low temperature contact for air temperature correction.

【0011】 本実施例の検出体1Pを回転体に装備して使用する場合は、図2に示すように 、基体2の他方の端部4から突出した電熱線用の風上側端部支柱5と風下側端部 支柱6の末端部に、上下の直列接続した両電熱線8、7に一定電流を流してそれ らを加熱する電源31を接続して成る。基体2の下面から突出した熱電対用の下 側の第1と第2の両支柱9、11の未端間及び 同様な上側の第1と第2の両支 柱10、12の未端間にはそれぞれ下側の熱電対13、9、11、17と、上側 の熱電対14、10、12、18の熱起電圧を測定する電圧計32、33を接続 する。また、一方、基体2上に設けた上下の電熱線8、7と上下の第1、第2熱 電対線13、14、17、18と第1、第2支柱9、10、11、12の突出先 端部を気流F中に挿入する。基体の長方形状先端面3の長手方向を気流Fの流線 方向に沿わせて、逆L形状支柱6を風下側に、逆L形状支柱5を風上側にそれぞ れ配置し、基体2を固定する。When the detection body 1 P of this embodiment is used by being mounted on a rotating body, as shown in FIG. 2, the windward side end support column 5 for the heating wire protruding from the other end 4 of the base body 2. And the leeward side end part The terminal part of the column 6 is connected with a power supply 31 for heating a constant current through both upper and lower heating wires 8 and 7 connected in series. Between the lower ends of the first and second lower columns 9 and 11 for the thermocouple protruding from the lower surface of the base body 2, and between the upper ends of the similar upper and lower first and second columns 10 and 12, respectively. The voltmeters 32 and 33 for measuring the thermoelectromotive force of the lower thermocouples 13, 9, 11, and 17 and the upper thermocouples 14, 10, 12, and 18 are connected to each. On the other hand, the upper and lower heating wires 8 and 7 provided on the base 2 and the upper and lower first and second thermocouple wires 13, 14, 17 and 18 and the first and second support columns 9, 10, 11 and 12 are provided. Insert the tip end of the projection into the air flow F. Along the longitudinal direction of the rectangular tip surface 3 of the base body along the streamline direction of the air flow F, the inverted L-shaped support pillars 6 are arranged on the leeward side, and the inverted L-shaped support pillars 5 are arranged on the windward side. Fix it.

【0012】 ところで、この熱電式風向風速センサ用検出体1Pは、気流Fの流線方向が時 刻によって変化する場合、基体2の取り付け位置に誤差がある場合、基体2を所 定の位置に取り付ける場所がない場合、または気流Fの流線方向が明らかでない 場合には、気流Fが測定平面となす角度0°に一致しないことがある。即ち、気 流Fが測定平面に対して幅方向に偏向して電熱線に当たる角度が0°からずれる と、気流Fによる電熱線7、8の冷却に支障を来す。さらに、風向風速測定用高 温接点が直接冷却されると、気流Fの実際の速度、風向に対する風速指示計32 、33の指示風速に測定誤差が生じることとなる。By the way, in the thermoelectric wind sensor sensor 1P, when the streamline direction of the air flow F changes with time, or when there is an error in the mounting position of the base body 2, the base body 2 is placed at a predetermined position. If there is no place to install, or if the streamline direction of the airflow F is not clear, the angle formed by the airflow F with the measurement plane may not match 0 °. That is, when the air flow F is deflected in the width direction with respect to the measurement plane and the angle of hitting the heating wire deviates from 0 °, cooling of the heating wires 7 and 8 by the air flow F is hindered. Further, if the high temperature contact for wind direction and wind speed measurement is directly cooled, a measurement error will occur in the actual speed of the air flow F and the wind speed indicators 32, 33 with respect to the wind direction.

【0013】 そこで、本実施例の回転体用風向風速測定検出体1は、図2に示すように、図 1に示すものに比べて回転体用風向風速測定検出体1のフード23、24を被せ て、気流通路26を形成して成る。基体2の端部3の各支柱6、10、12、4 、11、9、5の配列方向に沿った両側面に、各支柱6、10、12、4、11 、9、5の突出先端部と電熱線7、8および各熱電対線13、14、17、18 を覆うステンレス材料からなる門形状のフード23の風下側後半部の下端開口を 嵌合して成る。門形状フード23の天板は、基体2の端部3と平行に配置すると ともに、門形状フード23の風上側前半部を基体2の風上側側面から突出する。 基体2の風下側側面には風下側開口端を揃えた門形状フード23を基体2の端部 3に固定する。Therefore, as shown in FIG. 2, the rotor wind direction and wind speed measurement detector 1 of the present embodiment has the hoods 23 and 24 of the rotor wind direction and wind speed measurement detector 1 as compared with those shown in FIG. The airflow passage 26 is formed so as to cover it. The protruding tips of the columns 6, 10, 12, 4, 11, 9, 5 are provided on both side faces of the end portion 3 of the base 2 along the arrangement direction of the columns 6, 10, 12, 4, 11, 9, 5. And the heating wires 7 and 8 and the thermocouple wires 13, 14, 17 and 18 are fitted with the lower end openings of the leeward half of the gate-shaped hood 23 made of a stainless material. The top plate of the gate-shaped hood 23 is arranged parallel to the end portion 3 of the base body 2, and the front half of the windward side of the gate-shaped hood 23 projects from the windward side surface of the base body 2. On the leeward side surface of the base body 2, a gate-shaped hood 23 having the leeward side open end aligned is fixed to the end portion 3 of the base body 2.

【0014】 基体2の風上側側面から突出した門形状フード23の風上前半部の下端開口に は、基体2の端部3と平行するステンレス製の床板状フード24を嵌合して成る 。門形状フード23の風上側開口端から基体2の風上側側面に達する床板状フー ド24は、基体2の端部3より低い位置に配置されている。床板状フード24と 基体2の端部3との間には段部25を形成し該床板状フード24を門形状フード 23と基体2に固定して成る。門形状フード23と床形状フード24および基体 2の端部3によって上下左右を区画形成して、電熱線7、8のなす平面と平行に 挿通した等幅の気流通路26を形成する。気流通路26の風上側入口27と段部 25の段差分と、気流通路26の入口27の電熱線7、8方向の長さ、即ち高さ を気流通路26の風下側出口30の高さより大きくしている。なお、図1に示す 検出体1Pと同一部分には同一符号を付してその説明を省略する。A floor plate-shaped hood 24 made of stainless steel, which is parallel to the end portion 3 of the base body 2, is fitted into the lower end opening of the windward front half of the gate-shaped hood 23 protruding from the windward side surface of the base body 2. The floor plate-shaped hood 24 that reaches the windward side surface of the base 2 from the windward side open end of the gate-shaped hood 23 is arranged at a position lower than the end portion 3 of the base 2. A step 25 is formed between the floor plate hood 24 and the end portion 3 of the base 2, and the floor plate hood 24 is fixed to the gate-shaped hood 23 and the base 2. The gate-shaped hood 23, the floor-shaped hood 24, and the end portion 3 of the base 2 partition the upper, lower, left, and right sides to form a uniform-width airflow passage 26 that is inserted in parallel with the plane formed by the heating wires 7 and 8. The height of the step 27 between the windward inlet 27 and the step portion 25 of the airflow passage 26 and the length of the inlet 27 of the airflow passage 26 in the heating wires 7 and 8 direction, that is, the height is larger than the height of the leeward outlet 30 of the airflow passage 26. is doing. The same parts as those of the detector 1P shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

【0015】 本実施例の検出体1の各部の寸法は、気流通路26の幅が2mmで、その長さ が8mmであり、気流通路26の入口27の高さが12mmで、気流通路26の 出口30の高さが10mmである。また、床板状フード24の長さは1.6mm で、床板フード24と門形状フード23の板厚がともに0.2mmである。また 、基体2の端部3の長さは6.4mmで、その幅が2mmであり、各支柱6、1 0、12、4、11、9、5の中心間隔が0.8mmである。電熱線用の支柱4 、5、6の径は0.5mmである。電熱線用直柱状支柱5の突出先端部の長さは 3mmである。逆L形状支柱4の根元部長さは5mmであり、基体2の端部3と 平行な部分の長さが4.4mm、逆L形状支柱6の根元部長さが7mmである。 基体2の端部3と平行な部分の長さは4.8mmで、下側の電熱線7の長さが2 .8mmで、その径が0.05mmである。下側の熱電対用の第1支柱9と第2 支柱11の径は0.3mmで、下側の第1支柱9の突出先端部の長さが3.7m m、第2支柱11の突出先端部の長さが4.4mmである。下側の第1と第2の 両熱電対線13、17の径は0.025mmである。Regarding the dimensions of each part of the detection body 1 of this embodiment, the width of the airflow passage 26 is 2 mm, the length thereof is 8 mm, the height of the inlet 27 of the airflow passage 26 is 12 mm, and the height of the airflow passage 26 is 12 mm. The height of the outlet 30 is 10 mm. The length of the floor plate hood 24 is 1.6 mm, and the plate thicknesses of the floor plate hood 24 and the gate hood 23 are both 0.2 mm. Further, the length of the end portion 3 of the base body 2 is 6.4 mm, the width thereof is 2 mm, and the center interval between the columns 6, 10, 12, 4, 11, 9, 5 is 0.8 mm. The diameter of the columns 4, 5, 6 for heating wires is 0.5 mm. The length of the protruding tip of the columnar column 5 for heating wire is 3 mm. The base length of the inverted L-shaped support column 4 is 5 mm, the length of the portion parallel to the end 3 of the base 2 is 4.4 mm, and the base length of the inverted L-shaped support column 6 is 7 mm. The length of the portion of the base body 2 parallel to the end portion 3 is 4.8 mm, and the length of the lower heating wire 7 is 2. It has a diameter of 8 mm and a diameter of 0.05 mm. The diameter of the first support column 9 and the second support column 11 for the lower thermocouple is 0.3 mm, the length of the protruding tip of the lower first support column 9 is 3.7 mm, and the protrusion of the second support column 11 is The length of the tip is 4.4 mm. The diameter of both the first and second thermocouple wires 13 and 17 on the lower side is 0.025 mm.

【0016】 電熱線7の第1熱電対線接続中央点11の基体2の端部3からの高さは4mm である。下側の電熱線7の第1熱電対線接続中央点11の気流通路26の入口2 7からの奥行は1.4mmである。上側の電熱線8の長さは2.8mmで、その 径が0.05mmである。上側の熱電対用の第1支柱10と第2支柱12の径は 0.3mmで、上側の第1支柱10の突出先端部の長さが5.7mm、第2支柱 12の突出先端部の長さが6.4mmである。上側の第1と第2の両熱電対線1 4、18の径は、0.025mmである。電熱線8の第1熱電対線接続中央点1 2の基体2の端部3からの高さは6mmである。上側の電熱線8の第1熱電対線 接続中央点12の気流通路26の入口27からの奥行は1.4mmである。なお 、回転するダクト内の流れを計測する場合は、回転体に、本実施例の検出体1を 図8に示すように取り付け、回転軸にスリップリングを装着する。このスリップ リングを介して本実施例の検出体1と電源31、電圧計32、33間を接続する 。The height of the first thermocouple wire connection center point 11 of the heating wire 7 from the end portion 3 of the base body 2 is 4 mm 2. The depth from the inlet 27 of the airflow passage 26 at the first thermocouple wire connection center point 11 of the lower heating wire 7 is 1.4 mm. The length of the upper heating wire 8 is 2.8 mm and its diameter is 0.05 mm. The diameter of the first support column 10 and the second support column 12 for the upper thermocouple is 0.3 mm, the length of the protruding tip of the upper first support column 10 is 5.7 mm, and the protruding tip of the second support column 12 is The length is 6.4 mm. The diameter of the upper first and second thermocouple wires 14 and 18 is 0.025 mm. The height of the first thermocouple wire connection center point 12 of the heating wire 8 from the end 3 of the base 2 is 6 mm. The depth from the inlet 27 of the airflow passage 26 at the first thermocouple wire connection center point 12 of the upper heating wire 8 is 1.4 mm. When measuring the flow in the rotating duct, the detecting body 1 of this embodiment is attached to the rotating body as shown in FIG. 8, and the slip ring is attached to the rotating shaft. The detector 1 of this embodiment is connected to the power supply 31 and the voltmeters 32 and 33 via this slip ring.

【0017】 本実施例の検出体1は、左側熱電対用の電圧計32が測定する電圧E1 と右側 熱電対用の電圧計33が測定する電圧E2 から気流Fの方向θと速度Uが求まる 。そのためには、それらの間の特性式を次に説明するように予め求めておく必要 がある。気流Fが直行配列の左側電熱線7と右側電熱線8にそれぞれ45度の角 度で当たる図3に示す状態をθ=0の基準状態に採ると、この基準状態において は、特性式は、円柱形状の電熱線の強制対流熱伝達式より、 E1 =A1 ・U-n2 =A2 ・U-m (1) 即ち、 ln 1 =−n・ln U+ln 1 n 2 =−m・ln U+ln 2 となる。ただし、A1 、A2 とn、mは定数である。 この第1式の特性式は、基準状態において速度Uを各値に変えて電圧E1 、E 2 を測定し、速度Uと電圧E1 、E2 の各自然対数を計算して、図4に示すよう に、ln 1 対ln U、ln 2 対ln Uの線図として求める。The detector 1 of this embodiment has a voltage E measured by a voltmeter 32 for the left thermocouple.1And the voltage E measured by the voltmeter 33 for the right thermocouple2From this, the direction θ of the air flow F and the velocity U can be obtained. For that purpose, it is necessary to obtain the characteristic equation between them in advance as described below. When the state shown in FIG. 3 in which the air flow F hits the left heating wire 7 and the right heating wire 8 in the orthogonal array at an angle of 45 degrees is taken as the reference state of θ = 0, the characteristic formula is From the forced convection heat transfer equation of the cylindrical heating wire, E1= A1・ U-n E2= A2・ U-m (1) That is, lnE1= -N · lnU + 1nA1 lnE2= -M · lnU + 1nA2 Becomes However, A1, A2And n and m are constants. The characteristic expression of the first expression is that the voltage U is changed by changing the speed U to each value in the reference state.1, E 2 Measure the speed U and voltage E1, E2Each natural logarithm of is calculated as shown in FIG.nE1Pair lnU, lnE2Pair lnObtained as a diagram of U.

【0018】 一方、気流Fの方向が基準状態からある角度−θで傾斜している図5に示す状 態においては、特性式は、 E1 =f1 (θ)・A1 ・U-n2 =f2 (θ)・A2 ・U-m (2) 即ち、 ln 1 =−n・ln U+ln 1 +ln 1 n 2 =−m・ln U+ln 2 +ln 2 となる。ただしf1 (θ)f2 (θ)はθの関数である。この第2式の特性式は ln 1 対ln U、ln 2 対ln Uの線図に示すと、図6に実線で示すように なる。On the other hand, in the state shown in FIG. 5 in which the direction of the air flow F is inclined at an angle −θ from the reference state, the characteristic equation is: E 1 = f 1 (θ) · A 1 · U −n E 2 = f 2 (θ) · A 2 · U -m (2) i.e., l n E 1 = -n · l n U + l n A 1 + l n f 1 l n E 2 = -m · l n U + l n the a 2 + l n f 2. However, f 1 (θ) f 2 (θ) is a function of θ. The characteristic equation of the second equation is as shown by the solid line in FIG. 6 when shown in the diagram of l n E 1 vs. l n U and l n E 2 vs. l n U.

【0019】 第1式の特性式を破線で、第2式の特性式を実線でそれぞれ示した図6からも 明らかなように、基準状態において速度U=u1 、u2 のときの電圧E1 、E2 は傾斜状態においてある角度θ、ある速度Uのときの電圧E1 、E2 に等しくな ることから、第1式と第2式より[数1]のようになる。As is clear from FIG. 6 in which the characteristic equation of the first equation is indicated by a broken line and the characteristic equation of the second equation is indicated by a solid line, the voltage E at the speeds U = u 1 and u 2 in the reference state. Since 1 and E 2 are equal to the voltages E 1 and E 2 at a certain angle θ and a certain speed U in the tilted state, the formula 1 and the formula 2 result in [Equation 1].

【数1】[Equation 1]

【0020】 即ち、等価速度u1 、u2 が判明すれば、第4式より角度θが求まり、第3式 より速度Uが求まる。この第3式の特性式と第4式の特性式は傾斜状態において 速度Uを一定値に保持した上で角度θを各値に変えて電圧E1 、E2 を測定し、 その電圧E1 、E2 から図4の線図を利用して等価速度u1 、u2 を求め、図7 に示すように、u1 /U対θ、u2 /U対θの線図、u1 /u2 対θの線図とし て求める。That is, if the equivalent velocities u 1 and u 2 are known, the angle θ can be obtained from the fourth equation and the velocity U can be obtained from the third equation. The characteristic equations of the third and fourth equations are obtained by measuring the voltages E 1 and E 2 while maintaining the velocity U at a constant value and changing the angle θ to various values in the inclined state, and measuring the voltage E 1 obtains the equivalent speed u 1, u 2 by using the diagram of FIG. 4 from the E 2, as shown in FIG. 7, u 1 / U pair theta, the diagram of u 2 / U pairs theta, u 1 / Obtained as a diagram of u 2 vs. θ.

【0021】 従って、本実施例の検出体1によって風向θと風速Uを求める場合は、 (1) 電圧計32、33によって電圧E1 、E2 を測定する。 (2) その電圧E1 、E2 から図4の線図を利用して等価速度u1 、u2 を 求め、u1 /u2 を計算する。 (3) そのu1 /u2 から図7のu1 /u2 対のθの線図を利用して風向θ を求める。 (4) その風向θから図7のu1 /U対θの線図または、u2 /U対θの線 図を利用してu1 /U又はu2 /Uを求め、その値と既知の等価速度u1 又はu 2 から風速を計算する。Therefore, when the wind direction θ and the wind speed U are obtained by the detector 1 of this embodiment, (1) the voltage E is measured by the voltmeters 32 and 33.1, E2To measure. (2) The voltage E1, E2To the equivalent velocity u using the diagram of FIG.1, U2, U1/ U2To calculate. (3) That u1/ U2To u in FIG.1/ U2The wind direction θ is obtained using the paired θ diagram. (4) From the wind direction θ, u in FIG.1/ U vs. θ diagram or u2U using the / U vs. θ diagram1/ U or u2/ U is calculated, and its value and known equivalent velocity u1Or u 2 Calculate the wind speed from.

【0022】 上記の実施例の検出体1においては、左右の電熱線7、8を直角に配列したが 、これに限らず、この他に鋭角又は鈍角に配列してもよい。要するに非平行に配 列すればよい。両電熱線7、8が鋭角に配列すると、計測範囲は狭くなるが、感 度が良くなる。逆に、鈍角に配列すれば、感度が悪くなるが、計測範囲が広くな る。従って、両電熱線7、8のなす角度は45から135度程度が好適である。In the detection body 1 of the above embodiment, the left and right heating wires 7 and 8 are arranged at right angles, but the present invention is not limited to this, and they may be arranged at an acute angle or an obtuse angle. In short, they should be arranged non-parallel. When both heating wires 7 and 8 are arranged at an acute angle, the measurement range is narrowed, but the sensitivity is improved. On the contrary, if they are arranged at an obtuse angle, the sensitivity will be poor, but the measurement range will be wide. Therefore, the angle formed by both heating wires 7 and 8 is preferably about 45 to 135 degrees.

【0023】 次に、本実施例の回転体用風向風速測定検出体に関する測定システムについて 説明する。本実施例の回転体用風向風速測定検出体に関する測定システムは、図 8に示すように、回転体Rに取り付けられた回転体用風向風速測定検出体1から の出力(図2における出力電圧E1 ・E2 )を水銀スリップリング34(もしく は、テレメータ)を介してアナログデータレコーダ等のアナログデータを同一時 刻に多点測定可能な計測機器に接続し、計測を行なう。さらにこのアナログデー タをA/D変換ボード等36により約10msレベルのデジタルデータとして変 換し、これをパーソナルコンピュータ37に保存する。このデジタルデータを基 に上述の計算式(1)、(2)、(3)、(4)により計算を行い各時間におけ る風向風速を求める。この測定システムを用いることにより、非定常解析が可能 となり、回転体Rにおける回転数の影響を受ける遠心力、コリオリ力等によって 発生する流れの同一局所、連続的な測定が可能である。Next, a measuring system relating to the wind direction and wind speed measuring detector for a rotating body of the present embodiment will be described. As shown in FIG. 8, the measurement system relating to the wind direction and wind speed measurement detector for the rotating body of the present embodiment has an output (output voltage E in FIG. 2 from the wind direction and wind speed measuring detector for the rotor attached to the rotor R, as shown in FIG. 1 · E 2 ) is connected via a mercury slip ring 34 (or a telemeter) to a measuring device capable of measuring multiple points of analog data such as an analog data recorder at the same time for measurement. Further, this analog data is converted into digital data of about 10 ms level by the A / D conversion board 36 and the like and stored in the personal computer 37. Based on this digital data, calculation is performed using the above-mentioned calculation formulas (1), (2), (3), and (4) to obtain the wind direction and wind speed at each time. By using this measurement system, unsteady analysis becomes possible, and the flow generated by centrifugal force, Coriolis force, etc., which is influenced by the rotation speed of the rotating body R, can be measured at the same local area and continuously.

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例の検出体を示す斜視図FIG. 1 is a perspective view showing a detector according to an embodiment of the present invention.

【図2】本考案の他の実施例の検出体を示す斜視図FIG. 2 is a perspective view showing a detector according to another embodiment of the present invention.

【図3】本実施例の検出体の基準状態を示す平面図FIG. 3 is a plan view showing a reference state of a detection body of this embodiment.

【図4】本実施例の検出体の基準状態におけるln 1
対ln U、ln 2 対ln Uの関係を示す線図
FIG. 4 shows l n E 1 in the reference state of the detection body of the present embodiment.
Graph showing the relationship between pairs l n U, l n E 2 versus l n U

【図5】本実施例の検出体の傾斜状態を示す平面図FIG. 5 is a plan view showing a tilted state of the detection body of this embodiment.

【図6】本実施例の検出体の傾斜状態におけるln 1
対ln U、ln 2 対ln Uの関係を示す線図
FIG. 6 shows l n E 1 in a tilted state of the detection body of the present embodiment.
Graph showing the relationship between pairs l n U, l n E 2 versus l n U

【図7】本実施例の検出体のにおけるu/U、u2 /U
対θとu1 /u2 対θ 関係を示す線図
FIG. 7 shows u / U and u 2 / U in the detection body of this embodiment.
Diagram showing pair θ and u 1 / u 2 versus θ

【図8】本実施例の検出体のにおける測定システムを示
す概要図
FIG. 8 is a schematic diagram showing a measurement system of the detection body according to the present embodiment.

【符号の説明】[Explanation of symbols]

1P、1 熱電風向風速センサ用検出体 2 基体 7、8 電熱線 9、10 熱電対用第1支柱 11、12 熱電対用第2支柱 13、14 第1熱電対線 17、18 第2熱電対線 19、20 風向風速測定用高温接点 21、22 風温補正用低温接点 F 気流 DESCRIPTION OF SYMBOLS 1P, 1 detector for thermoelectric wind direction sensor 2 base 7,8 heating wire 9,10 thermocouple first support 11,12 thermocouple second support 13,14 first thermocouple wire 17,18 second thermocouple Lines 19 and 20 High temperature contact for wind direction and wind speed measurement 21 and 22 Low temperature contact for wind temperature correction F Air flow

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 回転体に装備する基体における該回転体
の回転方向に対しほぼ直交する面に、該回転体の回転方
向に対しほぼ平行な面内で、かつ当該回転面内に突出し
て電気加熱される熱電線を互いに非平行に配列して設け
ると共に、気流の方向と速度に応じて冷却される電熱線
と同温になる風向風速測定用高温接点と、気流と同温に
なる風温補正用低温接点を前記基体に配置した熱電対を
両側の各電熱線についてそれぞれ設けたことを特徴とす
る回転体用風向風速測定検出体。
1. An electric device, which is provided on a surface of a base body mounted on a rotating body substantially orthogonal to a rotating direction of the rotating body, in a plane substantially parallel to the rotating direction of the rotating body, and protruding into the rotating surface. The hot electric wires to be heated are arranged non-parallel to each other, and the high temperature contact for wind direction and wind speed measurement that has the same temperature as the heating wire that is cooled according to the direction and speed of the airflow, and the air temperature that has the same temperature as the airflow. A wind direction wind speed measurement detector for a rotating body, wherein a thermocouple having a correction low temperature contact arranged on the base is provided for each heating wire on both sides.
JP7721891U 1991-08-29 1991-08-29 Wind direction wind speed measurement detector for rotating body Pending JPH0523137U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7721891U JPH0523137U (en) 1991-08-29 1991-08-29 Wind direction wind speed measurement detector for rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7721891U JPH0523137U (en) 1991-08-29 1991-08-29 Wind direction wind speed measurement detector for rotating body

Publications (1)

Publication Number Publication Date
JPH0523137U true JPH0523137U (en) 1993-03-26

Family

ID=13627713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7721891U Pending JPH0523137U (en) 1991-08-29 1991-08-29 Wind direction wind speed measurement detector for rotating body

Country Status (1)

Country Link
JP (1) JPH0523137U (en)

Similar Documents

Publication Publication Date Title
EP0242412B1 (en) Method and apparatus for measuring fluid flow
US4244217A (en) Gas flow monitor
EP0202453A2 (en) Dew point measuring apparatus
JPS6140346B2 (en)
US6684695B1 (en) Mass flow sensor utilizing a resistance bridge
JPH0523137U (en) Wind direction wind speed measurement detector for rotating body
US5477734A (en) Pyroelectric swirl measurement
JPH027431B2 (en)
US4361054A (en) Hot-wire anemometer gyro pickoff
US3592058A (en) Omnidirectional fluid velocity measuring device
JP2011128105A (en) Wind vane and technique for wind direction detection
US2197564A (en) Aerological instrument
JPH0547859U (en) Small wind velocity meter
US2849880A (en) Thermal anemometers
RU2747098C1 (en) Thermoanemometer for measuring gas velocity in counter-current gas-droplet flow
JPH0334827B2 (en)
US3099160A (en) Moving surface temperature sensor
TW446819B (en) Thermal conductivity micro moisture sensor
JPS61167820A (en) Flow rate detector
JPS63171322A (en) Flow velocity measuring instrument
RU2011979C1 (en) Method of determination of heat-transfer coefficient of thermocouple sensor
JPH0623942Y2 (en) Heat wire type flow sensor
JPH02682Y2 (en)
JPS5923369B2 (en) Zero-level heat flow meter
JPH0642209Y2 (en) Flow sensor