JPH027431B2 - - Google Patents
Info
- Publication number
- JPH027431B2 JPH027431B2 JP57102796A JP10279682A JPH027431B2 JP H027431 B2 JPH027431 B2 JP H027431B2 JP 57102796 A JP57102796 A JP 57102796A JP 10279682 A JP10279682 A JP 10279682A JP H027431 B2 JPH027431 B2 JP H027431B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- wind
- airflow
- thermocouple
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 claims description 37
- 238000001514 detection method Methods 0.000 claims description 23
- 238000009529 body temperature measurement Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 15
- 238000005259 measurement Methods 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 9
- 229910001179 chromel Inorganic materials 0.000 description 6
- 229910000809 Alumel Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P13/00—Indicating or recording presence, absence, or direction, of movement
- G01P13/02—Indicating direction only, e.g. by weather vane
- G01P13/04—Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
- G01P13/045—Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement with speed indication
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Description
【発明の詳細な説明】
本発明は、二次元流の同一局所の風向と風速及
び風温を同時に計測することのできる熱電式風向
風速風温計用検出体に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detection body for a thermoelectric wind direction, anemometer, and temperature meter that can simultaneously measure wind direction, wind speed, and wind temperature at the same locality in a two-dimensional flow.
従来、この種の熱電式風向風速風温計用検出体
は、知られていないようである。 Conventionally, this type of detecting body for a thermoelectric type wind direction anemometer anemometer seems not to be known.
従来の風向計は、特公昭46−18793号公報に第
3実施例として開示されているように、柄管を機
台の目盛盤に回転自在に取り付け、柄管の先端に
1本の管状主柱を突設すると共に管状主柱の斜め
後方位置に2本の管状副柱を突設し、管状主柱と
各管状副柱の先端間に、それぞれ、温度によつて
抵抗が変化する半導体を架設し、両半導体をV字
形状に配置し、両半導体と2個の可変抵抗器及び
電源と計測器によつてブリツジ回路を構成してい
る。 As disclosed in Japanese Patent Publication No. 46-18793 as a third embodiment, a conventional wind vane has a handle tube rotatably attached to a dial on the base, and a single main tubular tube at the tip of the handle tube. In addition to protruding columns, two tubular sub-pillars are protruded from diagonally rearward positions of the tubular main column, and a semiconductor whose resistance changes depending on temperature is placed between the tubular main column and the tip of each tubular sub-pillar. A bridge circuit is constructed by arranging both semiconductors in a V-shape, two variable resistors, a power supply, and a measuring device.
この風速計を使用する場合は、先ず、通電によ
つて発熱している両半導体を静止空気中に配置し
たときに、ブリツジ回路の計測器の指針が零を指
すように、ブリツジ回路の両可変抵抗器の抵抗値
を調整しておく。 When using this anemometer, first place both semiconductors, which generate heat when energized, in still air. Adjust the resistance value of the resistor.
次に、通電によつて発熱している両半導体を気
流中の測定個所に配置し、計測器の指針が零を指
示しなければ、柄管を回転して、計測器の指針が
零を指すように柄管の向きを変更し、即ち、両半
導体に当る気流の角度を等しくし、そのときの柄
管の向きを目盛盤から読み取つて気流の方向を知
る。 Next, place both semiconductors, which generate heat when energized, at the measuring point in the airflow, and if the pointer of the measuring device does not point to zero, rotate the handle tube so that the pointer of the measuring device points to zero. The direction of the airflow is determined by changing the direction of the stem tube in this way, that is, making the angle of the airflow hitting both semiconductors equal, and reading the direction of the stem tube at that time from the dial.
ところが、この風向計は、柄管を回転して、計
測器の指針が零を指す柄管の向きを検出するいわ
ゆる零位法によつて測定するので、気流の方向が
時々刻々と変化する非定常気流の場合や、気流が
回転中又は移動中の物体の表面を流動する場合に
は、使用することができず、風向を計測すること
ができない。 However, this wind vane uses the so-called zero position method to measure by rotating the handle tube and detecting the direction of the handle tube in which the pointer of the measuring instrument points to zero. It cannot be used in the case of steady airflow or when the airflow flows over the surface of a rotating or moving object, and the wind direction cannot be measured.
また、この風向計は、機台の目盛盤に柄管を、
柄管の先端に管状主柱と管状副柱を、管状主柱と
管状副柱の先端に半導体をそれぞれ取り付けてい
るので、大型になる。従つて、風向計自身が気流
の測定個所の流れを大きく乱し、また、気流が狭
い空間を流動する場合には使用することができな
い。 In addition, this wind vane has a handle tube on the scale plate of the base,
The main tubular pillar and the secondary tubular pillar are attached to the tip of the stem tube, and the semiconductors are attached to the tips of the main tubular pillar and the secondary tubular pillar, making it large-sized. Therefore, the wind vane itself greatly disturbs the airflow at the measurement point, and cannot be used when the airflow flows through a narrow space.
また、この風向計は、気流の衝突によつて冷却
される発熱中の半導体の抵抗値をブリツジ回路に
よつて検出しているが、半導体の抵抗値は気流の
温度によつても変化し、しかも、両半導体の温度
特性は全く同一ではないので、気流の温度が変化
する場合には、測定精度が悪くなる。 In addition, this wind vane uses a bridge circuit to detect the resistance value of a heating semiconductor that is cooled by the collision of airflow, but the resistance value of the semiconductor also changes depending on the temperature of the airflow. Moreover, since the temperature characteristics of both semiconductors are not exactly the same, measurement accuracy deteriorates when the temperature of the airflow changes.
更に、この風向計は、風向と風速を同時に計測
することができないし、また、風向と風速及び風
温を同時に計測することができない。 Furthermore, this wind vane cannot measure wind direction and wind speed at the same time, nor can it measure wind direction, wind speed, and wind temperature at the same time.
本発明の目的は、上記のような従来の課題を解
決することである。 An object of the present invention is to solve the conventional problems as described above.
先ず、本発明の熱電式風向風速風温計用検出体
に関連する熱電式風向風速計用検出体について説
明する。 First, a detecting body for a thermoelectric anemometer related to the detecting body for a thermoelectric anemometer of the present invention will be explained.
この熱電式風向風速計用検出体1は、第1図に
示すように、セラミツクや合成樹脂のような電気
絶縁体製円板状基体2の上面3の風上側中央部と
風下側の左側部と右側部にそれぞれ電熱線用の燐
青銅製支柱4,5,6の先端部を等長に突出し、
風上側中央部の支柱4と風下側左側部の支柱5の
先端及び風上側中央部の支柱4と風下側右側部の
支柱6の先端間にそれぞれニクロム線の電熱線
7,8を接続して、電気加熱される電熱線7,8
を基体2上の左側と右側にそれぞれ張設し、左右
の両電熱線7,8を同高位置に直交状態に配置し
ている。また、基体上面3の左側電熱線7風下側
位置と右側電熱線8風下側位置には、それぞれ熱
電対用のアルメル製の第1支柱9,10と第2支
柱11,12の先端部を突出し、左側電熱線7の
中央と左側第1支柱9の先端間及び右側電熱線8
の中央と右側第1支柱10の先端間にそれぞれア
ルメル線の第1熱電対線13,14を接続し、左
側第1熱電対線13の電熱線接続端15に近接し
た位置と左側第2支柱11の先端間及び右側第1
熱電対線14の電熱線接続端16に近接した位置
と右側第2支柱12の先端間にそれぞれクロメル
線の第2熱電対線17,18を接続しており、左
側のアルメル線の第1熱電対線13、アルメル製
第1支柱9、アルメル製第2支柱11とクロメル
線の第2熱電対線17によつて、右側のそれら1
4,10,12,18によつてそれぞれ熱電対を
構成し、気流Fの方向と速度に応じて冷却される
左側電熱線7の中央と同温になる左側の第1と第
2の両熱電対線13,17の接続点19及び同様
な右側の第1と第2の両熱電対線14,18の接
続点20をそれぞれ左側熱電対13,9,11,
17、右側熱電対14,10,12,18の風向
風速測定用高温接点とし、気流Fと同温になる左
側の第2熱電対線17と第2支柱11の接続点2
1及び同様な右側の第2熱電対線18と第2支柱
12の接続点22をそれぞれ左側熱電対13,
9,11,17、右側熱電対14,10,12,
18の風温補正用低温接点としている。 As shown in FIG. 1, the detecting body 1 for the thermoelectric anemometer consists of a central part on the windward side and a left part on the leeward side of the upper surface 3 of a disc-shaped base 2 made of an electric insulator such as ceramic or synthetic resin. and on the right side, the tips of phosphor bronze supports 4, 5, and 6 for heating wires are protruded to equal lengths,
Nichrome heating wires 7 and 8 are connected between the ends of the pillar 4 on the windward side central part and the pillar 5 on the left side on the leeward side, and between the ends of the pillar 4 on the windward side central part and the pillar 6 on the right side on the leeward side, respectively. , electrically heated heating wires 7, 8
are stretched on the left and right sides of the base body 2, respectively, and the left and right heating wires 7 and 8 are arranged at the same height and perpendicular to each other. In addition, the tips of first struts 9, 10 and second struts 11, 12 made of alumel for thermocouples are protruded from the leeward side of the left heating wire 7 and the leeward side of the right heating wire 8 of the upper surface 3 of the base body, respectively. , between the center of the left heating wire 7 and the tip of the first left support 9, and the right heating wire 8
The first thermocouple wires 13 and 14 made of alumel wire are connected between the center and the tip of the first right support 10, respectively, and the first thermocouple wires 13 and 14 are connected between the center and the tip of the first right support 10, and the position close to the heating wire connection end 15 of the first left thermocouple wire 13 and the second left support support are connected. Between the tips of 11 and the first on the right
Second thermocouple wires 17 and 18 made of chromel wire are connected between a position close to the heating wire connection end 16 of the thermocouple wire 14 and the tip of the right second support 12, respectively, and a first thermocouple wire made of alumel wire on the left Those on the right 1
4, 10, 12, and 18 respectively constitute a thermocouple, and both the first and second thermocouples on the left side have the same temperature as the center of the left heating wire 7, which is cooled according to the direction and speed of the airflow F. The connection point 19 of the pair wires 13, 17 and the connection point 20 of the first and second thermocouple wires 14, 18 on the right side are connected to the left thermocouples 13, 9, 11, respectively.
17. Connection point 2 between the second thermocouple wire 17 on the left side and the second support column 11, which serves as a high temperature contact point for measuring wind direction and speed of the right thermocouples 14, 10, 12, and 18, and has the same temperature as the air flow F.
1 and a similar connection point 22 between the right second thermocouple wire 18 and the second support 12 are connected to the left thermocouple 13,
9, 11, 17, right thermocouple 14, 10, 12,
18 low-temperature contacts for wind temperature correction.
なお、検出体1の各部の寸法は、基体2の直径
と厚さが8mmと3mmであり、左右の各電熱線7,
8の長さと太さ及び高さが5mmと0.05mm及び5mm
であり、左右の各第1支柱9,10と各第2支柱
11,12の突出先端部の長さと太さが2mmと
0.3mmであり、左右の各第1熱電対線13,14
と各第2熱電対線17,18の太さが0.025mmで
ある。 The dimensions of each part of the detection object 1 are that the diameter and thickness of the base 2 are 8 mm and 3 mm, and the heating wires 7 on the left and right,
8 length, thickness and height are 5mm, 0.05mm and 5mm
The length and thickness of the protruding tips of each of the left and right first columns 9, 10 and each second column 11, 12 are 2 mm.
0.3 mm, and the first thermocouple wires 13 and 14 on the left and right
The thickness of each second thermocouple wire 17, 18 is 0.025 mm.
検出体1を使用する場合は、第2図に示すよう
に、基体2の下面から突出した電熱線用の風下側
の左右の両支柱5,6の末端間に、左右の直列接
続した両電熱線7,8に一定電流を流してそれら
を加熱する電源25を接続し、基体2の下面から
突出した熱電対用の左側の第1と第2の両支柱
9,11の末端間及び同様な右側の第1と第2の
両支柱10,12の末端間にそれぞれ左側熱電対
13,9,11,17、右側熱電対14,10,
12,18の熱起電圧を測定する電圧計26,2
7を接続する。また、一方、基体2上に設けた左
右の電熱線7,8と左右の第1、第2熱電対線1
3,14,17,18と第1、第2支柱9,1
0,11,12の突出先端部を気流F中に挿入
し、左右の両電熱線7,8を含む面を気流Fの方
向が振れる面に合致させ、両電熱線7,8の直交
端を風上側に、各電熱線7,8の他端を風下側に
それぞれ配置して、基体2を固定する。なお、回
転体の表面の流れを計測する場合は、回転体、例
えばプロペラフアンのブレードに本例の検出体1
を上記のように取付け、プロペラフアンの回転軸
にスリツプリングを装置し、このスリツプリング
を介して検出体1と電源25、電圧計26,27
間を上記のように接続する。 When using the detection body 1, as shown in FIG. A power supply 25 that heats them by passing a constant current through the hot wires 7 and 8 is connected, and a wire is connected between the ends of both the first and second columns 9 and 11 on the left side for the thermocouple protruding from the bottom surface of the base 2, and the like. Left thermocouples 13, 9, 11, 17, right thermocouples 14, 10,
Voltmeters 26, 2 for measuring thermoelectromotive voltages 12, 18
Connect 7. On the other hand, left and right heating wires 7 and 8 provided on the base 2 and left and right first and second thermocouple wires 1
3, 14, 17, 18 and the first and second pillars 9, 1
Insert the protruding tips of 0, 11, and 12 into the airflow F, align the plane containing both the left and right heating wires 7 and 8 with the plane in which the direction of the airflow F swings, and connect the orthogonal ends of the heating wires 7 and 8. The base body 2 is fixed by placing the other ends of the heating wires 7 and 8 on the windward side and on the leeward side. Note that when measuring the flow on the surface of a rotating body, the detection object 1 of this example is attached to the rotating body, for example, the blade of a propeller fan.
is installed as described above, and a slip ring is installed on the rotating shaft of the propeller fan, and the detection object 1, power supply 25, and voltmeters 26, 27 are connected through this slip ring.
Connect as above.
検出体1は、左側熱電対用の電圧計36が測定
する電圧E1と右側熱電対用の電圧計27が測定
する電圧E2から気流Fの方向θと速度Uが求ま
るが、そのためにはそれらの間の特性式を次に説
明するように予め求めておく必要がある。気流F
が直交配列の左側電熱線7と右側電熱線8にそれ
ぞれ45度の角度で当る第3図に示す状態をθ=0
の基準状態に採ると、この基準状態においては、
特性式は、円柱形状の電熱線の強制対流熱伝達式
より、
E1=A1・U-n E2=A2・U-m (1)
即ち、
lnE1=−n・lnU+lnA1
lnE2=−m・lnU+lnA2
となる。ただし、A1、A2とn、mは定数である。 For the detection object 1, the direction θ and speed U of the airflow F can be determined from the voltage E 1 measured by the voltmeter 36 for the left thermocouple and the voltage E 2 measured by the voltmeter 27 for the right thermocouple. It is necessary to obtain the characteristic expression between them in advance as explained below. Airflow F
The state shown in Fig. 3 in which θ hits the left heating wire 7 and the right heating wire 8 of the orthogonal arrangement at an angle of 45 degrees is θ=0.
Taking the reference state of , in this reference state,
The characteristic equation is from the forced convection heat transfer equation for a cylindrical heating wire: E 1 = A 1・U -n E 2 = A 2・U -m (1) That is, lnE 1 = −n ・ lnU + lnA 1 lnE 2 =-m・lnU+lnA 2 . However, A 1 , A 2 , n, and m are constants.
この第1式の特性式は、基準状態において速度
Uを各値に変えて電圧E1、E2を測定し、速度U
と電圧E1、E2の各自然対数を計算して、第4図
に示すように、lnE1対lnU、lnE2対lnUの線図と
して求める。 This first characteristic equation is calculated by measuring the voltages E 1 and E 2 while changing the speed U to various values in the standard state, and
and the natural logarithms of the voltages E 1 and E 2 are calculated and obtained as a diagram of lnE 1 vs. lnU and lnE 2 vs. lnU, as shown in FIG.
一方、気流Fの方向が基準状態からある角度−
θで傾斜している第5図に示す状態においては、
特性式は、
E1=f1(θ)・A1・U-n E2=f2(θ)・
A2・U-m (2)
即ち、lnE1=−n・lnU+lnA1+lnf1(θ)
lnE2=−m・lnU+lnA2+lnf2(θ)
となる。ただし、f1(θ)、f2(θ)はθの関数で
ある。 On the other hand, the direction of the airflow F is at a certain angle from the reference state -
In the state shown in Fig. 5 where the angle is tilted at θ,
The characteristic formula is E 1 = f 1 (θ)・A 1・U -n E 2 = f 2 (θ)・
A 2 ·U -m (2) That is, lnE 1 =−n·lnU+lnA 1 +lnf 1 (θ) lnE 2 =−m·lnU+lnA 2 +lnf 2 (θ). However, f 1 (θ) and f 2 (θ) are functions of θ.
この第2式の特性式は、lnE1対lnU、lnE2対
lnUの線図に示すと、第6図に実線で示すように
なる。 The characteristic equation of this second equation is lnE 1 vs. lnU, lnE 2 vs.
When shown in a diagram of lnU, it becomes as shown by the solid line in Fig. 6.
第1式の特性式を破線で、第2式の特性式を実
線でそれぞれ示した第6図からも明らかなよう
に、基準状態において速度U=u1、u2のときの電
圧E1、E2は傾斜状態においてある角度θ、ある
速度Uのときの電圧E1E2に等しくなることから、
第1式と第2式より
A1・U1 -n=f1(θ)・A1・U-n A2・U2 -m
=f2(θ)・A2・U-m
u1/U=f1(θ)--1/n u2/U=f2(θ)--1
/m (3)
∴u1/u2=f1(θ)--1/n/f2(θ)--1/n (4)
となる。即ち、等価速度u1、u2が判明すれば、第
4式より角度θが求まり、第3式より速度Uが求
まる。この第3式の特性式と第4式の特性式は、
傾斜状態において速度Uを一定値に保持した上で
角度θを各値に変えて電圧E1、E2を測定し、そ
の電圧E1、E2から第4図の線図を利用して等価
速度u1、u2を求め、第7図に示すように、u1/U
対θ、u2/U対θの線図、u1/u2対θの線図とし
て求める。 As is clear from FIG. 6, which shows the first characteristic equation as a broken line and the second characteristic equation as a solid line, the voltage E 1 when the speeds U=u 1 and u 2 in the reference state, Since E 2 is equal to the voltage E 1 E 2 at a certain angle θ and a certain speed U in the tilted state,
From the first and second equations, A 1・U 1 -n = f 1 (θ)・A 1・U -n A 2・U 2 -m
=f 2 (θ)・A 2・U -m u 1 /U=f 1 (θ) --1/n u 2 /U=f 2 (θ) --1
/m (3) ∴u 1 /u 2 =f 1 (θ) --1/n /f 2 (θ) --1/n (4) That is, if the equivalent velocities u 1 and u 2 are known, the angle θ can be found from the fourth equation, and the speed U can be found from the third equation. The characteristic equation of the third equation and the characteristic equation of the fourth equation are:
While maintaining the speed U at a constant value in the tilted state, measure the voltages E 1 and E 2 by changing the angle θ to various values, and calculate the equivalent voltages from the voltages E 1 and E 2 using the diagram in Figure 4. Find the speeds u 1 and u 2 , and as shown in Figure 7, u 1 /U
It is obtained as a diagram of u 2 /U vs. θ, and a diagram of u 1 /u 2 vs. θ.
従つて、検出体1によつて風向θと風速Uを求
める場合は、
(1) 電圧計26,27によつて電圧E1、E2を測
定する。 Therefore, when determining the wind direction θ and wind speed U using the detection object 1, (1) Measure the voltages E 1 and E 2 using the voltmeters 26 and 27.
(2) その電圧E1、E2から第4図の線図を利用し
て等価速度u1、u2を求め、u1/u2を計算する。(2) Find the equivalent speeds u 1 and u 2 from the voltages E 1 and E 2 using the diagram in FIG. 4, and calculate u 1 /u 2 .
(3) そのu1/u2から第7図のu1/u2対θの線図を
利用して風向θを求める。(3) Find the wind direction θ from u 1 /u 2 using the diagram of u 1 /u 2 versus θ in Figure 7.
(4) その風向θから第7図のu1/U対θの線図又
はu2/U対θの線図を利用してu1/U又はu2/
Uを求め、その値と既知の等値速度u1又はu2か
ら風速Uを計算する。(4) From the wind direction θ, use the diagram of u 1 /U vs. θ or the diagram of u 2 /U vs. θ in Figure 7 to calculate u 1 /U or u 2 /
Find U, and calculate the wind speed U from that value and the known equivalent speed u 1 or u 2 .
上記の図示の検出体1においては、左右の電熱
線7,8を直角に配列したが、鋭角又は鈍角に配
列してもよい。要するに非平行に配列すればよ
い。両電熱線7,8が鋭角に配列されると、計測
範囲は狭くなるが、感度が良くなり、逆に、鈍角
に配列されると、感度が悪くなるが、計測範囲が
拡くなる。従つて、両電熱線7,8のなす角度は
45乃至135度位が良好である。 In the illustrated detection body 1 described above, the left and right heating wires 7 and 8 are arranged at a right angle, but they may be arranged at an acute angle or an obtuse angle. In short, they should be arranged non-parallel. If the heating wires 7 and 8 are arranged at an acute angle, the measurement range will be narrower, but the sensitivity will be better; if they are arranged at an obtuse angle, the sensitivity will be worse, but the measurement range will be wider. Therefore, the angle formed by both heating wires 7 and 8 is
A temperature of about 45 to 135 degrees is good.
また、基体2は円板形にしたが、他の形状にし
てもよい。要するに測定個所に取付けし易い形状
であればよい。 Further, although the base body 2 has a disk shape, it may have another shape. In short, any shape is sufficient as long as it is easy to attach to the measurement location.
また、測定の際、検出体1を測定個所に固定
し、測定電圧E1、E2から風向θと風速Uを求め
たが、検出体1を測定個所で回転して一定の基準
状態、例えば気流Fが左右の両電熱線7,8に同
じ角度で当る状態にし、検出体1の回転角度から
風向θを求め、測定電圧E1、E2から風速Uを求
めてもよい。このような場合は、基体2は測定個
所で回転し易い形状にするとよい。 In addition, during the measurement, the detection object 1 was fixed at the measurement location and the wind direction θ and wind speed U were determined from the measured voltages E 1 and E 2 . The airflow F may hit both the left and right heating wires 7 and 8 at the same angle, the wind direction θ may be determined from the rotation angle of the detection body 1, and the wind speed U may be determined from the measured voltages E 1 and E 2 . In such a case, the base body 2 may be shaped to be easily rotated at the measurement location.
上記の熱電式風向風速計用検出体は、気流の方
向と速度に応じて冷却される両側の各電熱線の温
度をそれぞれ各熱電対によつて検出して、気流中
の同一局所の風向と風速を同時に計測することが
できる。 The above detection body for thermoelectric anemometer detects the temperature of each heating wire on both sides, which are cooled according to the direction and speed of the airflow, using each thermocouple, and detects the wind direction at the same location in the airflow. Wind speed can be measured at the same time.
また、柄管を回転して計測器の指針のふれを零
にする零位法によつて計測する従来の風向計とは
異なり、気流の方向又は速度が時々刻々と変化す
る非定常気流の場合にも、気流中の同一局所の風
向と風速を同時に時々刻々と計測することができ
る。 In addition, unlike conventional wind vanes that measure by the zero position method in which the deflection of the pointer of the measuring instrument is zero by rotating the handle tube, in the case of unsteady airflow where the direction or speed of the airflow changes from moment to moment. It is also possible to simultaneously measure the wind direction and wind speed at the same location in the airflow moment by moment.
また、回転中又は移動中の物体に固定して、そ
の物体の表面を流動する気流中の同一局所の風向
と風速を同時に計測することができる。 Furthermore, by fixing it to a rotating or moving object, it is possible to simultaneously measure the wind direction and wind speed at the same location in the airflow flowing over the surface of the object.
また、基体、電熱線と熱電対から構成されるの
で、小型になる。従つて、気流の測定個所の流れ
を大きく乱さないし、また、気流が狭い空間を流
動する場合にも、気流中の同一局所の風向と風速
を同時に計測することができる。 Furthermore, since it is composed of a base, a heating wire, and a thermocouple, it is compact. Therefore, the airflow at the measuring point is not disturbed significantly, and even when the airflow flows through a narrow space, the wind direction and wind speed at the same location in the airflow can be measured simultaneously.
更に、各電熱線の温度を風温を基準にして測定
するので、風温の影響を受けず、気流の温度が変
化する場合にも、測定精度が悪くならない。 Furthermore, since the temperature of each heating wire is measured based on the wind temperature, it is not affected by the wind temperature and the measurement accuracy does not deteriorate even when the temperature of the airflow changes.
次に、本発明の熱電式風向風速風温計用検出体
について説明する。 Next, the detection body for a thermoelectric type wind direction, wind speed, and temperature meter of the present invention will be explained.
本発明の実施例の熱電式風向風速風温計用検出
体31は、第8図に示すように、前記の熱電式風
向風速計用検出体に風温測定用の熱電対11,3
3,32を追加して設けたものであり、基体上面
3の左側の第2支柱11に近接した位置に熱電対
用のクロメル製の第3支柱32の先端部を突出
し、左側の第2支柱11と第3支柱32の先端間
にクロメル線の第3熱電対線33を接続してお
り、左側のアルメル製第2支柱11、クロメル線
の第3熱電対線33とクロメル製の第3支柱32
によつて風温熱電対を構成し、気流Fと同温にな
る左側の第2支柱11と第3熱電対線33の接続
点21を風温熱電対11,33,32の風温測定
用高温接点としており、左側の第2支柱11を風
温熱電対11,33,32と左側の風向風速熱電
対13,9,11,17で共用している。その他
の点は、第1図に示す前記の検出体1と同様であ
るので、第8図に同一符号を付して説明を省略す
る。 As shown in FIG. 8, the detecting body 31 for a thermoelectric type anemometer according to the embodiment of the present invention includes thermocouples 11 and 3 for measuring wind temperature in addition to the detecting body for the thermoelectric type anemometer.
3 and 32 are additionally provided, and the tip of a third column 32 made of chromel for a thermocouple is protruded from a position close to the second column 11 on the left side of the upper surface 3 of the base body, and the second column 32 on the left side is 11 and the third thermocouple wire 33 made of chromel wire is connected between the tips of the third column 32, and the second column 11 made of alumel on the left, the third thermocouple wire 33 made of chromel wire, and the third column made of chromel are connected. 32
The connection point 21 between the second column 11 on the left side and the third thermocouple wire 33, which has the same temperature as the air flow F, is used to measure the air temperature of the air temperature thermocouples 11, 33, and 32. The second post 11 on the left side is shared by the wind temperature thermocouples 11, 33, 32 and the wind direction/speed thermocouples 13, 9, 11, 17 on the left side. Other points are the same as the detection object 1 shown in FIG. 1, so the same reference numerals are given in FIG. 8 and the explanation will be omitted.
本例の検出体31を使用する場合は、第9図に
示すように、基体2の下面から突出した左側のア
ルメル製の第2支柱11の末端とクロメル製の第
3支柱32の末端にそれぞれアルメル線、クロメ
ル線の熱電対補償導線35,36の一端を接続
し、両補償導線35,36の他端を風温より低い
一定の温度に保持した恒温器37中に互に電気絶
縁して挿入し、風温熱電対11,33,32の低
温接点となる恒温器37中の両補償導線35,3
6の端間に風温熱電対の熱起電圧を測定する電圧
計の風温指示計38を接続する。その他の点は、
第2図に示す前記の検出体1における場合と同様
であるので、第9図に同一符号を付して説明を省
略する。 When using the detection body 31 of this example, as shown in FIG. One end of the thermocouple compensation conductors 35 and 36, which are alumel wire and chromel wire, are connected, and the other ends of both compensation conductors 35 and 36 are electrically insulated from each other in a thermostat 37 maintained at a constant temperature lower than the air temperature. Both compensating conductors 35 and 3 in the thermostat 37 are inserted and serve as low-temperature contacts of the air temperature thermocouples 11, 33, and 32.
An air temperature indicator 38, which is a voltmeter that measures the thermoelectromotive voltage of the air temperature thermocouple, is connected between the ends of the air temperature thermocouple. Other points are
Since this is the same as in the detection object 1 shown in FIG. 2, the same reference numerals are given in FIG. 9 and the explanation thereof will be omitted.
上記の図示実施例の検出体31においては、風
温熱電対11,33,32を基体2の左側に設け
たが、右側に設けてもよい。 In the detection body 31 of the illustrated embodiment described above, the air temperature thermocouples 11, 33, and 32 are provided on the left side of the base 2, but they may be provided on the right side.
本発明は、基体上の両側に電気加熱される電熱
線を非平行に配列して設け、気流の方向と速度に
応じて冷却される電熱線と同温になる風向風速測
定用高温接点と、気流と同温になる風温補正用低
温接点を基体上に配置した風向風速熱電対を両側
の各電熱線についてそれぞれ設け、気流と同温に
なる風温測定用高温接点を基体上に配置した風温
熱電対を設けたことを特徴とする熱電式風向風速
風温計用検出体である。 The present invention provides a high-temperature contact for measuring wind direction and wind speed, which is provided with electrically heated heating wires arranged non-parallelly on both sides of a base body, and whose temperature is the same as that of the heating wires, which are cooled according to the direction and speed of the airflow. Wind direction/velocity thermocouples with low-temperature contacts for wind temperature correction, which have the same temperature as the airflow, are placed on the base for each heating wire on both sides, and high-temperature contacts for wind temperature measurement, which have the same temperature as the airflow, are placed on the base. This is a detection body for a thermoelectric type wind direction/speed anemometer characterized by being provided with a wind temperature thermocouple.
本発明の熱電式風向風速風温計用検出体は、気
流の方向と速度に応じて冷却される両側の各電熱
線の温度をそれぞれ各風向風速熱電対によつて検
出し、また、気流の温度を風温熱電対によつて検
出して、気流中の同一局所の風向と風速及び風温
を同時に計測することができる。 The detection body for a thermoelectric type anemometer of the present invention detects the temperature of each heating wire on both sides, which are cooled according to the direction and speed of the airflow, using each wind direction and speed thermocouple. By detecting the temperature using a wind temperature thermocouple, it is possible to simultaneously measure the wind direction, wind speed, and wind temperature at the same location in the airflow.
また、柄管を回転して計測器の指針のふれを零
にする零位法によつて計測する従来の風向計とは
異なり、気流の方向又は速度若しくは温度が時々
刻々と変化する非定常気流の場合にも、気流中の
同一局所の風向と風速及び風温を同時に時々刻々
と計測することができる。 In addition, unlike conventional wind vanes that measure by the zero position method in which the handle tube is rotated to zero the deflection of the pointer of the measuring instrument, this method uses unsteady airflow where the direction, speed, or temperature of the airflow changes from moment to moment. In this case, the wind direction, wind speed, and wind temperature at the same location in the airflow can be measured simultaneously and moment by moment.
また、回転中又は移動中の物体に固定して、そ
の物体の表面を流動する気流中の同一局所の風向
と風速及び風温を同時に計測することができる。 In addition, by fixing it to a rotating or moving object, it is possible to simultaneously measure the wind direction, wind speed, and wind temperature at the same location in the airflow flowing on the surface of the object.
また、基体、電熱線、風向風速熱電対と風温熱
電対から構成されるので、小型になる。従つて、
気流の測定個所の流れを大きく乱さないし、ま
た、気流が狭い空間を流動する場合にも、気流中
の同一局所の風向と風速及び風温を同時に計測す
ることができる。 Furthermore, since it is composed of a base, a heating wire, a wind direction/velocity thermocouple, and a wind temperature thermocouple, it is compact. Therefore,
It does not significantly disturb the flow of the airflow at the measurement location, and even when the airflow flows through a narrow space, the wind direction, wind speed, and wind temperature at the same location in the airflow can be measured simultaneously.
更に、風向と風速を計測するに当り、各電熱線
の温度を風温を基準にして測定するので、風温の
影響を受けず、気流の温度が変化する場合にも、
測定精度が悪くならない。 Furthermore, when measuring the wind direction and speed, the temperature of each heating wire is measured based on the wind temperature, so it is not affected by the wind temperature and even when the temperature of the airflow changes,
Measurement accuracy does not deteriorate.
第1図は本発明に関わる熱電式風向風速計用検
出体の斜視図、第2図は同検出体の接続回路図、
第3図は同検出体の基準状態の平面図、第4図は
同基準状態におけるlnE1対lnU、lnE2対lnUの線
図、第5図は同検出体の傾斜状態の平面図、第6
図は同傾斜状態におけるlnE1対lnU、lnE2対lnU
の線図、第7図は同検出体におけるu1/U対θ、
u2/U対θ線図とu1/u2対θの線図であり、第8
図は本発明の熱電式風向風速風温計用検出体の斜
視図、第9図は同検出体の接続回路図である。
1:熱電式風向風速計用検出体、2:基体、
7,8:電熱線、9,10:熱電対用第1支柱、
11,12:熱電対用第2支柱、13,14:第
1熱電対線、17,18:第2熱電対線、19,
20:風向風速測定用高温接点、21,22:風
温補正用低温接点、31:熱電式風向風速風温計
用検出体、32:熱電対用第3支柱、33:第3
熱電対線、21:風温測定用高温接点、F:気
流。
Fig. 1 is a perspective view of a detection body for a thermoelectric anemometer according to the present invention, and Fig. 2 is a connection circuit diagram of the detection body.
Figure 3 is a plan view of the same detection object in the standard state, Figure 4 is a line diagram of lnE 1 vs. lnU and lnE 2 vs. 6
The figure shows lnE 1 vs. lnU and lnE 2 vs. lnU in the same tilted state.
Figure 7 is a diagram of u 1 /U versus θ for the same detection object.
This is a diagram of u 2 /U vs. θ and a diagram of u 1 /u 2 vs. θ.
The figure is a perspective view of a detecting body for a thermoelectric type anemometer of the present invention, and FIG. 9 is a connection circuit diagram of the detecting body. 1: Detector for thermoelectric anemometer, 2: Substrate,
7, 8: heating wire, 9, 10: first support for thermocouple,
11, 12: Second strut for thermocouple, 13, 14: First thermocouple wire, 17, 18: Second thermocouple wire, 19,
20: High temperature contact for wind direction and speed measurement, 21, 22: Low temperature contact for wind temperature correction, 31: Detector for thermoelectric wind direction and speed anemometer, 32: Third column for thermocouple, 33: Third
Thermocouple wire, 21: High temperature contact for wind temperature measurement, F: Air flow.
Claims (1)
平行に配列して設け、 気流の方向と速度に応じて冷却される電熱線と
同温になる風向風速測定用高温接点と、気流と同
温になる風温補正用低温接点を基体上に配置した
風向風速熱電対を、両側の各電熱線についてそれ
ぞれ設け、 気流と同温になる風温測定用高温接点を基体上
に配置した風温熱電対を設けた ことを特徴とする熱電式風向風速風温計用検出
体。[Claims] 1. Electrically heated heating wires are arranged non-parallel on both sides of the base, and the temperature is the same as that of the heating wires, which are cooled according to the direction and speed of the airflow, for measuring wind direction and wind speed. A wind direction and speed thermocouple with a high-temperature contact and a low-temperature contact for wind temperature correction that is the same temperature as the airflow is placed on the base for each heating wire on both sides, and a high-temperature contact for wind temperature measurement that is the same temperature as the airflow is installed. A detection body for a thermoelectric wind direction, wind speed, and anemometer, characterized by having a wind temperature thermocouple arranged on a base.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10279682A JPS58218653A (en) | 1982-06-14 | 1982-06-14 | Detecting body for wind direction and velocity meter and wind direction and velocity and temperature meter of thermoelectric type |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10279682A JPS58218653A (en) | 1982-06-14 | 1982-06-14 | Detecting body for wind direction and velocity meter and wind direction and velocity and temperature meter of thermoelectric type |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58218653A JPS58218653A (en) | 1983-12-19 |
JPH027431B2 true JPH027431B2 (en) | 1990-02-19 |
Family
ID=14337044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10279682A Granted JPS58218653A (en) | 1982-06-14 | 1982-06-14 | Detecting body for wind direction and velocity meter and wind direction and velocity and temperature meter of thermoelectric type |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58218653A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016011948A (en) * | 2014-06-03 | 2016-01-21 | 株式会社デンソー | Wind vane, wind vane-airflow meter, and moving direction measuring instrument |
JP2016044974A (en) * | 2014-08-19 | 2016-04-04 | パナソニックIpマネジメント株式会社 | Tunnel wind direction and velocity measurement method, and system thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6451084B2 (en) | 2014-05-23 | 2019-01-16 | 株式会社デンソー | Measuring device and measuring system using the same |
JP6365112B2 (en) | 2014-08-20 | 2018-08-01 | 株式会社デンソー | Control device for in-vehicle motor |
CN113466488B (en) * | 2021-07-19 | 2022-05-27 | 东南大学 | Two-dimensional temperature balance mode MEMS wind speed and direction sensor and preparation method thereof |
JP7288208B2 (en) * | 2021-10-20 | 2023-06-07 | 東芝情報システム株式会社 | Wind direction and speed measurement device and program for wind direction and speed measurement |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5655861A (en) * | 1979-10-15 | 1981-05-16 | Toyota Central Res & Dev Lab Inc | Detecting body for wind-temperature wind-speed meter of thermocouple type |
-
1982
- 1982-06-14 JP JP10279682A patent/JPS58218653A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5655861A (en) * | 1979-10-15 | 1981-05-16 | Toyota Central Res & Dev Lab Inc | Detecting body for wind-temperature wind-speed meter of thermocouple type |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016011948A (en) * | 2014-06-03 | 2016-01-21 | 株式会社デンソー | Wind vane, wind vane-airflow meter, and moving direction measuring instrument |
JP2016044974A (en) * | 2014-08-19 | 2016-04-04 | パナソニックIpマネジメント株式会社 | Tunnel wind direction and velocity measurement method, and system thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS58218653A (en) | 1983-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0159438B1 (en) | Multi-layered thin film heat transfer gauge | |
EP0242412B1 (en) | Method and apparatus for measuring fluid flow | |
JPH08201327A (en) | Heat conductivity meter | |
US4279147A (en) | Directional heat loss anemometer transducer | |
US2389615A (en) | Anemometer | |
US2612047A (en) | Probe device for fluid condition measuring apparatus | |
US3592055A (en) | Directional sensor | |
Starr | An improved method for the determination of thermal diffusivities | |
CN108489628A (en) | A kind of measureing method of high-temperature | |
US3417617A (en) | Fluid stream temperature sensor system | |
JPH027431B2 (en) | ||
JP4774409B2 (en) | Method and apparatus for monitoring material | |
US6453571B1 (en) | Thermocouple tilt sensing device | |
US6134958A (en) | Thermal anemometer aircraft airspeed gust component transducer | |
US1977340A (en) | Heat convection meter | |
US4361054A (en) | Hot-wire anemometer gyro pickoff | |
USRE24436E (en) | Sensitive heat exchange detector | |
US3091957A (en) | Thermal conductivity bridge circuit | |
JP3300110B2 (en) | Gas detector | |
US2197564A (en) | Aerological instrument | |
King | The linear hot-wire anemometer and its applications in technical physics | |
Wood et al. | Pyrometry | |
US1724296A (en) | Apparatus for measuring the velocities of fluids | |
US3514998A (en) | D.c. circuit for operating asymmetric thermopile | |
JPH0674803A (en) | Heat sensing flow rate sensor |