JPH0452571B2 - - Google Patents

Info

Publication number
JPH0452571B2
JPH0452571B2 JP59143205A JP14320584A JPH0452571B2 JP H0452571 B2 JPH0452571 B2 JP H0452571B2 JP 59143205 A JP59143205 A JP 59143205A JP 14320584 A JP14320584 A JP 14320584A JP H0452571 B2 JPH0452571 B2 JP H0452571B2
Authority
JP
Japan
Prior art keywords
cables
silicone oil
insulator
crystalline
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59143205A
Other languages
Japanese (ja)
Other versions
JPS6124106A (en
Inventor
Susumu Takahashi
Toshio Niwa
Hidefumi Ootsuka
Mitsuru Igarashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP14320584A priority Critical patent/JPS6124106A/en
Publication of JPS6124106A publication Critical patent/JPS6124106A/en
Publication of JPH0452571B2 publication Critical patent/JPH0452571B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は電力ケーブル特にポリオレフイン絶
縁電力ケーブルの製造方法に存する。 (従来の技術) 近時高電圧電力ケーブルに於ては油浸絶縁電力
ケーブル(OFケーブル)に代つてゴム、プラス
チツク絶縁体を用いた固体絶縁ケーブルが使用さ
れるようになつてきており主として低密度ポリエ
チレンを架橋したXLPE絶縁電力ケーブルがその
主流をなしている。 (発明が解決しようとする問題点) このようなXLPE絶縁電力ケーブルはOFケー
ブルのように絶縁油を用いるものではないので保
守管理が容易であるが、絶縁信頼性はOFケーブ
ルよりもかなり劣つており、現在のところXLPE
絶縁ケーブルは154〜275KVの高電圧領域まで実
用化されているが、絶縁信頼性の点から絶縁厚は
同クラスのOFケーブルの5割以上も厚肉として
いるのが現状である。 又、このようなプラスチツク絶縁ケーブルでは
OFケーブルには生じない問題として、絶縁体中
の水分と電極不整やボイド、異物等による不平等
電界の存在により、水トリーが発生する。 高電圧XLPEケーブルでは内外半導電層も押出
で形成されるので、この電極不整による内外半導
電層からの水トリーの問題はほとんど無くなつた
きているが、絶縁体中から発生するボウタイトリ
ーは絶縁体中に含まれる水分が0にはできないの
である程度は避けられない問題であつて、ケーブ
ル製造直後の初期水分によつてもボウタイトリー
は発生することが認められている。 一方低密度ポリエチレン(LDPE)を架橋した
XLPE以外に、高密度ポリエチレン(HDPE)、
ポリプロピレン(PP)及びポリ−4−メチルペ
ンテン−1(TPX)等の結晶性ポリオレフインは
結晶融点が125℃以上であり、XLPEと比べると
必ずしも架橋をなくしてもケーブルの使用温度条
件によつては絶縁体として用い得るものである。
よつてこれらの結晶性ポリオレフインを用いて電
力ケーブルを製造すれば架橋絶縁ケーブルに比べ
て加熱架橋工程を経る必要がないので、導体の外
部に溶融押出被覆したら直ちに冷却工程に導くこ
とができ有利のように考えられるが、このような
単なる押出−冷却という方法のみによつて製造し
た電力セーブルでは押出中の歪が絶縁体に残留し
耐電圧特製上好ましくないことから本発明者は先
に特願昭59−40449号によつて結晶性ポリオレフ
インを導体の外部に押出被覆後、これを結晶性ポ
リオレフインの結晶融点以上の温度の加熱媒体中
に保持することにより耐電圧特性の優れた電力ケ
ーブルを得ることに成功した。 しかしこの方法に於て考れらた結晶性ポリオレ
フインの加熱媒体は水蒸気や窒素ガス等の不活性
ガスであるが、絶縁体は未架橋であるためこのよ
うな高温、高圧のガス中では絶縁体が熱により流
動することになりタレ落ち等の変形が生じ易いこ
とが判つた。 (問題点を解決するための手段) 本発明は上記の如き技術上の問題を認識し、
種々検討の結果結晶融点125℃以上の結晶性ポリ
オレフインを導体上に押出被覆した後、シリコン
油によつて加熱し、シリコン油によつて冷却する
ことにより電力ケールを製造するようにした。 (作用) 本発明の方法によれば、絶縁体となる結晶性ポ
リオレフインの密度が0.8〜1.0g/cm2程度で加熱
媒体たるシリコン油の密度が0.9〜1.0g/cm2であ
つて両者の密度がほゞ等しいので、このシリコン
油の浮力によつて絶縁体のタレ落ち、変形の問題
が解決され、かつ冷却媒体もシリコン油であるの
でボウタイトリーの発生を極力抑え得るようにな
つている。又、完全に乾式の製造方法であるの
で、絶縁体中の初期水分の減少も達成することが
できる。 (実施例) 次に各種の結晶性ポリオレフインを用いて絶縁
体とする電力ケーブルを結晶性ポリオレフインの
押出後の加熱とこれに続く冷却媒体として水蒸気
→水、シリコン油→シリコン油の2つの方法によ
り製造し破壊電圧、水分量、ボウタイトリー発生
数を調べた、その概要は次表のとおりである。 なお用いた結晶性ポリオレフインはHDPE(結
晶融点127℃)、ランダムコポリマーPP(結晶融点
140℃)、コポリマーTPX(結晶融点230℃)で、
押出温度はHDPEは145℃、PPは200℃、TPXは
260℃である。押出後の加熱、冷却の媒体の温度
は表示のとおりであり、又、架橋の有無も表に示
しているが、架橋剤についてはHDPEの場合は
2.5ジメチル−2.5ジ(t−ブチルパーオキシ)ヘ
キシン−3を2重量%加えて架橋し、LDPEの場
合はジクミルパーオキサイドを2.0重量%加えて
架橋した。 又、各ケーブルとも、導体断面積200mm2、絶縁
厚3mmで、内部半導電層及び外部導電層を押出に
より施してある。
(Industrial Field of Application) The present invention resides in a method of manufacturing power cables, particularly polyolefin insulated power cables. (Prior technology) Recently, solid insulated cables using rubber or plastic insulators have been used instead of oil-immersed insulated power cables (OF cables) for high-voltage power cables. XLPE insulated power cables made of cross-linked density polyethylene are the mainstream. (Problem to be solved by the invention) This type of XLPE insulated power cable does not use insulating oil like OF cables, so it is easy to maintain, but its insulation reliability is considerably inferior to OF cables. Currently, XLPE
Insulated cables have been put into practical use in the high voltage range of 154 to 275 KV, but from the standpoint of insulation reliability, the insulation thickness is currently more than 50% thicker than OF cables of the same class. Also, with such plastic insulated cables,
A problem that does not occur with OF cables is water trees, which occur due to moisture in the insulator and the presence of uneven electric fields due to electrode irregularities, voids, foreign objects, etc. In high-voltage XLPE cables, the inner and outer semiconducting layers are also formed by extrusion, so the problem of water trees from the inner and outer semiconducting layers due to electrode irregularities has almost disappeared. This is an unavoidable problem to some extent because the water content in the body cannot be reduced to zero, and it has been recognized that bow tit tree can also occur due to initial moisture immediately after the cable is manufactured. On the other hand, low density polyethylene (LDPE) was crosslinked
In addition to XLPE, high-density polyethylene (HDPE),
Crystalline polyolefins such as polypropylene (PP) and poly-4-methylpentene-1 (TPX) have a crystalline melting point of 125°C or higher, and compared to XLPE, even if crosslinking is eliminated, depending on the temperature conditions in which the cable is used, It can be used as an insulator.
Therefore, if power cables are manufactured using these crystalline polyolefins, there is no need to go through a heating crosslinking process compared to crosslinked insulated cables, so the cooling process can be carried out immediately after the conductor is coated by melt extrusion, which is advantageous. However, in electric power sables manufactured by such a simple extrusion-cooling method, strain during extrusion remains in the insulator, which is undesirable in terms of withstand voltage. According to No. 59-40449, a power cable with excellent withstand voltage characteristics is obtained by extruding and coating the outside of a conductor with crystalline polyolefin and then holding it in a heating medium at a temperature higher than the crystal melting point of the crystalline polyolefin. It was very successful. However, the heating medium for the crystalline polyolefin considered in this method is an inert gas such as water vapor or nitrogen gas, but since the insulator is uncrosslinked, it cannot be heated in such a high temperature and high pressure gas. It was found that deformation such as dripping is likely to occur due to fluidization due to heat. (Means for solving the problems) The present invention recognizes the technical problems as described above, and
As a result of various studies, it was decided to manufacture power kale by extrusion coating a conductor with crystalline polyolefin having a crystalline melting point of 125°C or higher, heating it with silicone oil, and cooling it with silicone oil. (Function) According to the method of the present invention, the density of crystalline polyolefin serving as an insulator is about 0.8 to 1.0 g/cm 2 and the density of silicone oil serving as a heating medium is about 0.9 to 1.0 g/cm 2 . Since the densities are almost the same, the buoyancy of the silicone oil solves the problem of sagging and deformation of the insulator, and since the cooling medium is also silicone oil, the occurrence of bow tree is minimized. . Furthermore, since it is a completely dry manufacturing method, it is possible to reduce the initial moisture content in the insulator. (Example) Next, power cables using various crystalline polyolefins as insulators were heated by extrusion of the crystalline polyolefin, followed by water vapor → water and silicone oil → silicone oil as the cooling medium. The breakdown voltage, moisture content, and number of bow titties were investigated after manufacturing, and the summary is shown in the table below. The crystalline polyolefins used were HDPE (crystal melting point 127°C), random copolymer PP (crystal melting point
140℃), copolymer TPX (crystalline melting point 230℃),
The extrusion temperature is 145℃ for HDPE, 200℃ for PP, and 200℃ for TPX.
It is 260℃. The temperature of the heating and cooling medium after extrusion is as indicated, and the presence or absence of crosslinking is also shown in the table. Regarding the crosslinking agent, in the case of HDPE,
Crosslinking was carried out by adding 2% by weight of 2.5 dimethyl-2.5 di(t-butylperoxy)hexyne-3, and in the case of LDPE, 2.0% by weight of dicumyl peroxide was added. Furthermore, each cable has a conductor cross-sectional area of 200 mm 2 , an insulation thickness of 3 mm, and has an inner semiconductive layer and an outer conductive layer formed by extrusion.

【表】【table】

【表】 (発明の効果) 上記の比較試験データからも明らかなとおり、
本発明によるときは結晶融点125℃以上の結晶性
ポリオレフインを絶縁体(架橋の有無にかゝわら
ず)とし、しかもシリコン油を加熱媒体及び冷却
媒体としているので、絶縁体のタレ落ち、変形を
発生せ、ボウタイトリーの発生が極めて少なく絶
縁体中の初期水分も著るしく減少し、従来法によ
るよりも破壊電圧の高い電力ケーブルを製造する
ことができる。 従つて従来のポリオレフインケーブルに比べ同
一電圧用の電力ケーブルを製造する場合には本発
明によれば絶縁厚の薄い電力ケーブルでよいこと
になる。
[Table] (Effects of the invention) As is clear from the comparative test data above,
According to the present invention, crystalline polyolefin with a crystalline melting point of 125°C or higher is used as an insulator (regardless of whether or not it is crosslinked), and silicone oil is used as a heating medium and a cooling medium, so that sagging and deformation of the insulator are prevented. In this method, the occurrence of bow tie is extremely small, and the initial moisture content in the insulator is also significantly reduced, making it possible to manufacture a power cable with a higher breakdown voltage than by conventional methods. Therefore, in comparison with conventional polyolefin cables, when manufacturing power cables for the same voltage, according to the present invention, power cables with thinner insulation thickness can be used.

Claims (1)

【特許請求の範囲】[Claims] 1 結晶融点125℃以上の結晶性ポリオレフイン
を導体の外部に押出被覆した後シリコン油中を通
して加熱し、シリコン油中を通して冷却すること
を特徴とする電力ケーブルの製造方法。
1. A method for manufacturing a power cable, which comprises extruding and coating the outside of a conductor with crystalline polyolefin having a crystal melting point of 125° C. or higher, heating the conductor through silicone oil, and cooling the conductor through silicone oil.
JP14320584A 1984-07-12 1984-07-12 Method of producing power cable Granted JPS6124106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14320584A JPS6124106A (en) 1984-07-12 1984-07-12 Method of producing power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14320584A JPS6124106A (en) 1984-07-12 1984-07-12 Method of producing power cable

Publications (2)

Publication Number Publication Date
JPS6124106A JPS6124106A (en) 1986-02-01
JPH0452571B2 true JPH0452571B2 (en) 1992-08-24

Family

ID=15333324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14320584A Granted JPS6124106A (en) 1984-07-12 1984-07-12 Method of producing power cable

Country Status (1)

Country Link
JP (1) JPS6124106A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073934A (en) * 1973-10-31 1975-06-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073934A (en) * 1973-10-31 1975-06-18

Also Published As

Publication number Publication date
JPS6124106A (en) 1986-02-01

Similar Documents

Publication Publication Date Title
JPS5986110A (en) Crosslinked polyethylene insulated cable
JPH04106B2 (en)
JPH0452571B2 (en)
JP2001325834A (en) Dc power cable
JPH103823A (en) Direct current power cable insulated by cross-linked polyethylene
JPH0765633A (en) Dc cable
JPH09231839A (en) Direct current cable
JPH0428118A (en) Coaxial cable
JPH0620530A (en) Water tree resistant cable
JP2814715B2 (en) Electric wires and cables
JPH03276515A (en) Water-tree resisting electric wire and cable
JPH01258311A (en) Rubber-plastic insulated power cable
JPH01105407A (en) Bridged polyethylene insulated cable and manufacture thereof
JPH03122909A (en) Electric wire/cable
JP2871011B2 (en) Power cable
JPS59101708A (en) High pressure cable
JPH0199428A (en) Dc cable connector
JPS60193207A (en) Electrically insulating thermally shrinkable tube and connector of power cable using same
JPH06295621A (en) Electric insulation composite and electric wire/cable
JPH03122908A (en) Electrically insulated cable
JPH08199013A (en) Semiconductive resin composition and crosslinked polyethylene insulated power cable
JPS5986109A (en) Plastic power cable
JPH0132602B2 (en)
JPS6356645B2 (en)
JPH01144511A (en) Electric wire/cable

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees