JPH0452562B2 - - Google Patents

Info

Publication number
JPH0452562B2
JPH0452562B2 JP59049787A JP4978784A JPH0452562B2 JP H0452562 B2 JPH0452562 B2 JP H0452562B2 JP 59049787 A JP59049787 A JP 59049787A JP 4978784 A JP4978784 A JP 4978784A JP H0452562 B2 JPH0452562 B2 JP H0452562B2
Authority
JP
Japan
Prior art keywords
tube
layer
heat
cable
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59049787A
Other languages
Japanese (ja)
Other versions
JPS60193206A (en
Inventor
Norihiko Yasuda
Shosuke Yamanochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59049787A priority Critical patent/JPS60193206A/en
Publication of JPS60193206A publication Critical patent/JPS60193206A/en
Publication of JPH0452562B2 publication Critical patent/JPH0452562B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)
  • Cable Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明は電気絶縁用の熱収縮チユーブ及びそれ
を用いたプラスチツク絶縁電力ケーブルの接続部
に関するものである。 (発明の背景) ポリエチレン、架橋ポリエチレン等のプラスチ
ツク絶縁層を有するプラスチツク絶縁電力ケーブ
ルの接続部は、ケーブル本体と同様に導体接続部
及びケーブル絶縁層を覆つてその外周上に内部半
導電層、絶縁層、外部半導電層及び外部保護層が
順次設けられて構成されている。これらの層の形
成にあたつては、それぞれの層をテープ巻きによ
り形成したり、それぞれの層を一体化したゴムモ
ールド品を差し込む等の方法があるが、いずれも
一長一短である。又簡易接続法としては内部半導
電層の代りに電界緩和層を用い、いずれの層も熱
収縮チユーブを用い加熱収縮させて形成する熱収
縮チユーブ接続法が採用されている。 ところがこのようなケーブル接続部の大きな技
術的問題は長年課電を続けていると絶縁性能が
徐々に劣化をきたし、破かい電圧が低下してくる
ことである。これがため劣化による絶縁低下分を
見込んで、厚さの厚い絶縁チユーブを用いたり、
絶縁チユーブの枚数を増加させる等の方策がとら
れてきた。我々発明者等はこの経年劣化について
種々研究を重ねた結果、この劣化現象が絶縁チユ
ーブ中に発生しているミクロボイド又は導体とチ
ユーブの間に存在する水分のため、絶縁チユーブ
内又は導体とチユーブの界面に生ずる水ツリーに
よるものであることを見出した。特に収縮チユー
ブのように延伸され歪が残つた状態で使われた場
合、歪のないポリエチレンにくらべてツリーが発
生し易いことがわかつた。 この結果、収縮チユーブ特有のミクロな欠陥よ
り生じるツリーを抑えることにより劣化現象がお
こらなくなり、経年劣化による低下分を考慮する
必要がなくなり、収縮チユーブの肉厚を薄くする
ことに成功した。 (発明の開示) 本発明は上述の問題点を解消し、肉圧が薄く、
かつ長期間安定した絶縁性能を有する電気絶縁用
熱収縮チユーブとそれを用いた電力ケーブルの接
続部を提供するものである。 第1図は本発明に係る電気絶縁用熱収縮チユー
ブ1の縦断面図で、重量平均分子量と数平均分子
量の比が5以下である低密度ポリエチレンを主組
成物として構成されている。この熱収縮チユーブ
を導体に被覆し絶縁層を形成したものでは、熱収
縮チユーブ内あるいは熱収縮チユーブと導体の界
面からのツリーの発生を抑えることができ、従来
のポリエチレン熱収縮チユーブを使用した場合に
くらべて、薄い圧さで長期間電気破かいに耐える
絶縁層を形成しうることができた。この際、通常
熱収縮チユーブに添加されるような老化防止剤、
加工助剤等を添加できるのは勿論のことである。 第2図は本発明に係る電力ケーブル接続部の実
施例の縦断面図で、1はケーブル導体、2はポリ
エチレン、架橋ポリエチレン等のケーブル絶縁
層、3はケーブルの内部半導電層、4は銅、アル
ミニウム等の金属テーブルを巻回して構成した金
属しやへい層、5はポリエチレン、塩化ビニル樹
脂等のプラスチツクを押出し被覆したケーブルシ
ース、6はケーブル導体1の接続部である。 ケーブル導体1の接続部6及びケーブル絶縁層
2の外周上には導体接続部6における電界を緩和
するための電界緩和チユーブ層7が設けられ、そ
の上に本発明における前述の熱収縮チユーブによ
る絶縁チユーブ層A、さらにその上には外部半導
電チユーブ層8、外部保護層9が順次設けられて
いる。これらチユーブ層の形成は従来の熱収縮チ
ユーブを用いたケーブル接続部の形成方法と変る
ところがなく、各チユーブを別個に設けて加熱収
縮させてもよく、例えば電界緩和チユーブと絶縁
チユーブをあらかじめ一体としたもの、あるいは
電界緩和チユーブ、絶縁チユーブ及び外部半導電
チユーブを一体としたものを用いて加熱収縮して
形成してもよい。又上記はケーブル接続について
説明したが、ケーブル終端部についても同様に形
成しうるのは勿論である。 (実施例) 実施例 第1表に示すような重量平均分子量と数平均分
子量の比を有する低密度ポリエチレンを主組成物
とした材料を用い、内径3mm、肉厚2mmのチユー
ブを押出し作成した。このチユーブを電子線照射
による架橋を行なつた後、通常の熱収縮チユーブ
を作成する方法によりチユーブの膨張を行ない、
内径8mmの熱収縮チユーブを得た。この熱収縮チ
ユーブを外径5mmの電線に加熱収縮させた後50℃
の水中で3kVの交流電圧を課電した。200時間課
電後にチユーブを切断してツリーの発生状況を調
べると共に破かいまでの時間を測定した。その結
果は第1表に示す通りである。 なお分子量の測定方法は「高分子の重合度測
定」(高分子実験化学講座、共立出版)により測
定した。
(Technical Field of the Invention) The present invention relates to a heat-shrinkable tube for electrical insulation and a connecting portion of a plastic insulated power cable using the same. (Background of the Invention) The connecting portion of a plastic insulated power cable having a plastic insulating layer made of polyethylene, cross-linked polyethylene, etc. has an internal semiconducting layer, an insulating layer, an outer semiconducting layer, and an outer protective layer are sequentially provided. When forming these layers, there are methods such as wrapping each layer with tape or inserting a rubber molded product that integrates each layer, but each method has its advantages and disadvantages. As a simple connection method, a heat shrink tube connection method is adopted in which an electric field relaxation layer is used instead of the internal semiconductive layer, and both layers are formed by heat shrinking using a heat shrink tube. However, a major technical problem with such cable connections is that when electricity is applied for many years, the insulation performance gradually deteriorates, causing the breakdown voltage to drop. Therefore, in order to account for the reduction in insulation due to deterioration, thick insulation tubes are used,
Measures have been taken such as increasing the number of insulating tubes. We, the inventors, have conducted various studies on this deterioration over time, and have found that this deterioration phenomenon is caused by microvoids occurring in the insulating tube or moisture existing between the conductor and the tube. It was found that this is due to water trees generated at the interface. In particular, it has been found that when used in a stretched and strained state, such as in a shrink tube, trees are more likely to form than in unstrained polyethylene. As a result, by suppressing the trees caused by the microscopic defects unique to shrink tubes, deterioration phenomena no longer occur, and there is no need to take into account deterioration due to aging, making it possible to reduce the wall thickness of shrink tubes. (Disclosure of the Invention) The present invention solves the above-mentioned problems, has a thin wall thickness,
The present invention also provides a heat-shrinkable electrically insulating tube that has stable insulation performance over a long period of time, and a power cable connection using the same. FIG. 1 is a longitudinal cross-sectional view of a heat-shrinkable electrically insulating tube 1 according to the present invention, which is mainly composed of low-density polyethylene having a weight-average molecular weight to number-average molecular weight ratio of 5 or less. By covering the conductor with this heat-shrinkable tube and forming an insulating layer, it is possible to suppress the generation of trees within the heat-shrinkable tube or from the interface between the heat-shrinkable tube and the conductor, compared to using a conventional polyethylene heat-shrinkable tube. Compared to conventional methods, we were able to form an insulating layer that can withstand electrical damage for a long time with a thinner pressure. At this time, anti-aging agents such as those usually added to heat shrink tubes,
Of course, processing aids and the like can be added. FIG. 2 is a longitudinal sectional view of an embodiment of the power cable connection part according to the present invention, in which 1 is a cable conductor, 2 is a cable insulation layer made of polyethylene, cross-linked polyethylene, etc., 3 is an internal semiconducting layer of the cable, and 4 is copper. , a metal sheathing layer formed by winding a metal table made of aluminum or the like; 5 a cable sheath made of extruded plastic such as polyethylene or vinyl chloride resin; 6 a connection portion of the cable conductor 1; An electric field relaxation tube layer 7 for relieving the electric field at the conductor connection portion 6 is provided on the connection portion 6 of the cable conductor 1 and the outer periphery of the cable insulation layer 2, and on the electric field relaxation tube layer 7 is provided an insulation layer 7 using the heat-shrinkable tube described above in the present invention. The tube layer A is further provided with an external semiconducting tube layer 8 and an external protective layer 9 in this order. The formation of these tube layers is no different from the method of forming cable connections using conventional heat-shrinkable tubes, and each tube may be provided separately and heat-shrinked. For example, an electric field relaxation tube and an insulating tube may be integrated in advance. Alternatively, the electric field relaxation tube, the insulating tube, and the external semiconducting tube may be integrated and formed by heat shrinking. Further, although the above description has been made regarding cable connection, it goes without saying that the cable termination portion can also be formed in the same manner. (Example) Example A tube with an inner diameter of 3 mm and a wall thickness of 2 mm was extruded using a material whose main composition was low-density polyethylene having a ratio of weight average molecular weight to number average molecular weight as shown in Table 1. After cross-linking this tube by electron beam irradiation, the tube is expanded by the usual method of making a heat-shrinkable tube.
A heat-shrinkable tube with an inner diameter of 8 mm was obtained. After heating and shrinking this heat-shrinkable tube into a wire with an outer diameter of 5mm, it is heated to 50°C.
An AC voltage of 3kV was applied in water. After applying electricity for 200 hours, the tube was cut to examine the growth status of the tree and to measure the time it took to break. The results are shown in Table 1. The molecular weight was measured by "Measuring the degree of polymerization of polymers" (Polymer Experimental Chemistry Course, Kyoritsu Publishing).

【表】 ツリー特性 ×:ツリー多数発生
○:ツリー殆んど発生せず
◎:ツリー全く発生せず
上表の結果からもわかるように、重量平均分子
量と数平均分子量の比の大きいものではツリーが
多数発生したが、本発明の熱収縮チユーブではツ
リーは殆んど発生しないか又は全く発生せず、絶
縁破かい時間も著しく向上した。 実施例 第2表に示すような組成を用い内径20mm、肉厚
3mmのチユーブを押出し作成し、電子線照射によ
り架橋を行なつた後、チユーブの膨張を行ない内
径40mmの熱収縮チユーブを得た。 このチユーブを用いて、22kV、150mm2の架橋ポ
リエチレン絶縁ポリ塩化ビニルシースケーブルの
接続部を第2図のように形成した。上記接続部を
常温の水中で60kVの交流電圧を課電した。300時
間課電後に接続部を切断してツリーの発生状況を
調べると共に、同様に作成した接続部について破
かいまでの時間を測定した。その結果は第2表に
示す通りである。
[Table] Tree characteristics ×: Many trees occur
○: Almost no trees occur
◎: No trees were generated at all. As can be seen from the results in the table above, many trees were generated in the tubes with a large ratio of weight average molecular weight to number average molecular weight, but almost no trees were generated in the heat shrinkable tube of the present invention. The insulation failure time was significantly improved. Example A tube with an inner diameter of 20 mm and a wall thickness of 3 mm was extruded using the composition shown in Table 2, crosslinked by electron beam irradiation, and then expanded to obtain a heat-shrinkable tube with an inner diameter of 40 mm. . Using this tube, a connection portion of a 22 kV, 150 mm 2 cross-linked polyethylene insulated polyvinyl chloride sheath cable was formed as shown in FIG. An AC voltage of 60 kV was applied to the above connection part in water at room temperature. After applying electricity for 300 hours, the connection was disconnected and the tree formation status was examined, and the time taken for the connection to break was also measured for connections created in the same way. The results are shown in Table 2.

【表】 ツリー特性 ×:ツリー多数発生
○:ツリー殆んど発生せず
◎:ツリー全く発生せず
(発明の効果) 以上本発明の熱収縮チユーブ及びこれを用いた
電力ケーブル接続部は、従来の熱収縮チユーブと
してはさけられなかつたツリーが発生せず、絶縁
破かい特性も著しく向上するものである。従つて
従来のように絶縁低下分を見込んだ厚い絶縁厚さ
のものを採用する必要がなく、長期間安定した絶
縁特性を維持できる効果を有するものである。
[Table] Tree characteristics ×: Many trees occur
○: Almost no trees occur
◎: No trees occur at all (effect of the invention) As described above, the heat shrinkable tube of the present invention and the power cable connection section using the same do not generate trees, which could be avoided with conventional heat shrinkable tubes, and are free from insulation damage. The characteristics are also significantly improved. Therefore, there is no need to adopt a thick insulation thickness that takes into account the reduction in insulation as in the past, and this has the effect of maintaining stable insulation characteristics for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る熱収縮チユーブの縦断面
図、第2図は上記の熱収縮チユーブを用いた本発
明の電力ケーブル接続部の実施例の縦断面図であ
る。 A……本発明の熱収縮チユーブ、2……ケーブ
ル絶縁層、6……導体接続部、7……電界緩和チ
ユーブ層、8……外部半導電チユーブ層。
FIG. 1 is a longitudinal sectional view of a heat-shrinkable tube according to the present invention, and FIG. 2 is a longitudinal sectional view of an embodiment of a power cable connecting portion of the present invention using the above-mentioned heat-shrinkable tube. A: Heat-shrinkable tube of the present invention, 2: Cable insulating layer, 6: Conductor connection portion, 7: Electric field relaxation tube layer, 8: External semiconducting tube layer.

Claims (1)

【特許請求の範囲】 1 重量平均分子量と数平均分子量の比が5以下
である低密度ポリエチレンを主組成物としたこと
を特徴とする電気絶縁用熱収縮チユーブ。 2 ケーブル導体接続部及びケーブル絶縁層を覆
つてその外周上に電界緩和チユーブ層、絶縁チユ
ーブ層及び外部半導電層を順次設けたケーブル接
続部において、上記絶縁チユーブ層を重量平均分
子量と数平均分子量の比が5以下である低密度ポ
リエチレンを主組成物とした熱収縮チユーブを収
縮させて構成したことを特徴とする電力ケーブル
の接続部。
[Scope of Claims] 1. A heat-shrinkable tube for electrical insulation, characterized in that the main composition thereof is low-density polyethylene having a ratio of weight average molecular weight to number average molecular weight of 5 or less. 2. In a cable connection part in which an electric field relaxation tube layer, an insulating tube layer, and an external semiconducting layer are sequentially provided on the outer periphery of a cable conductor connection part and a cable insulation layer, the insulation tube layer has a weight average molecular weight and a number average molecular weight. A connection part for a power cable, characterized in that it is constructed by shrinking a heat-shrinkable tube mainly composed of low-density polyethylene having a ratio of 5 or less.
JP59049787A 1984-03-14 1984-03-14 Electrically insulating thermally shrinkable tube and connector of power cable using same Granted JPS60193206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59049787A JPS60193206A (en) 1984-03-14 1984-03-14 Electrically insulating thermally shrinkable tube and connector of power cable using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59049787A JPS60193206A (en) 1984-03-14 1984-03-14 Electrically insulating thermally shrinkable tube and connector of power cable using same

Publications (2)

Publication Number Publication Date
JPS60193206A JPS60193206A (en) 1985-10-01
JPH0452562B2 true JPH0452562B2 (en) 1992-08-24

Family

ID=12840867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59049787A Granted JPS60193206A (en) 1984-03-14 1984-03-14 Electrically insulating thermally shrinkable tube and connector of power cable using same

Country Status (1)

Country Link
JP (1) JPS60193206A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511853A (en) * 1978-07-14 1980-01-28 Asahi Chem Ind Co Ltd Injection molded product with improved weld strength
JPS58167636A (en) * 1982-03-26 1983-10-03 Hitachi Cable Ltd Heat shrinkable cable
JPS5925511A (en) * 1982-07-31 1984-02-09 株式会社フジクラ Method of connecting intermediate of rubber, plastic cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511853A (en) * 1978-07-14 1980-01-28 Asahi Chem Ind Co Ltd Injection molded product with improved weld strength
JPS58167636A (en) * 1982-03-26 1983-10-03 Hitachi Cable Ltd Heat shrinkable cable
JPS5925511A (en) * 1982-07-31 1984-02-09 株式会社フジクラ Method of connecting intermediate of rubber, plastic cable

Also Published As

Publication number Publication date
JPS60193206A (en) 1985-10-01

Similar Documents

Publication Publication Date Title
CN109378136B (en) Manufacturing method of environment-friendly medium-voltage power cable and cable
KR102538198B1 (en) A flexible vulcanized joint between two electrical power cables and a process for manufacturing the joint
JPH0452562B2 (en)
Nordås et al. The influence of strain on water treeing in XLPE power cables
JP3029203B2 (en) Connections and ends of cross-linked polyethylene power cables
JPH0515014B2 (en)
JPH0521284B2 (en)
JPS60193207A (en) Electrically insulating thermally shrinkable tube and connector of power cable using same
JP3171657B2 (en) Cable connection end
JPH0243048Y2 (en)
JPS60202618A (en) Electrically insulated thermally shrinkable tube and connector of power cable using same
JP2903215B2 (en) Cable mold joint method
JPH103823A (en) Direct current power cable insulated by cross-linked polyethylene
JPH03843Y2 (en)
JPH0514681Y2 (en)
JP2639649B2 (en) Method of forming connection part of power cable
JPH02307324A (en) Electric cable connection part insulator
JPH0127398Y2 (en)
JPH0226189Y2 (en)
JPS629613Y2 (en)
JP2840837B2 (en) Cable mold joint method
JP3139719B2 (en) Connection method of cross-linked polyethylene insulated power cable
JPS60195812A (en) Electrically insulating thermally shrinkable tube and connector of power cable using same
JPH0436204Y2 (en)
JPH07236216A (en) Mold joint for crosslinked polyethylene cable with sheath separation and jointing method