JPH03843Y2 - - Google Patents

Info

Publication number
JPH03843Y2
JPH03843Y2 JP1984131720U JP13172084U JPH03843Y2 JP H03843 Y2 JPH03843 Y2 JP H03843Y2 JP 1984131720 U JP1984131720 U JP 1984131720U JP 13172084 U JP13172084 U JP 13172084U JP H03843 Y2 JPH03843 Y2 JP H03843Y2
Authority
JP
Japan
Prior art keywords
layer
rubber
heat
polyolefin
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984131720U
Other languages
Japanese (ja)
Other versions
JPS6146839U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13172084U priority Critical patent/JPS6146839U/en
Publication of JPS6146839U publication Critical patent/JPS6146839U/en
Application granted granted Critical
Publication of JPH03843Y2 publication Critical patent/JPH03843Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

[産業上の利用分野] 本考案は、ケーブル接続部に用いられる熱収縮
性多層絶縁チユーブに関するものである。 [従来の技術とその問題点] 配電用接続部においては、現地作業でのスキル
レスや作業時間の短縮化から、最近では各種特性
をもつ熱収縮チユーブを組み合わせ、積層して絶
縁体を構成することが実施されている。これらの
構造は各種チユーブを一体づつ加熱収縮して組み
立てるため、その挿入スペースを確保する必要が
あり、接続部が不必要に長くなる。また、使用チ
ユーブの数量増加は収縮作業時間を長びかせ、更
にチユーブ界面の増加により界面欠陥の発生がよ
り懸念されることになる。 一方、各種チユーブはポリオレフイン、EPゴ
ム、シリコンゴム等をベース材料としている。高
い絶縁性能を得るにはポリエチレンが好適である
が、ポリエチレンは通電ヒート・サイクルに対し
て材料が硬いため熱膨張、収縮に追従せず、界面
に欠陥が生じ易い。これに対し、ゴム系材料はそ
の弾性により通電ヒート・サイクルに追従する
が、材料自身の絶縁性能が低いためより厚い絶縁
構成が必要になる。 [問題点を解決するための手段] そこで、本考案は、EPゴム系をベースとする
材料およびポリオレフイン系をベースとする材料
の複合材で絶縁チユーブを構成した。 [実施例] 第1図は、本考案に係る熱収縮性多層絶縁チユ
ーブ一実施例を示す。熱収縮性多層絶縁チユーブ
1は、EPゴム系をベースとする材料で作られた
内側層1aと、この内側層1aの上に一体に積層
されかつポリオレフイン系、例えば架橋ポリエチ
レンをベースとする材料で作られた外側層1bと
から成り、全体に対する内側層1aの割合を20〜
40%として成る。もう少し詳しく言えば、内側層
1aはEPゴム系高抵抗層2およびこの上のEPゴ
ム系絶縁層3から成り、外側層1bは内側層1a
上のポリオレフイン系絶縁層3′およびこの上の
ポリオレフイン系半導電層から成る。なお、高抵
抗層2は充填剤とカーボンを配合して体積抵抗率
を108〜1014Ω・cmに調整したものが好適であり、
半導電層4はカーボンを配合して体積抵抗率を
106Ω・cm以下にしたものが好適である。 熱収縮性多層絶縁チユーブ1は、例えば架橋剤
が配合された材料を4層同時押し出し或は2層の
タンデム押し出しにより成形し、これらを同時に
加圧、加熱して架橋し、その後冷却することによ
つて製造される。この場合、架橋時の変形防止と
各層間の一体化を促進するために芯材を用いると
良い。次に、芯材を除去した多層絶縁チユーブを
均一に加熱し、真空法、ガス加圧法、機械的拡大
法等によつて拡管し、急冷して熱収縮性を付与す
る。このようにして製造された熱収縮性多層絶縁
チユーブ1を接続部に適用すると、第2図に示す
通りになる。 第2図において、段剥ぎしたケーブル11の導
体を導体接続管12で接続し、この外周にシール
ド層13を設ける。このシールド層13は体積抵
抗率が107Ω・cm以下のパテ状物、テープ巻、収
縮性チユーブ等で形成される。次に、ケーブル1
1上に挿入しておいた熱収縮性多層絶縁チユーブ
1をシールド層13の外周まで移動させ、加熱収
縮させ、そして遮へい層14によりケーブル11
へ接続させる。加熱方法としてはガスバーナー、
熱風、電気ヒーター等を使用できるが、絶縁層が
厚くなるため遠赤外線による輻射加熱が好適であ
る。 ところで、多層絶縁チユーブはEPゴム系とポ
リオレフイン系の複合材とし、しかもEPゴム系
内側層の全体に対する割合を20〜40%としている
が、これは下記の表に示すコロナ特性に基づく。 15kVのCVケーブルを用い、厚さ約7mmの熱収
縮性多層絶縁チユーブ(第1図)を製造し、第2
図に示したように組み立てた。そして導体絶縁管
に90℃の通電ヒート・サイクル試験を実施し、試
験前後のコロナ・レベルを測定したところ、下記
の表で示される結果が得られた。
[Industrial Application Field] The present invention relates to a heat-shrinkable multilayer insulating tube used for cable connections. [Conventional technology and its problems] For power distribution connections, in order to reduce the need for on-site work and reduce work time, recently heat-shrinkable tubes with various characteristics have been combined and laminated to form insulators. This is being implemented. Since these structures are assembled by heat-shrinking the various tubes one by one, it is necessary to secure insertion space, and the connecting portion becomes unnecessarily long. In addition, an increase in the number of tubes used increases the shrinking operation time, and the increase in the number of tube interfaces increases the risk of interface defects. On the other hand, various tubes are made of polyolefin, EP rubber, silicone rubber, etc. as base materials. Polyethylene is suitable for obtaining high insulation performance, but since polyethylene is a hard material when subjected to electrical heat cycles, it does not follow thermal expansion and contraction, and defects are likely to occur at the interface. Rubber-based materials, on the other hand, follow electrical heat cycles due to their elasticity, but their own poor insulation performance requires thicker insulation structures. [Means for Solving the Problems] Therefore, in the present invention, an insulating tube is constructed from a composite material of an EP rubber-based material and a polyolefin-based material. [Example] FIG. 1 shows an example of a heat-shrinkable multilayer insulation tube according to the present invention. The heat-shrinkable multilayer insulation tube 1 includes an inner layer 1a made of a material based on EP rubber, and a material laminated integrally on the inner layer 1a and made of a material based on polyolefin, for example cross-linked polyethylene. The ratio of the inner layer 1a to the whole is 20~20.
Consisting of 40%. To be more specific, the inner layer 1a consists of an EP rubber-based high-resistance layer 2 and an EP rubber-based insulating layer 3 thereon, and the outer layer 1b consists of the inner layer 1a.
It consists of an upper polyolefin insulating layer 3' and an overlying polyolefin semiconducting layer. The high-resistance layer 2 is preferably one in which a filler and carbon are mixed to have a volume resistivity of 10 8 to 10 14 Ω·cm.
The semiconducting layer 4 contains carbon to increase the volume resistivity.
It is preferable that the resistance be 10 6 Ω·cm or less. The heat-shrinkable multilayer insulation tube 1 is produced by, for example, molding a material containing a crosslinking agent by simultaneous extrusion of four layers or tandem extrusion of two layers, pressurizing and heating them at the same time to crosslink them, and then cooling them. It is manufactured by In this case, it is preferable to use a core material to prevent deformation during crosslinking and promote integration between the layers. Next, the multilayer insulating tube from which the core material has been removed is uniformly heated, expanded by a vacuum method, gas pressurization method, mechanical expansion method, etc., and rapidly cooled to impart heat shrinkability. When the heat-shrinkable multilayer insulating tube 1 manufactured in this manner is applied to a connection part, the result will be as shown in FIG. 2. In FIG. 2, the conductors of the stripped cable 11 are connected by a conductor connecting tube 12, and a shield layer 13 is provided around the outer periphery of the conductor. This shield layer 13 is formed of a putty-like material, a tape wrap, a shrinkable tube, etc. having a volume resistivity of 10 7 Ω·cm or less. Next, cable 1
The heat-shrinkable multilayer insulation tube 1 inserted onto the cable 11 is moved to the outer periphery of the shield layer 13, heat-shrinked, and the cable 11 is
Connect to. The heating method is gas burner,
Although hot air, electric heaters, etc. can be used, radiant heating using far infrared rays is preferable because the insulating layer becomes thicker. By the way, the multilayer insulation tube is made of a composite material of EP rubber and polyolefin, and the ratio of the EP rubber inner layer to the whole is 20 to 40%, which is based on the corona characteristics shown in the table below. A heat-shrinkable multilayer insulation tube (Fig. 1) with a thickness of approximately 7 mm was manufactured using a 15 kV CV cable, and a
Assembled as shown. The conductor insulated tube was then subjected to a 90°C current heat cycle test, and the corona levels before and after the test were measured, and the results shown in the table below were obtained.

【表】【table】

【表】 上の表から明らかなように、ポリオレフイン系
の材料、例えば架橋PEの割合が80%を越えると、
つまりEPゴムの割合が20%を下回ると、ヒー
ト・サイクル前のコロナ・レベルは向上するが、
ヒート・サイクル後の膨張、収縮で界面の密着性
が低下してコロナ・レベルは著しく低下する。他
方、EPゴムの割合が40%を越えると、初期コロ
ナ・レベルは低いが、ヒート・サイクルによる低
下も小さい。これはゴムのクツシヨン作用により
ヒート・サイクルでも密着性が低下しないためで
あるが、ゴム自身の引張り強度はPEより小さく
収縮時の締付力が弱いため、初期のコロナ・レベ
ルは向上しない。従つて、内側にEPゴム層を、
そして外側に架橋ポリエチレン(XLPE)層を配
置した複合チユーブ、それもEPゴム層の割合を
全体の20〜40%にすることにより極めて優れたコ
ロナ特性が得られる。 [考案の効果] 本考案の熱収縮性多層絶縁チユーブによれば、
内側層をEPゴム系ベース材料で、外側層をポリ
オレフイン系ベース材料でそれぞれ作り、しかも
内側層の全体に対する割合を20〜40%に特定した
ことから、EPゴム系ベース材料またはポリオレ
フイン系ベース材料の単独絶縁チユーブよりもコ
ロナ特性が著しく優れ、界面の密着性が良好で、
絶縁性能も優れているのみならず、短時間で加熱
収縮作業ができ、作業スペースが大巾に減少さ
れ、多心ケーブルの組立作業を極めて容易にする
効果がある。
[Table] As is clear from the table above, when the proportion of polyolefin materials, such as crosslinked PE, exceeds 80%,
In other words, when the proportion of EP rubber is less than 20%, the corona level before heat cycle improves, but
The expansion and contraction after the heat cycle reduces the adhesion of the interface and significantly lowers the corona level. On the other hand, when the proportion of EP rubber exceeds 40%, the initial corona level is low, but the decrease due to heat cycling is also small. This is because the adhesion does not deteriorate even during heat cycles due to the cushioning effect of the rubber, but since the tensile strength of the rubber itself is lower than that of PE and the tightening force during contraction is weak, the initial corona level does not improve. Therefore, an EP rubber layer is placed on the inside.
A composite tube with a cross-linked polyethylene (XLPE) layer on the outside, with the EP rubber layer accounting for 20 to 40% of the total, provides extremely excellent corona properties. [Effects of the invention] According to the heat-shrinkable multilayer insulation tube of the invention,
Since the inner layer is made of an EP rubber base material and the outer layer is made of a polyolefin base material, and the ratio of the inner layer to the total is specified to be 20 to 40%, it is possible to use an EP rubber base material or a polyolefin base material. It has significantly better corona properties than a single insulating tube, and has good interface adhesion.
Not only does it have excellent insulation performance, it also allows heating and shrinking work to be performed in a short time, greatly reducing the work space and making it extremely easy to assemble multi-core cables.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る熱収縮性多層絶縁チユー
ブの一実施例を示す横断面図、第2図は第1図に
示した熱収縮性多層絶縁チユーブをケーブル接続
部に適用した場合の横断面図である。 1:熱収縮性多層絶縁チユーブ、1a:内側
層、1b:外側層、2:EPゴム系高抵抗層、
3:EPゴム系絶縁層、3′:ホペリオレフイン系
絶縁層、4:ポリオレフイン系半導電層、11:
段剥ぎしたケーブル、12:導体絶縁管、13:
シールド層、14:遮蔽層。
Fig. 1 is a cross-sectional view showing an embodiment of the heat-shrinkable multilayer insulating tube according to the present invention, and Fig. 2 is a cross-sectional view of the heat-shrinkable multilayer insulating tube shown in Fig. 1 when applied to a cable connection part. It is a front view. 1: heat-shrinkable multilayer insulation tube, 1a: inner layer, 1b: outer layer, 2: EP rubber-based high resistance layer,
3: EP rubber-based insulating layer, 3': Hoperiolefin-based insulating layer, 4: Polyolefin-based semiconducting layer, 11:
Stripped cable, 12: Conductor insulated tube, 13:
Shield layer, 14: Shield layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] EPゴム系絶縁層の内面にEPゴム系高抵抗層を
一体に形成してなる内側層の外周に、ポリオレフ
イン系絶縁層の外面にポリオレフイン系半導電層
を一体に形成してなる外側層を積層一体化させて
なり、前記内側層の全体に対する割合を20〜40%
の範囲で構成したことを特徴とする熱収縮性多層
絶縁チユーブ。
An outer layer consisting of a polyolefin semiconductive layer integrally formed on the outer surface of a polyolefin insulating layer is laminated on the outer periphery of an inner layer consisting of an EP rubber high resistance layer integrally formed on the inner surface of an EP rubber insulating layer. The ratio of the inner layer to the whole is 20 to 40%.
A heat-shrinkable multilayer insulating tube characterized by being constructed in the following range.
JP13172084U 1984-08-30 1984-08-30 heat shrinkable multilayer insulation tube Granted JPS6146839U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13172084U JPS6146839U (en) 1984-08-30 1984-08-30 heat shrinkable multilayer insulation tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13172084U JPS6146839U (en) 1984-08-30 1984-08-30 heat shrinkable multilayer insulation tube

Publications (2)

Publication Number Publication Date
JPS6146839U JPS6146839U (en) 1986-03-28
JPH03843Y2 true JPH03843Y2 (en) 1991-01-11

Family

ID=30690292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13172084U Granted JPS6146839U (en) 1984-08-30 1984-08-30 heat shrinkable multilayer insulation tube

Country Status (1)

Country Link
JP (1) JPS6146839U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925522A (en) * 1982-07-29 1984-02-09 日立電線株式会社 Power cable connector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925522A (en) * 1982-07-29 1984-02-09 日立電線株式会社 Power cable connector

Also Published As

Publication number Publication date
JPS6146839U (en) 1986-03-28

Similar Documents

Publication Publication Date Title
US3777048A (en) Molding process for splicing cable and product formed thereby
EP0022660B1 (en) Method of forming insulated connections and heat shrinkable tube for use therein
EP0079118A1 (en) Electrical cable joint structure and method of manufacture
JPH03843Y2 (en)
JPH03159514A (en) Terminal and joint of power cable
JPS6176005A (en) Method of connecting cable
JPH0436204Y2 (en)
JPS6331302Y2 (en)
JP2789583B2 (en) Forming method of cable connection
JPH0229775Y2 (en)
JPS5832214Y2 (en) Connection part of cross-linked polyethylene insulated cable
JPH0226189Y2 (en)
JPS58192424A (en) Plastic insulated cable connector
JPS63161805A (en) Method of forming power cable joint
JPH0243048Y2 (en)
JPH076676Y2 (en) Cable terminal
JPS6342502Y2 (en)
JPS6082008A (en) Method of forming rubber and plastic insulated cable connection unit
JPH0452562B2 (en)
JPH0546163B2 (en)
JPS6131597B2 (en)
JP2000299920A (en) Jointed part of crosslinked polyethylene-insulated power cable
JPH01105484A (en) Formation of cable junction
JPS5854566B2 (en) Construction method of insulation reinforcement part of plastic insulated power cable
JPS60202617A (en) Electrically insulated thermally shrinkable tube and connector of power cable using same