JPH0452117B2 - - Google Patents

Info

Publication number
JPH0452117B2
JPH0452117B2 JP59041436A JP4143684A JPH0452117B2 JP H0452117 B2 JPH0452117 B2 JP H0452117B2 JP 59041436 A JP59041436 A JP 59041436A JP 4143684 A JP4143684 A JP 4143684A JP H0452117 B2 JPH0452117 B2 JP H0452117B2
Authority
JP
Japan
Prior art keywords
nad
activity
buffer
enzyme
ldh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59041436A
Other languages
Japanese (ja)
Other versions
JPS60186297A (en
Inventor
Takeshi Fujita
Yoshuki Yamamoto
Yoshiki Yamagata
Yasuo Suzuki
Isamu Kokawara
Katsumi Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Yeast Co Ltd
Original Assignee
Oriental Yeast Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Yeast Co Ltd filed Critical Oriental Yeast Co Ltd
Priority to JP4143684A priority Critical patent/JPS60186297A/en
Publication of JPS60186297A publication Critical patent/JPS60186297A/en
Publication of JPH0452117B2 publication Critical patent/JPH0452117B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高活性のニコチンアミドアデニンジヌ
クレオタイド(NAD+という)の製造法に関する
ものである。 更に詳細には、NAD+中に混在するNAD+活性
阻害物質を除去することによつて高活性のNAD+
を製造する方法に関するものである。 一般に、NAD+は生化学研究や臨床検査の分野
で今日最も広く使用されている助酵素であつて、
純度が高く、高活性のものが望まれるものであ
る。 しかしながら、NAD+の標品においてもしばし
ば活性の低下がみられるものである。 活性の低下したNAD+標品について詳細に検討
すると、NAD+活性を阻害する物質が認められる
のである。NAD+活性阻害物質について検検討し
ようとしても、分離精製がきわめて困難なため現
在阻害物質の構造並びに性質については全く不明
な状態である。 しかし、NAD+標品にNAD+活性阻害物質が含
まれると、NAD+標品を使用する酵素活性測定の
精度や酵素反応解析に大きな影響を与えるため
に、NAD+活性阻害物質は必ず除去しなければな
らないのである。NAD+活性阻害物質の物性その
ものが不明であるために、該物質の分離法の手が
かりすらつかめていないのが現状である。 本発明者らは、NAD+標品NAD+活性阻害物質
を除去するために鋭意研究したところ、NAD+
性阻害物質はNAD+依存性酵素に吸着され、
NAD+から分離されることを知つたのである。 本発明は、酵素反応を行うことなく、NAD+
性阻害物質を含有するNAD+とNAD+依存性酵素
の一種もしくは二種以上とを緩衝中で接触させ
て、NAD+に含有されるNAD+活性阻害物質を除
去し、NAD+を回収することを特徴とする高活性
NAD+の製造法である。 本発明において、NAD+依存性酵素としては乳
酸脱水素酵素(LDH)、アルコール脱水酵素
(ADH)、リンゴ酸脱水素酵素(MDH)、ソルビ
トール脱水素酵素(SDH)、グルタミン酸脱水素
酵素(GlDH)などがあげられるが、LDHが最
も好ましい。 本発明においては、NAD+活性阻害物質を含有
するNAD+標品を適当な緩衝液中でLDHなどと
共存させると、阻害物質は急速にLDHなどに吸
着され、NAD+を回収することによつて容易に阻
害物質を全く含有しないNAD+を調製することが
できる。ここで用いる緩衝液の種類としては、通
常酵素反応に使用される緩衝液であればいずれで
もよい。具体的には、リン酸、トリース塩酸、ト
リエタノールアミン−塩酸、ヒスチジン−塩酸、
グリシルグリシン、グツド緩衝液などがある。緩
衝液の濃度は10mMから550mMいずれでもよく、
好ましくは50mMから208mMである。また緩衝
液のPHは5.5から9.0でよく、好ましくは6.0から
7.5である。 また、NAD+依存性酵素としてはいずれの種類
でも、いずれの給源のものでもよい。LDHの給
源としてはうさぎ筋肉、ブタ心臓、ブタ筋肉、牛
心臓、牛筋肉などの動物給源やロイコノストツ
ク、メセンテロイデス、高温菌などの細菌給源あ
るいは植物給源などがあるが、いずれの給源から
のLDHも使用できる。また使用する酵素は溶液
状態あるいは固定化状態いずれの形態でもよい
が、NAD+標品の回収には固定化状態のほうがよ
り好ましい。 酵素の固定化法には共有結合法、イオン結合
法、物理的吸着法、架橋法、包括法などがあり、
一方、固定化担体としては、セルロース、アガロ
ース、デキストランなどの多糖類、多孔性ガラ
ス、ポリアクリルアミド、カラギーナン、ポリウ
レタンなどがあるがいずれの方法および担体でも
よい。 NAD+とNAD+依存性酵素は緩衝液中で接触さ
せられるが、その接触反応温度は2℃から40℃い
ずれでもよく、好ましくは2℃から10℃である。 この処理によつてNAD+活性阻害物質は酵素に
吸着されるので、酵素を分離すれば高活性の
NAD+を得ることができる。 酵素が固定化されている場合は、これをカラム
につめ、NAD+標品を含有する緩衝液を流下し、
途中でNAD+活性阻害物質を酵素に吸着させて高
活性のNAD+を直接得ることができる。 次に本発明の実施例を示す。 実施例 1 100mMリン酸緩衝液(PH6.5)にNAD+粉末約
100mgを溶解し4NKOHでPHを6.0に調整した後、
そこへ約10000単位のLDHを入れ、10℃で10分間
反応させた。 反応液を限外過し、液を集め、LDHの除
去されたNAD+を回収する。回収したNAD+溶液
についての分析結果を表1に示した。 尚、NAD+中の阻害物質の含有程度はつぎの様
にして測定される。 0.1MTris−HCl(PH8.5)0.90ml、80mM
NAD+溶液(PH8.5)約8u/mlウサギ筋肉LDHを
キユーベツトに入れ、25℃5分間インキユベーシ
ヨンを行う。その後40mM L−乳酸を1.2mlを加
え、分光光度計を用い25℃での1分間当りの吸光
度変化を測定する。 阻害物質を含有していないと思われる標準
NAD+でのΔA0/minとNAD+サンプルでの
ΔA/minとの比を求め、阻害物質の含有程度を
相対活性として表わす(ΔA/min/ΔA0/min×100)。
The present invention relates to a method for producing highly active nicotinamide adenine dinucleotide (NAD + ). More specifically, by removing NAD + activity inhibitors mixed in NAD + , highly active NAD +
The present invention relates to a method for manufacturing. In general, NAD + is the coenzyme most widely used today in the fields of biochemical research and clinical testing.
High purity and high activity are desired. However, even in NAD + preparations, a decrease in activity is often observed. A detailed study of NAD + preparations with reduced activity reveals substances that inhibit NAD + activity. Even if we try to examine NAD + activity inhibitors, the structure and properties of the inhibitors are currently completely unknown because separation and purification is extremely difficult. However, if NAD + activity inhibitors are contained in NAD + preparations, they will have a major impact on the accuracy of enzyme activity measurements and enzyme reaction analysis using NAD + preparations, so NAD + activity inhibitors must be removed. It has to be. Since the physical properties of the NAD + activity inhibitor are unknown, at present we have no clue how to isolate the substance. The present inventors conducted intensive research to remove the NAD + standard NAD + activity inhibitor, and found that the NAD + activity inhibitor was adsorbed to NAD + dependent enzymes.
They learned that it can be separated from NAD + . The present invention involves contacting NAD + containing an NAD + activity inhibitor with one or more types of NAD + dependent enzymes in a buffer without performing an enzymatic reaction. High activity characterized by removing activity inhibitors and recovering NAD +
This is a method for producing NAD + . In the present invention, NAD + dependent enzymes include lactate dehydrogenase (LDH), alcohol dehydrase (ADH), malate dehydrogenase (MDH), sorbitol dehydrogenase (SDH), and glutamate dehydrogenase (GlDH). etc., but LDH is the most preferred. In the present invention, when an NAD + preparation containing an NAD + activity inhibitor is allowed to coexist with LDH etc. in an appropriate buffer, the inhibitor is rapidly adsorbed to LDH etc., and NAD + is recovered. Therefore, NAD + can be easily prepared that does not contain any inhibitory substances. The type of buffer used here may be any buffer as long as it is normally used in enzyme reactions. Specifically, phosphoric acid, Tries hydrochloric acid, triethanolamine-hydrochloric acid, histidine-hydrochloric acid,
Examples include glycylglycine and Gutud buffer. The concentration of the buffer solution may be anywhere from 10mM to 550mM,
Preferably it is 50mM to 208mM. In addition, the pH of the buffer solution may be between 5.5 and 9.0, preferably between 6.0 and 9.0.
It is 7.5. Further, the NAD + -dependent enzyme may be of any type and from any source. Sources of LDH include animal sources such as rabbit muscle, pig heart, pig muscle, cow heart, and bovine muscle, bacterial sources such as Leuconostoccus, Mesenteroides, and thermophilic bacteria, and plant sources, but LDH from any source can be used. can. Further, the enzyme used may be in either a solution state or an immobilized state, but the immobilized state is more preferable for recovering the NAD + specimen. Enzyme immobilization methods include covalent bonding, ionic bonding, physical adsorption, crosslinking, and inclusion methods.
On the other hand, immobilization carriers include cellulose, agarose, polysaccharides such as dextran, porous glass, polyacrylamide, carrageenan, polyurethane, etc., and any method and carrier may be used. NAD + and the NAD + -dependent enzyme are brought into contact in a buffer solution, and the contact reaction temperature may be anywhere from 2°C to 40°C, preferably from 2°C to 10°C. Through this treatment, NAD + activity inhibitors are adsorbed to the enzyme, so if the enzyme is separated, highly active substances can be obtained.
You can get NAD + . If the enzyme is immobilized, it is packed in a column, and a buffer containing the NAD + preparation is flowed down.
During the process, highly active NAD + can be directly obtained by adsorbing NAD + activity inhibitors onto the enzyme. Next, examples of the present invention will be shown. Example 1 NAD + powder in 100mM phosphate buffer (PH6.5) approx.
After dissolving 100mg and adjusting the pH to 6.0 with 4NKOH,
Approximately 10,000 units of LDH was added thereto and reacted at 10°C for 10 minutes. The reaction solution is subjected to ultrafiltration, the solution is collected, and NAD + from which LDH has been removed is recovered. Table 1 shows the analysis results for the recovered NAD + solution. Incidentally, the content level of the inhibitory substance in NAD + is measured as follows. 0.1MTris-HCl (PH8.5) 0.90ml, 80mM
Place about 8 u/ml rabbit muscle LDH in NAD + solution (PH8.5) in a cuvette and incubate at 25°C for 5 minutes. Thereafter, 1.2 ml of 40 mM L-lactic acid was added, and the change in absorbance per minute at 25°C was measured using a spectrophotometer. Standards that do not appear to contain inhibitors
The ratio between ΔA 0 /min for NAD + and ΔA /min for NAD + sample is determined, and the degree of inhibitory substance content is expressed as relative activity (ΔA/min/ΔA 0 /min×100).

【表】 実施例 2 ブロムシアン法でセフアロース30mlにLDH300
mg固定したLDHゲル3mlをつめたカラムに
0.1MK−PO4(PH7.0)を流しカラムを平衡化させ
る。ついで100mg/mlNAD+溶液(PH7.0)1mlカ
ラムへ流し、その後同じ緩衝液でNAD+を溶出し
た。 カラムから回収されたNAD+について、実施例
1と同様に分析を行つた。分析結果を表1に示し
た。
[Table] Example 2 Add 300 LDH to 30 ml of Cepharose using Bromsian method
Into a column filled with 3 ml of LDH gel fixed in mg.
Flow 0.1MK-PO 4 (PH7.0) to equilibrate the column. A 100 mg/ml NAD + solution (PH7.0) was then applied to a 1 ml column, and then NAD + was eluted with the same buffer. NAD + recovered from the column was analyzed in the same manner as in Example 1. The analysis results are shown in Table 1.

【表】【table】

Claims (1)

【特許請求の範囲】 1 酵素反応を行うことなく、NAD+活性阻害物
質を含有するNAD+とNAD+依存性酵素の一種も
しくは二種以上とを緩衝液中で接触させて、
NAD+に含有されるNAD+活性阻害物質を除去
し、NAD+を回収することを特徴とする高活性
NAD+の製造法。 2 NAD+依存性酵素が固定化されたものである
ことを特徴とする特許請求の範囲第1項記載の高
活性NAD+の製造法。
[Claims] 1. Bringing NAD + containing an NAD + activity inhibitor into contact with one or more NAD + dependent enzymes in a buffer without performing an enzymatic reaction,
High activity characterized by removing NAD + activity inhibitors contained in NAD + and recovering NAD +
Method of manufacturing NAD + . 2. The method for producing highly active NAD + according to claim 1, wherein the NAD + dependent enzyme is immobilized.
JP4143684A 1984-03-06 1984-03-06 Removal of nad+ activation inhibitor Granted JPS60186297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4143684A JPS60186297A (en) 1984-03-06 1984-03-06 Removal of nad+ activation inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4143684A JPS60186297A (en) 1984-03-06 1984-03-06 Removal of nad+ activation inhibitor

Publications (2)

Publication Number Publication Date
JPS60186297A JPS60186297A (en) 1985-09-21
JPH0452117B2 true JPH0452117B2 (en) 1992-08-20

Family

ID=12608318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4143684A Granted JPS60186297A (en) 1984-03-06 1984-03-06 Removal of nad+ activation inhibitor

Country Status (1)

Country Link
JP (1) JPS60186297A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554894A (en) * 1978-10-13 1980-04-22 Toyobo Co Ltd Novel formaldehyde-dehydrogenase and its preparation
JPS5816873A (en) * 1981-07-23 1983-01-31 Usac Electronics Ind Co Ltd Regulation of stopping position of printing medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554894A (en) * 1978-10-13 1980-04-22 Toyobo Co Ltd Novel formaldehyde-dehydrogenase and its preparation
JPS5816873A (en) * 1981-07-23 1983-01-31 Usac Electronics Ind Co Ltd Regulation of stopping position of printing medium

Also Published As

Publication number Publication date
JPS60186297A (en) 1985-09-21

Similar Documents

Publication Publication Date Title
Darrow et al. [25] Hexokinase from Baker's yeast: ATP+ Hexose→ ADP+ Hexose-6-phosphate+ H+
PT98564B (en) PROCESS FOR THE CONDUCT OF ENZYME CATALYZED PROCESSES WITH CRYSTALS RETICULATED AS A FORM OF FIXING ENZYMES AND DEVICES THAT CONTAIN THEM
Inman et al. Preparation of some immobilized linked enzyme systems and their use in the automated determination of disaccharides
EP0105736B1 (en) Immobilization of proteins on polymeric supports
Orth et al. Carrier‐Bound Biologically Active Substances and Their Applications
Jurtshuk et al. Isolation and purification of the D (–) β-hydroxybutyric dehydrogenase of Azotobacter vinelandii
JPH0440987B2 (en)
JPH0452117B2 (en)
US4087328A (en) Purification and immobilization of sulfhydryl oxidase
US3951744A (en) Purification of dehydrogenases
JP3143050B2 (en) Stabilized glucose 6-phosphate dehydrogenase
JPH0466875B2 (en)
US4194067A (en) Process for the purification of carbohydrate containing enzymes
US4042461A (en) Method for purifying cholesterol esterase
Klibanov et al. Thermal stabilities of membrane-bound, solubilized, and artificially immobilized hydrogenase from Chromatium vinosum
US3810823A (en) Method for isolation of enzymes
KR950014967B1 (en) Preparation method of moranoline derivatives
JPS5974996A (en) Method for measuring humoral component of living body
RU2054481C1 (en) Method of immobilized enzyme preparing
MISTUDA et al. On the enzymatic hydrolysis of FAD in spinach leaves
Moskvitina et al. On preparative separation of brain mitochondrial monoamine oxidases
JPS6120268B2 (en)
Rashid et al. A dual-enzyme electrode for the determination of flavin adenine dinucleotide in the presence of riboflavin and flavin mononucleotide
Horowitz et al. Generalized affinity chromatography: enzyme-sulfonamide conjugates can be isolated by adsorption on immobilized carbonic anhydrase
JP2748416B2 (en) Manufacturing method of bioactive substance-immobilized membrane