JPH0450738B2 - - Google Patents

Info

Publication number
JPH0450738B2
JPH0450738B2 JP63079461A JP7946188A JPH0450738B2 JP H0450738 B2 JPH0450738 B2 JP H0450738B2 JP 63079461 A JP63079461 A JP 63079461A JP 7946188 A JP7946188 A JP 7946188A JP H0450738 B2 JPH0450738 B2 JP H0450738B2
Authority
JP
Japan
Prior art keywords
etching
semiconductor
electrochemical etching
semiconductor substrate
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63079461A
Other languages
Japanese (ja)
Other versions
JPH01251620A (en
Inventor
Tsutomu Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7946188A priority Critical patent/JPH01251620A/en
Publication of JPH01251620A publication Critical patent/JPH01251620A/en
Publication of JPH0450738B2 publication Critical patent/JPH0450738B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法、特に電気化学
エツチングにより形状加工を行う半導体装置の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device in which shape processing is performed by electrochemical etching.

〔従来の技術〕[Conventional technology]

電気化学エツチングにより形状加工されるこの
種の半導体装置として、半導体圧力センサや半導
体加速度センサなどのマイクロメカニカルデバイ
スがある。これらのデバイスは、半導体基板に単
に電気的素子を形成するだけでなく、半導体基板
に薄膜ダイアフラム、カンチレバー(片持梁)な
どの微細な構造体に形状加工する点に大きな特徴
がある。電気化学エツチングは、該微細構造体の
高精度加工法として利用されている。
Examples of this type of semiconductor device whose shape is processed by electrochemical etching include micromechanical devices such as semiconductor pressure sensors and semiconductor acceleration sensors. A major feature of these devices is that they not only simply form electrical elements on a semiconductor substrate, but also process the semiconductor substrate into minute structures such as thin film diaphragms and cantilevers. Electrochemical etching is used as a high-precision processing method for the microstructure.

以下、従来の電気化学エツチング法について説
明する。電気化学エツチング法による半導体装置
の製造には、通常、p型半導体基板の片面にエピ
タキシヤル成長法などによりn型半導体層を積層
したn/pエピウエーハ、又は拡散法によりpn
接合を形成した基板が使用され、該基板はn型半
導体部分が正の電圧にバイアスされた状態でエツ
チング溶液中に浸される。このとき、n型半導体
部分に印加される正の電圧は、エツチング溶液中
において、陽極酸化反応によつて酸化シリコンの
膜が生成する程度の電圧に設定されており、エツ
チングがp型半導体面からn型半導体に達したと
き、pn接合の界面近傍には酸化膜が形成される
ので、エツチングは該pn接合界面で停止する。
The conventional electrochemical etching method will be explained below. In the manufacture of semiconductor devices using the electrochemical etching method, an n/p epitaxial wafer is generally used, in which an n-type semiconductor layer is laminated on one side of a p-type semiconductor substrate by an epitaxial growth method, or a pn-type semiconductor layer is deposited by a diffusion method.
A substrate with a bond formed thereon is used and the substrate is immersed in an etching solution with the n-type semiconductor portion biased to a positive voltage. At this time, the positive voltage applied to the n-type semiconductor portion is set to such a level that a silicon oxide film is generated by the anodic oxidation reaction in the etching solution, and the etching is performed from the p-type semiconductor surface. When the etching reaches the n-type semiconductor, an oxide film is formed near the pn junction interface, so etching stops at the pn junction interface.

以上のように、電気化学エツチングでは何らか
の方法で外部から半導体基板に電圧を供給する必
要が生じる。第2図に従来の電気化学エツチング
に用いられてきた半導体基板の略図を示す。図に
示したように、従来は、半導体ウエーハ11の表
面の周辺部を取り巻くように、円形にn+拡散層
12による高濃度拡散領域を設け、該高濃度拡散
領域を介してn型半導体部分13に外部から所望
の電圧及び電流を供給していた。
As described above, in electrochemical etching, it is necessary to supply voltage to the semiconductor substrate from the outside by some method. FIG. 2 shows a schematic diagram of a semiconductor substrate that has been used in conventional electrochemical etching. As shown in the figure, conventionally, a high concentration diffusion region made of an n + diffusion layer 12 is provided in a circular shape surrounding the peripheral part of the surface of a semiconductor wafer 11, and an n-type semiconductor is formed through the high concentration diffusion region. 13 was supplied with a desired voltage and current from the outside.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、エツチング溶液中でのシリコン酸化
膜の生成は、半導体にかかる電位によつて制御さ
れる。しかしながら、第2図に示した従来の半導
体基板の構造においては、周辺部以外のシリコン
部分の電気抵抗が周辺部に比べてかなり高いた
め、周辺部から中心部に行くにしたがつて、基板
の電圧は外部から供給される電圧とは異なつた電
圧となる。さらに、エツチングの進行とともにシ
リコンの膜厚は減少してゆくため、周辺部以外の
シリコン部分の抵抗値はさらに大きな値に増加
し、外部電源による設定電圧値と各チツプ部分に
おける電圧値の差異はさらに顕著となる。この結
果、中心部分はエツチングがpn接合界面に到達
する以前に酸化膜が形成され始め、本来ならエツ
チングされるべきp型シリコンの部分がエツチン
グされずに残つてしまい、正確な形状加工が行え
ないという深刻な問題点があつた。
Incidentally, the formation of a silicon oxide film in an etching solution is controlled by the potential applied to the semiconductor. However, in the structure of the conventional semiconductor substrate shown in Figure 2, the electrical resistance of the silicon portion other than the periphery is considerably higher than that of the periphery. The voltage is different from the voltage supplied from the outside. Furthermore, as the silicon film thickness decreases as etching progresses, the resistance value of the silicon parts other than the peripheral part increases to an even larger value, and the difference between the voltage value set by the external power supply and the voltage value at each chip part increases. It becomes even more noticeable. As a result, an oxide film begins to form in the center before the etching reaches the p-n junction interface, and the p-type silicon portion that should normally be etched remains unetched, making it impossible to process the exact shape. A serious problem arose.

本発明は上記従来技術の問題点を完全に克服
し、所望とする半導体の形状加工が確実に達成で
きる半導体装置の製造方法を提供することにあ
る。
An object of the present invention is to provide a method for manufacturing a semiconductor device that completely overcomes the problems of the prior art described above and can reliably process a desired semiconductor shape.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明は、半導体基
板上に電気的素子を形成するとともに該半導体基
板を電気化学エツチングを法により所望の形状に
加工する半導体装置の製造方法において、前記電
気的素子が形成される側の基板面に、前記電気化
学エツチングにより形状加工される領域の少なく
とも近傍まで達するような高濃度拡散層を形成
し、該高濃度拡散層を介して電気化学エツチング
のためのバイアス電圧を供給するものである。
In order to achieve the above object, the present invention provides a method for manufacturing a semiconductor device in which an electrical element is formed on a semiconductor substrate and the semiconductor substrate is processed into a desired shape by electrochemical etching. A high concentration diffusion layer is formed on the surface of the substrate on which etching is to be performed, reaching at least the vicinity of the region to be shaped by the electrochemical etching, and a bias voltage for electrochemical etching is applied via the high concentration diffusion layer. It is intended to supply

〔実施例〕〔Example〕

以下、図面に基づいて、本発明に係る半導体装
置の製造方法の一実施例を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a semiconductor device according to the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例において使用される
半導体基板の構造の一例を示す概略図である。図
に示したように、電気的素子が形成されるn型半
導体層側の各半導体チツプ1の周辺に、適当な幅
のスクライブ領域を設け、そこにイオン注入、も
しくは拡散法により高濃度のn+拡散層2すなわ
ちN+配線3を形成した後、表面にSiO2などの保
護層を設ける。このN+配線3は、各半導体チツ
プ1に同じ条件で電圧が加わるようにする機能
と、外部との電気的接続の際に生じる接触抵抗を
低減する機能を持つている。その後、このN+
線3を電源に接続し、エツチングによつて作製し
ようとするn型半導体層からなる構造物をその表
面において陽極酸化が起こり、SiO2が生成する
程度の正の電位にN+配線3を通じて設定する一
方、エツチングによつて切り取られるp型半導体
層部分をSiの異方性エツチングが継続して起こる
ような電圧に設定し、エチレンジアミン系、
KOH系、およびヒドラジン系等のシリコン異方
性エツチングが可能な溶液に浸し、90度付近に加
温してエツチングを行う。
FIG. 1 is a schematic diagram showing an example of the structure of a semiconductor substrate used in an embodiment of the present invention. As shown in the figure, a scribe region of an appropriate width is provided around each semiconductor chip 1 on the n-type semiconductor layer side where electrical elements are formed, and a high concentration of n is applied thereto by ion implantation or diffusion. After forming the + diffusion layer 2, that is, the N + wiring 3, a protective layer such as SiO 2 is provided on the surface. This N + wiring 3 has the function of applying voltage to each semiconductor chip 1 under the same conditions and the function of reducing contact resistance that occurs when electrically connecting with the outside. After that, this N + wiring 3 is connected to a power supply, and the N + wiring 3 is heated to a positive potential to the extent that anodic oxidation occurs on the surface of the structure made of the n-type semiconductor layer to be fabricated by etching, and SiO 2 is generated. While setting the voltage through the + wiring 3, the p-type semiconductor layer portion to be cut out by etching is set at a voltage such that anisotropic etching of Si continues to occur.
Etching is performed by soaking in a KOH-based or hydrazine-based solution capable of silicon anisotropic etching and heating to around 90 degrees.

本実施例によれば、エツチングによつて作製し
ようとするn型半導体層からなる構造体のどの部
分にも印加電圧が均一にかかるよう、ウエーハ全
面にわたりN+配線3が形成されているので、エ
ツチングによる形状加工はすべての部分で均一に
行われることになり、高い加工精度と高歩留りを
得ることが可能となる。
According to this embodiment, the N + wiring 3 is formed over the entire surface of the wafer so that the applied voltage is uniformly applied to any part of the structure made of the n-type semiconductor layer to be fabricated by etching. Shape processing by etching is uniformly performed on all parts, making it possible to obtain high processing accuracy and high yield.

第1図に示した上記実施例の半導体基板におい
てはスクライブ領域以外の周辺にもN+導電体層
が設けられているが、外部電源に対しても接続で
きる領域さえ設けられれば周辺の導電体層はなく
ても差し支えない。その場合、従来技術で外周部
のN+層形成に費やしていた領域に、チツプを配
置することが可能になり、ウエーハあたりの歩留
りはさらに改良される。
In the semiconductor substrate of the above embodiment shown in FIG. 1, an N + conductor layer is also provided in the periphery other than the scribe area, but as long as a region that can be connected to an external power source is provided, the surrounding conductor layer There is no problem even if there is no layer. In that case, it becomes possible to place chips in the area that was used for forming the N + layer on the outer periphery in the conventional technology, and the yield per wafer is further improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、電気化学
エツチングによつて作製しようとする一導電型半
導体層からなる構造体のどの部分にも印加電圧が
均一にかかるよう、半導体基板全面にわたりN+
配線が形成されるので、電気化学エツチングによ
る形状加工はすべての部分で均一に行われること
になり、高い加工精度と高歩留りを得ることがで
きる。
As explained above, according to the present invention, N +
Since wiring is formed, shape processing by electrochemical etching is uniformly performed on all parts, and high processing accuracy and high yield can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例において電気化学エ
ツチングに使用される半導体基板の一例を示す正
面図、第2図は従来の電気化学エツチングに使用
されていた半導体基板の正面図である。 1……半導体チツプ、2……n+拡散層、3…
…N+配線。
FIG. 1 is a front view showing an example of a semiconductor substrate used for electrochemical etching in an embodiment of the present invention, and FIG. 2 is a front view of a semiconductor substrate used for conventional electrochemical etching. 1...semiconductor chip, 2...n + diffusion layer, 3...
…N + wiring.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板上に電気的素子を形成するととも
に該半導体基板を電気化学エツチング法により所
望の形状に加工する半導体装置の製造方法におい
て、前記電気的素子が形成される側の基板面に、
前記電気化学エツチングにより形状加工される領
域の少なくとも近傍まで達するような高濃度拡散
層を形成し、該高濃度拡散層を介して電気化学エ
ツチングのためのバイアス電圧を供給することを
特徴とする半導体装置の製造方法。
1. In a method for manufacturing a semiconductor device in which an electrical element is formed on a semiconductor substrate and the semiconductor substrate is processed into a desired shape by an electrochemical etching method, on the side of the substrate on which the electrical element is formed,
A semiconductor characterized in that a high concentration diffusion layer is formed that reaches at least the vicinity of the region to be shaped by the electrochemical etching, and a bias voltage for electrochemical etching is supplied through the high concentration diffusion layer. Method of manufacturing the device.
JP7946188A 1988-03-30 1988-03-30 Manufacture of semiconductor device Granted JPH01251620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7946188A JPH01251620A (en) 1988-03-30 1988-03-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7946188A JPH01251620A (en) 1988-03-30 1988-03-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPH01251620A JPH01251620A (en) 1989-10-06
JPH0450738B2 true JPH0450738B2 (en) 1992-08-17

Family

ID=13690520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7946188A Granted JPH01251620A (en) 1988-03-30 1988-03-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01251620A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370770A (en) * 1976-12-07 1978-06-23 Nec Corp Production of schottky barrier gate type field effect transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370770A (en) * 1976-12-07 1978-06-23 Nec Corp Production of schottky barrier gate type field effect transistor

Also Published As

Publication number Publication date
JPH01251620A (en) 1989-10-06

Similar Documents

Publication Publication Date Title
EP1119032B1 (en) A method for producing a semiconductor device& x9;& x9;
US3994009A (en) Stress sensor diaphragms over recessed substrates
JPS6197572A (en) Manufacture of semiconductor acceleration sensor
JPS59117271A (en) Semiconductor device having pressure sensing element and manufacture thereof
US5604144A (en) Method for fabricating active devices on a thin membrane structure using porous silicon or porous silicon carbide
US4837177A (en) Method of making bipolar semiconductor device having a conductive recombination layer
US6617191B1 (en) Method for anodizing silicon substrates for surface type acceleration sensors
EP0211174A2 (en) Monolithic temperature compensated voltage-reference diode and method for its manufacture
JPS6135705B2 (en)
JP3143915B2 (en) Semiconductor substrate to be electrolytically etched
JPH0450738B2 (en)
JPH11186566A (en) Manufacture of fine device
JP3182885B2 (en) Method for manufacturing semiconductor device
JPH11103074A (en) Anode formation method of silicon substrate and manufacture of acceleration sensor using the same
JPH0450737B2 (en)
JP3478896B2 (en) Acceleration sensor and method of manufacturing the same
JP3361553B2 (en) Method for manufacturing semiconductor device
JP2897581B2 (en) Manufacturing method of semiconductor strain sensor
JPH06104244A (en) Manufacture of semiconductor device
JPH06260660A (en) Semiconductor distortion sensor
JPH11195793A (en) Semiconductor strain sensor
EP0430681A2 (en) Thick diaphragm pressure transducer
JPH0450736B2 (en)
JP3244127B2 (en) Manufacturing method of pressure sensor
JPH09307119A (en) Manufacture of semiconductor mechanical quantity sensor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 16