JPH0450732A - Photodetector - Google Patents

Photodetector

Info

Publication number
JPH0450732A
JPH0450732A JP15974590A JP15974590A JPH0450732A JP H0450732 A JPH0450732 A JP H0450732A JP 15974590 A JP15974590 A JP 15974590A JP 15974590 A JP15974590 A JP 15974590A JP H0450732 A JPH0450732 A JP H0450732A
Authority
JP
Japan
Prior art keywords
film
field effect
pyroelectric
effect transistor
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15974590A
Other languages
Japanese (ja)
Inventor
Biyuuraa Toomasu
トーマス ビユーラー
Yuji Miyahara
裕二 宮原
Toshiko Fujii
藤井 稔子
Yoshio Watanabe
渡辺 吉雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15974590A priority Critical patent/JPH0450732A/en
Publication of JPH0450732A publication Critical patent/JPH0450732A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To allow detection with high sensitivity by laminating a pyroelectric body film directly on a gate insulating film consisting of an SiO2 film or this film and an Si3N4 film or via a 1st conductor electrode and providing a 2nd conductor electrode thereon. CONSTITUTION:The temp. of the 2nd conductor film 7 rises and the temp. of the pyroelectric body film 6 rises as well when the 2nd conductor electrode 7 formed on the pyroelectric body film 6 is irradiated with IR light. The pyroelectric body film 6 is then changed in polarity charge by a pyroelectric effect. This change is detected by a field effect transistor. A triglysine sulfide or mercury/cadmium/tellurium is used for the pyroelectric body film 6, by which a large change in the polarization charge is obtd. with a small temp. change and, therefore, the detection with the high sensitivity is attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、赤外分光装置における小型で使い易い赤外光
検知器及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a small and easy-to-use infrared photodetector in an infrared spectrometer and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、電界効果トランジスタを利用する赤外光検知器に
関しては、ジャパニーズ・ジャーナル・オブ アプライ
ド・フィジックス20 (1981年)第315頁から
第320頁において論じられている。
Conventionally, infrared photodetectors using field effect transistors have been discussed in Japanese Journal of Applied Physics 20 (1981), pages 315 to 320.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、焦電体膜にチタン酸鉛を用いていたた
めに感度が低いという問題があった。また、焦電体膜が
電界効果トランジスタのゲート絶縁膜上に直接に形成さ
れていたため、赤外光照射による温度変化のため、電界
効果トランジスタの特性が変化するという点について配
慮がされておらず、焦電体から生ずる信号と電界効果ト
ランジスタの温度変化による信号とを区別することが困
難であるという問題があった。
The above-mentioned conventional technology had a problem of low sensitivity because lead titanate was used for the pyroelectric film. Furthermore, since the pyroelectric film was formed directly on the gate insulating film of the field effect transistor, no consideration was given to the fact that the characteristics of the field effect transistor would change due to temperature changes caused by infrared light irradiation. However, there has been a problem in that it is difficult to distinguish between signals generated from the pyroelectric material and signals caused by temperature changes in the field effect transistor.

本発明は高感度の赤外光検知器を提供することを目的と
している。さらに本発明は、電界効果トランジスタの温
度特性に依存せず、焦電体で生ずる信号を高S/N比で
検出する赤外光検知器を提供することを目的とする。
The present invention aims to provide a highly sensitive infrared photodetector. A further object of the present invention is to provide an infrared photodetector that detects signals generated in a pyroelectric material with a high S/N ratio without depending on the temperature characteristics of a field effect transistor.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、焦電体膜にトリグリシンサ
ルファイド(TGS)又は水銀−力トミウムーテルル(
MTC)を用いたものである。
In order to achieve the above objective, the pyroelectric film was coated with triglycine sulfide (TGS) or mercury-tomium tellurium (
MTC).

また、上記他の目的を達成するためには、焦電体膜を電
界効果トランジスタから分離して形成し、導電体膜で焦
電体膜と電界効果トランジスタを接続したものである。
In addition, in order to achieve the other objects mentioned above, the pyroelectric film is formed separately from the field effect transistor, and the pyroelectric film and the field effect transistor are connected by a conductive film.

さらに、焦電体膜と電界効果トランジスタの熱交換を最
小にするために、焦電体膜と電界効果トランジスタの間
のシリコン、ガリウムヒ素などの基板材料を除去したも
のである。
Further, in order to minimize heat exchange between the pyroelectric film and the field effect transistor, the substrate material such as silicon or gallium arsenide between the pyroelectric film and the field effect transistor is removed.

〔作用〕[Effect]

焦電体膜上に形成されている第2の導電体電極に赤外光
が照射されると、第2の導電体膜の温度が上昇し、従っ
て焦電体膜の温度が上昇する。焦電体膜の温度が上昇す
ると焦電効果により焦電体膜で分極電荷が変化する。こ
の分極電荷の変化を電界効果トランジスタで検出すると
いう原理である。焦電体膜にTGS又はMCTを用いる
と小さな温度変化で大きな分極電荷変化を得ることがで
きるので、高感度な赤外光検知器を提供することができ
る。
When the second conductive electrode formed on the pyroelectric film is irradiated with infrared light, the temperature of the second conductive film increases, and therefore the temperature of the pyroelectric film increases. When the temperature of the pyroelectric film increases, the polarization charge changes in the pyroelectric film due to the pyroelectric effect. The principle is that this change in polarization charge is detected using a field effect transistor. If TGS or MCT is used for the pyroelectric film, a large polarization charge change can be obtained with a small temperature change, so a highly sensitive infrared photodetector can be provided.

また、焦電体膜と電界効果トランジスタを分離すると、
電界効果トランジスタには赤外光が照射されないので、
電界効果トランジスタの温度変化を低く抑えることがで
き、温度変化による出力の変化、即ちノイズを低減でき
る。焦電体膜と電界効果トランジスタの間のシリコン、
ガリウムヒ素等の基板を除去すると、焦電体膜と電界効
果トランジスタとの間の熱交換を低減でき、従って高い
S/N比の信号が得られる。
Also, if the pyroelectric film and the field effect transistor are separated,
Since field effect transistors are not irradiated with infrared light,
Temperature changes in the field effect transistor can be suppressed to a low level, and output changes due to temperature changes, that is, noise can be reduced. silicon between the pyroelectric film and the field effect transistor,
Removing the substrate, such as gallium arsenide, can reduce heat exchange between the pyroelectric film and the field effect transistor, thus providing a signal with a high signal-to-noise ratio.

〔実施例〕〔Example〕

以下、本発明を実施例に基づき説明する。 Hereinafter, the present invention will be explained based on examples.

第1図は本発明の第1の実施例断面図である。FIG. 1 is a sectional view of a first embodiment of the present invention.

シリコン基板1にソース2.ドレイン3を設け、シリコ
ン表面に5iOz膜4,5iaN+膜5を形成し、該5
isN4膜上に直接に焦電体膜6を積層したものである
。該焦電体膜上のソースとドレインの間に第2の導電体
膜7を設けた。第2の導電体膜は電界効果トランジスタ
のゲート電極となると同時に、赤外光吸収膜としても機
能する。
Source 2 on silicon substrate 1. A drain 3 is provided, and a 5iOz film 4 and a 5iaN+ film 5 are formed on the silicon surface.
A pyroelectric film 6 is laminated directly on the isN4 film. A second conductive film 7 was provided between the source and drain on the pyroelectric film. The second conductor film serves as the gate electrode of the field effect transistor and also functions as an infrared light absorbing film.

第2図は本発明の第2の実施例断面図である。FIG. 2 is a sectional view of a second embodiment of the present invention.

本発明の第1の実施例において、Si3N4膜5と焦電
体膜6の間に第1の導電体電極8を設けた。
In the first embodiment of the present invention, a first conductive electrode 8 was provided between the Si3N4 film 5 and the pyroelectric film 6.

本実施例では、第1の導電体電極8が電界効果トランジ
スタのゲート電極となり、第2の導電体電極7が赤外吸
収電極として機能する。
In this embodiment, the first conductor electrode 8 functions as a gate electrode of a field effect transistor, and the second conductor electrode 7 functions as an infrared absorbing electrode.

第3図は本発明の第3の実施例断面図である。FIG. 3 is a sectional view of a third embodiment of the present invention.

第2の実施例において、焦電体膜6を電界効果トランジ
スタのゲート部と分離して形成したものである。そして
第1の導電体膜8により焦電体膜と電界効果トランジス
タを接続した。この構造により、電界効果トランジスタ
部を赤外光に露出しなくても赤外光の検出が可能なため
、温度変化による電界効果トランジスタの出力変化を低
減することができ、高S/N比の信号が得られる。
In the second embodiment, the pyroelectric film 6 is formed separately from the gate portion of the field effect transistor. Then, the pyroelectric film and the field effect transistor were connected by the first conductive film 8. With this structure, infrared light can be detected without exposing the field effect transistor section to infrared light, so it is possible to reduce changes in the output of the field effect transistor due to temperature changes, and achieve a high S/N ratio. I get a signal.

第4図は本発明の第4の実施例断面図である。FIG. 4 is a sectional view of a fourth embodiment of the present invention.

第3の実施例において、焦電体膜6が形成されたシリコ
ン基板10とソース2及びドレイン3が形成されたシリ
コン基板11とを溝9により分離し、リコン基板10と
11をSコ02膜4,5iaN4膜5及び第1の導電体
膜8で接続している。この構造では、赤外光照射により
シリコン基板1oが得た熱が、シリコン基板11に伝わ
るのを防ぎ、電界効果トランジスタの出力電圧を安定化
させ、より高いS/N比の信号を得ることができる。
In the third embodiment, a silicon substrate 10 on which a pyroelectric film 6 is formed and a silicon substrate 11 on which a source 2 and a drain 3 are formed are separated by a groove 9, and silicon substrates 10 and 11 are separated by an Sco02 film. They are connected by a 4,5iaN4 film 5 and a first conductor film 8. This structure prevents the heat obtained by the silicon substrate 1o by infrared light irradiation from being transmitted to the silicon substrate 11, stabilizes the output voltage of the field effect transistor, and obtains a signal with a higher S/N ratio. can.

第1の実施例を用いて赤外光に対する応答を測定した。The response to infrared light was measured using the first example.

焦電体膜にはトリグリシンサルファイド(TGS)を用
い、高周波スパッタリングにより3000人の厚さに積
層した。また第2の導電体膜には白金黒を用い10μm
の厚さに形成した。
Triglycine sulfide (TGS) was used for the pyroelectric film, and was laminated to a thickness of 3,000 layers by high-frequency sputtering. In addition, the second conductor film is made of platinum black and has a thickness of 10 μm.
It was formed to a thickness of .

この光検知器を第5図に示す回路に接続し、赤外光を断
続的に本発明の光検知器に照射してその応答を記録した
。第5図の測定回路は、定電流源12により本発明の光
検知器13のソース2とドレイン3の間の電圧を一定に
保ち、定電流源14によりトレイン電流を一定とし、定
電圧源15によりゲート電圧を一定とし、電電体膜で生
ずる電位変化をそのまま出力端子16に出力する回路で
ある。
This photodetector was connected to the circuit shown in FIG. 5, and the photodetector of the present invention was intermittently irradiated with infrared light and its response was recorded. The measurement circuit of FIG. 5 maintains the voltage between the source 2 and drain 3 of the photodetector 13 of the present invention constant by a constant current source 12, keeps the train current constant by a constant current source 14, and maintains the voltage between the source 2 and drain 3 of the photodetector 13 of the present invention constant by a constant current source 14, and constant voltage source 15. This is a circuit that keeps the gate voltage constant and outputs potential changes occurring in the electrically conductive film to the output terminal 16 as they are.

第6図は本発明の光検知器の10μmの波長の赤外光に
対する応答を示したものである。応答曲線のAは本発明
の検知器、Bはチタン酸鉛を焦電体としたときの応答で
ある。また図中、a、bは、赤外光のON、OFFを示
している。図より、本発明の光検知器はチタン酸鉛を用
いるものより高感度であることがわかる。
FIG. 6 shows the response of the photodetector of the present invention to infrared light having a wavelength of 10 μm. In the response curve, A is the response of the detector of the present invention, and B is the response when lead titanate is used as the pyroelectric material. Further, in the figure, a and b indicate ON and OFF of infrared light. The figure shows that the photodetector of the present invention has higher sensitivity than one using lead titanate.

以上に示したように本発明により、高感度で、高S/N
比の赤外光検知器を提供することができる。
As shown above, the present invention provides high sensitivity and high S/N
Infrared light detectors with a high ratio can be provided.

〔発明の効果〕〔Effect of the invention〕

本発明の光検知器はトリグリシンサルファイド(TGS
)又は水銀−カドミウム−テルル(MCT)を焦電体材
料として用いているので、高感度に赤外光を検出できる
The photodetector of the present invention uses triglycine sulfide (TGS).
) or mercury-cadmium-tellurium (MCT) as the pyroelectric material, infrared light can be detected with high sensitivity.

また、焦電体膜と電界効果トランジスタを分離して形成
しているので、温度変化による電界効果トランジスタの
出力変化を小さく抑えることができ、高いS/N比で焦
電効果に基づく信号を検出することができる。
In addition, since the pyroelectric film and the field effect transistor are formed separately, changes in the output of the field effect transistor due to temperature changes can be suppressed to a small level, and signals based on the pyroelectric effect can be detected with a high S/N ratio. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図、第5図はそれぞれ、
本発明の第1.第2.第3.第4.第5の実施例を示す
図、第6図は本発明の効果を示した図である。 1・・・シリコン基板、2・・・ソース、3・・・ドレ
イン、4・・・5iOz膜、5・・・5ial’La膜
、6・・・焦電体膜、7・・・第2の導電体電極、8・
・・第1の導電体電極、9・・・溝、10・・・シリコ
ン基板、11・・・シリコン基板、12・・・定電流源
、13・・・光検知器、14・・・定電流源、15・・
・定電圧源、16・・・出力端子。 第7図 −2:
Figures 1, 2, 3, 4 and 5 are respectively
The first aspect of the present invention. Second. Third. 4th. FIG. 6, which is a diagram showing the fifth embodiment, is a diagram showing the effects of the present invention. DESCRIPTION OF SYMBOLS 1...Silicon substrate, 2...Source, 3...Drain, 4...5iOz film, 5...5ial'La film, 6...Pyroelectric film, 7...Second conductor electrode, 8.
...First conductor electrode, 9...Groove, 10...Silicon substrate, 11...Silicon substrate, 12...Constant current source, 13...Photodetector, 14...Constant Current source, 15...
- Constant voltage source, 16...output terminal. Figure 7-2:

Claims (1)

【特許請求の範囲】 1、絶縁ゲート電界効果トランジスタにおいて、SiO
_2膜又はSiO_2膜とSi_3N_4膜から成るゲ
ート絶縁膜上に、直接に又は第1の導電体電極を介して
焦電体膜を積層し、該焦電体膜上に第2の導電体電極を
設けたことを特徴とする光検知器。 2、該焦電体膜はトリグリシンサルファイド(TGS)
、水銀−カドミウム−テルル(Hg−Cd−Te,MT
C)であることを特徴とする請求項第1項記載の光検知
器。 3、第2の導電体電極はアルミニウム、金、白金、シリ
コン白金黒、金黒などの導電体であることを特徴とする
請求項第1項記載の光検知器。 4、第1の導電体電極はアルミニウム、シリコン、金、
白金等から成ることを特徴とする請求項第1項記載の光
検知器。 5、電界効果トランジスタは、単結晶シリコン、アモル
ファスシリコン、ガリウムヒ素を材料として製作される
ことを特徴とする請求項第1項記載の光検知器。 6、焦電体膜は、第1の導電体膜を設ける場合は必ずし
も電界効果トランジスタのチャネル上に形成する必要は
なく、第1の導電体膜が電界効果トランジスタのゲート
電極と配線導体と兼ね焦電体膜と電界効果トランジスタ
とが第1の導電体膜を介して接続されていることを特徴
とする請求項第1項記載の光検知器。 7、焦電体膜と電界効果トランジスタの間のシリコン又
はアモルファスシリコン又はガリウムヒ素を除去したこ
とを特徴とする請求項第1項又は第6項記載の光検知器
[Claims] 1. In an insulated gate field effect transistor, SiO
A pyroelectric film is laminated directly or via a first conductive electrode on a gate insulating film consisting of a _2 film or a SiO_2 film and a Si_3N_4 film, and a second conductive electrode is placed on the pyroelectric film. A photodetector characterized in that: 2. The pyroelectric film is triglycine sulfide (TGS)
, mercury-cadmium-tellurium (Hg-Cd-Te, MT
The photodetector according to claim 1, characterized in that C). 3. The photodetector according to claim 1, wherein the second conductor electrode is a conductor such as aluminum, gold, platinum, silicon platinum black, or gold black. 4. The first conductive electrode is aluminum, silicon, gold,
The photodetector according to claim 1, characterized in that it is made of platinum or the like. 5. The photodetector according to claim 1, wherein the field effect transistor is made of single crystal silicon, amorphous silicon, or gallium arsenide. 6. The pyroelectric film does not necessarily need to be formed on the channel of the field effect transistor when the first conductor film is provided, and the first conductor film also serves as the gate electrode and wiring conductor of the field effect transistor. 2. The photodetector according to claim 1, wherein the pyroelectric film and the field effect transistor are connected via a first conductive film. 7. The photodetector according to claim 1 or 6, wherein silicon, amorphous silicon, or gallium arsenide between the pyroelectric film and the field effect transistor is removed.
JP15974590A 1990-06-20 1990-06-20 Photodetector Pending JPH0450732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15974590A JPH0450732A (en) 1990-06-20 1990-06-20 Photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15974590A JPH0450732A (en) 1990-06-20 1990-06-20 Photodetector

Publications (1)

Publication Number Publication Date
JPH0450732A true JPH0450732A (en) 1992-02-19

Family

ID=15700347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15974590A Pending JPH0450732A (en) 1990-06-20 1990-06-20 Photodetector

Country Status (1)

Country Link
JP (1) JPH0450732A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108545A (en) * 2013-12-04 2015-06-11 ソニー株式会社 Infrared ray detector and detection method thereof, and electronic apparatus
CN109786498A (en) * 2018-12-10 2019-05-21 华南理工大学 A kind of infrared detector cell and preparation method thereof based on two-dimensional semiconductor material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108545A (en) * 2013-12-04 2015-06-11 ソニー株式会社 Infrared ray detector and detection method thereof, and electronic apparatus
CN109786498A (en) * 2018-12-10 2019-05-21 华南理工大学 A kind of infrared detector cell and preparation method thereof based on two-dimensional semiconductor material
CN109786498B (en) * 2018-12-10 2021-04-06 华南理工大学 Infrared detection element based on two-dimensional semiconductor material and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0018033B1 (en) Radiation detector devices and circuit arrangements including radiation detector devices
JP2600069B2 (en) Light sensor
US5216510A (en) Imaging device
JPS6259469B2 (en)
JPH0450732A (en) Photodetector
JPS637611B2 (en)
US5708269A (en) Thermal detector and method
JPS5818978A (en) Photosensor
JPS60160183A (en) Method of compensating temperature of photoconductive detector
KR100304668B1 (en) A infrared detector using a ferroelectric layer and thin film transistor and a method for fabricating and operating the same
JPS58182280A (en) Photo detector
JPS6021781Y2 (en) infrared detector
JPH0629567A (en) Light-receiving circuit
JPH07263741A (en) Thin-film phototransistor
Engelhardt et al. Ferroelectric field effect of a thin NaNO2-layer on a Si-substrate
JPS62198155A (en) Thin film image sensor
JP3018669B2 (en) Semiconductor sensor
JP2593939B2 (en) Temperature sensor
JPS6269673A (en) Solid-state image pickup device
JPH04284676A (en) Infrared sensor
Aleksandrova et al. Theoretical Design and Fabrication Process for Perovskite LiTaO3-based Infrared Detectors
JPH0216777A (en) Semiconductor optical detector device
Schopf et al. Integrated pyroelectric IR matrix sensor arrays
JPH02206733A (en) Infrared ray sensor
JPS63227055A (en) Method of adjusting output of contact type image sensor