JPH0450663B2 - - Google Patents

Info

Publication number
JPH0450663B2
JPH0450663B2 JP12744484A JP12744484A JPH0450663B2 JP H0450663 B2 JPH0450663 B2 JP H0450663B2 JP 12744484 A JP12744484 A JP 12744484A JP 12744484 A JP12744484 A JP 12744484A JP H0450663 B2 JPH0450663 B2 JP H0450663B2
Authority
JP
Japan
Prior art keywords
developer
master
development
nozzle
pits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12744484A
Other languages
Japanese (ja)
Other versions
JPS618751A (en
Inventor
Masaharu Ishigaki
Satoru Ooishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12744484A priority Critical patent/JPS618751A/en
Publication of JPS618751A publication Critical patent/JPS618751A/en
Publication of JPH0450663B2 publication Critical patent/JPH0450663B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ビデオデイスクなどの光学的記録再
生装置に使用する光デイスクの原盤の製作に用い
られるホトレジスト現像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a photoresist developing device used for manufacturing master discs of optical discs used in optical recording and reproducing devices such as video discs.

〔発明の背景〕[Background of the invention]

光デイスクは、透明な円板状基板に多数の同心
トラツクあるいは多数の準同心トラツクに分割す
ることができる1つのら旋トラツクを有し、これ
らのトラツクは不連続な凹部(ピツト部)あるい
は突起部で構成されている。光デイスクを再生す
る場合には、記録媒体であるデイスクを回転させ
ながらその表面のピツト部あるいは突起部からな
る光学的パターンにレーザ光を照射し、その光学
的パターンによつて変調されたレーザ光を電気信
号に変換してその光学的パターンに対応する情報
を再生するものである。このデイスクを製作する
ために用いられる原盤は、研摩したガラス基板の
表面にポジ型のホトレジスト膜を設け、このホト
レジスト膜を原盤に記録すべき情報に応じて継続
的に照射されるレーザ光により前記トラツクに対
応して不連続的に露光処理され、ホトレジスト膜
の感光した部分は現像液によつて溶解除去され、
その跡にピツトと称される凹部の列が同心または
ら旋状に形成される。光デイスクは、かかるピツ
トを有する原盤から、連続的な音溝を有する従来
のオーデイオデイスクと同様に、複製成形用の型
(スタンパ)を製作し、射出成形等の方法を用い
て大量生産される。
An optical disk has a transparent disc-shaped substrate with one helical track that can be divided into a number of concentric tracks or a number of quasi-concentric tracks, and these tracks are formed by discontinuous pits or protrusions. It consists of When reproducing an optical disk, a laser beam is irradiated onto an optical pattern consisting of pits or protrusions on the surface of the disk while rotating the recording medium, and the laser beam is modulated by the optical pattern. The optical pattern is converted into an electrical signal and the information corresponding to the optical pattern is reproduced. The master disc used to manufacture this disc is a polished glass substrate with a positive photoresist film on the surface, and this photoresist film is continuously irradiated with laser light according to the information to be recorded on the master disc. The photoresist film is exposed discontinuously according to the track, and the exposed parts of the photoresist film are dissolved and removed by a developer.
In its wake, a row of concave portions called pits are formed concentrically or spirally. Optical discs are mass-produced from master discs with such pits by manufacturing molds for reproduction (stampers) and using methods such as injection molding, in the same way as conventional audio discs with continuous sound grooves. .

上記現像工程で形成されるピツトの寸法はデイ
スク再生時の性能に密接に関連する寸法である。
従つて、現像工程は、このビツト寸法(深さおよ
び幅)が所定範囲内の寸法となるように管理され
なければならない。そのため、従来は、ホトレジ
ストの感光した部分が現像液に溶解する化学反応
の継続時間すなわち現像時間を、経験から得られ
る勘により調節する方法が採られていた。しか
し、かかる化学反応の進行速度は露光の度合、現
像液の濃度および温度等の条件に応じて変化し、
現像中に形成されつつあるピツト深さあるいは幅
をモニタすることなく勘によつて現像時間を調節
する従来の方法によつては、現像処理が終わるま
ではピツトの寸法を知ることが出来ない。従つ
て、現像された原盤のピツトの深さあるいは幅に
ばらつきが生じる。かかる不具合いを改善するた
めに、第1図に示すごとく、原盤1を回転させな
がらホトレジスト膜面上に現像液4をノズル3よ
りスプレー状に噴出させることにより現像を進行
させ、ノズルより遠く離れた位置で現像中のピツ
トの寸法をレーザ光の回折現像等を利用した光学
的手法を用いてモニタし、ピツト寸法が所定の値
になつた時現像処理を停止するよう構成されたホ
トレジスト現像方法が提案されている。第1図に
示す例では、原盤のピツトによつて生ずるレーザ
光の1次回折光がピツトの寸法深さおよび幅に対
応して変化し、所定の強度になつた時現像を停止
させる。しかし、現像中の1次回折光を安定に検
出することは容易ではない。即ち、原盤表面には
順次現像液が供給され、しかも、原盤が回転して
いるため、原盤表面の液面が常に変動しており、
第2図に示すごとく、一次回折光は変動により大
きく変化し、本来の一次回折の強度(第2図にお
ける点線)を正確に検出できない。これを改善す
るために、1次回折光信号をカツトオフ周波数の
低いローパスフイルタに通してノイズを除去する
ことが考えられる。しかし、この方法で充分な安
定性を得ることは、一次回折光の変化に対する追
従性を悪くすることにであり、このため一次回折
光をモニタしても最適に判定を行なうことが困難
となる。その結果、現像後の原盤のピツト深さや
幅を充分な精度で管理することが出来ない。
The dimensions of the pits formed in the above development process are closely related to the performance during disk playback.
Therefore, the developing process must be controlled so that the bit dimensions (depth and width) are within a predetermined range. Therefore, in the past, a method has been adopted in which the duration of the chemical reaction in which the exposed portion of the photoresist is dissolved in the developer, that is, the development time, is adjusted based on intuition gained from experience. However, the rate of progress of such chemical reactions varies depending on conditions such as the degree of exposure, developer concentration, and temperature.
With the conventional method of adjusting development time by intuition without monitoring the depth or width of the pits that are being formed during development, the size of the pits cannot be known until the development process is complete. Therefore, variations occur in the depth or width of the pits in the developed master. In order to improve this problem, as shown in FIG. 1, while rotating the master 1, the developer 4 is sprayed onto the photoresist film surface from the nozzle 3 to advance the development, and the developer 4 is sprayed from the nozzle. A photoresist developing method configured to monitor the dimensions of pits during development at a position using an optical method using diffraction development of laser light, etc., and to stop the development process when the pit dimensions reach a predetermined value. is proposed. In the example shown in FIG. 1, the first-order diffracted light of the laser beam generated by the pits of the master changes in accordance with the depth and width of the pits, and when the intensity reaches a predetermined level, development is stopped. However, it is not easy to stably detect the first-order diffracted light during development. In other words, the developer is sequentially supplied to the master surface, and since the master is rotating, the liquid level on the master surface is constantly fluctuating.
As shown in FIG. 2, the first-order diffraction light changes greatly due to fluctuations, and the original intensity of the first-order diffraction (dotted line in FIG. 2) cannot be detected accurately. In order to improve this, it is conceivable to pass the first-order diffraction optical signal through a low-pass filter with a low cutoff frequency to remove noise. However, achieving sufficient stability with this method impairs the ability to follow changes in the first-order diffracted light, making it difficult to make optimal decisions even by monitoring the first-order diffracted light. . As a result, it is not possible to control the pit depth and width of the master after development with sufficient accuracy.

以上のごとく、従来技術では光モニタ方式を採
用しても充分にその結果を得ることが出来ず、現
像後の原盤のピツト寸法がばらつくという欠点を
有していた。
As described above, in the conventional technology, even if an optical monitoring system is employed, sufficient results cannot be obtained, and the pit size of the master disk after development varies.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点を改
善し、現像中のピツト寸法を光学的に安定してモ
ニタできるホトレジスト現像装置を提供すること
にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a photoresist developing apparatus which improves the above-mentioned drawbacks of the prior art and allows optically stable monitoring of pit dimensions during development.

〔発明の概要〕[Summary of the invention]

本発明は、ホトレジスト現像処理中に、回転し
ている原盤表面の現像液面の変動を抑え、モニタ
光が原盤表面を安定して通過できるように、現像
液ノズルから原盤表面への現像液の供給を層流状
にし、原盤表面に接触した現像液が原盤の回転方
向に層流状に流れる領域を設け、この領域にモニ
タ光を照射することを特徴とするホトレジストの
現像装置である。
The present invention is designed to suppress fluctuations in the developer level on the rotating master surface during photoresist development processing, and to allow monitor light to stably pass through the master surface. This photoresist developing device is characterized in that the supply is made into a laminar flow, a region is provided in which the developer in contact with the surface of the master flows in a laminar flow in the direction of rotation of the master, and this region is irradiated with monitor light.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を用いて詳細に説
明する。第3図に、本発明の第1の実施例を示
す。ホトレジスト膜に露光処理された原盤1は水
平に約300rpmで回転しており、この表面に口径
6mmの円形ノズル3から第3図に示すごとく層流
状に現像液4を供給する。この時、現像液は原盤
表面で第3図のごとく広がり、原盤の回転方向に
沿つてしばらく層流状に流れ、この領域では現像
液の液面はなめらかで安定している。従つて、こ
の位置にHe−Neレーザ光55を原盤の裏側より
照射することにより、原盤表面のホトレジスト膜
が現像されてできるピツト列によつて回折された
1次回折光は安定した強度と方向を有し、ホトダ
イオード20により検出される信号は第4図に示
すごとくノイズが少なく安定している。このた
め、1次回折光強度が所定の値になつたかどうか
を正確に判定でき、現像処理の停止を適切に行な
うことが可能となる。即ち、ピツト寸法の微妙な
調整ができ、本発明は原盤のピツト寸法精度の向
上に多大の効果を有する。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 3 shows a first embodiment of the invention. A master disk 1 on which a photoresist film has been exposed is rotating horizontally at about 300 rpm, and a developer 4 is supplied to the surface of the master disk in a laminar flow as shown in FIG. 3 from a circular nozzle 3 having a diameter of 6 mm. At this time, the developer spreads on the master surface as shown in FIG. 3 and flows laminarly for a while along the direction of rotation of the master, and the level of the developer is smooth and stable in this region. Therefore, by irradiating this position with the He-Ne laser beam 55 from the back side of the master, the first-order diffracted light diffracted by the row of pits formed when the photoresist film on the surface of the master is developed has a stable intensity and direction. The signal detected by the photodiode 20 has little noise and is stable, as shown in FIG. Therefore, it is possible to accurately determine whether the intensity of the first-order diffracted light has reached a predetermined value, and it is possible to appropriately stop the development process. That is, the pit dimensions can be finely adjusted, and the present invention has a great effect on improving the precision of the pit dimensions of the master.

上記第1の実施例において、1本の円形ノズル
を用いたが、直径30cm光デイスク等の製作に用い
られる大形の原盤(直径360mm)を現像する場合
には1本のノズルでは現像液を均一に供給するの
が容易でないため、第5図に示すごとく、幅約
0.5mm、長さ100mmのスリツトル出口を有するノズ
ルを用いて現像液を細長く層流状に供給すること
により、原盤のピツト列全域を一様に現像液と接
触させることが出来る。この場合も、第1の実施
例と同様に、ノズルの近傍で現像液が層流状に流
れる位置にレーザ光55を照射して一次回折光を
モニタすれば、上記同様、安定した信号を得るこ
とができ、現像処理の停止を適切に行なうことが
出来る。従つて、この場合にも第1の実施例と同
様の効果を得ることができる。
In the first embodiment described above, one circular nozzle was used, but when developing a large master disk (360 mm in diameter) used for manufacturing optical disks of 30 cm in diameter, one nozzle does not require enough developer solution. Because it is not easy to supply uniformly, as shown in Figure 5, the width is approximately
By using a nozzle with a slit outlet of 0.5 mm and length of 100 mm to supply the developer in a long and narrow laminar flow, the entire pit row of the master can be uniformly brought into contact with the developer. In this case, as in the first embodiment, if the laser beam 55 is irradiated to the position where the developer flows in a laminar flow near the nozzle and the first-order diffracted light is monitored, a stable signal can be obtained as described above. Therefore, the development process can be appropriately stopped. Therefore, in this case as well, the same effects as in the first embodiment can be obtained.

また、第3の実施例として、第6図に示すごと
く、複数のノズルを有する現像液供給アーム7に
より現像液を各のノズル毎に層流状に流し、任意
のノズルの近傍で上記実施例同様にレーザ光を照
射することにより安定した1次回折光の検出が可
能となる。この時、現像液供給アーム7を揺動さ
せることにより、大型原盤においてもピツト列全
域に現像液を一様に供給することが出来、原盤内
における現像速度ばらつきに起因するピツト寸法
ばらつきを大幅に改善することができる。本実施
例は、ノズル形状の違いから第2の実施例に比べ
現像液の吐出量を1/3以下に低減できる長所があ
る。第7図は、本実施例による現像装置の概略の
示すものである。所定の露光処理を完了した原盤
1を現像チヤンバー45内にあるターンテーブル
に設置し、約300rpmで回転させ、8個のノズル
(口径約2mm)を有する現像供給アーム7を原盤
表面に沿つて揺動させながら毎分約1の現像液
を各ノズルから層流状に供給する。次に、He−
Neレーザ光を原盤の裏面より照射し、レーザ光
の照射位置が各ノズル毎につくられる現像液の層
流状の流れのどれか1つに入いるように設定す
る。この時、アームが揺動して現像液の流れが変
化してもレーザ照射位置は常に安定した層流状の
中にあることが必要である。本実施例の8個ノズ
ルアームを用いる場合には少数ノズルに比ベアー
ムの揺動角をかなり小さく(30゜以下)すること
ができるため、アーム揺動による現像液の流れ変
動が小さく、レーザ照射位置に現像液を層流状で
常時流すようにアーム揺動の方向を設定すること
は容易である。この様な状態で、現像が進行し、
原盤表面のホトレジスト膜にピツトが形成されて
くると、1〜2μmピツチで配列しているピツト
列によりレーザ光が回折される。この一次回折光
をホトダイオード20で検出し、入射光55の強
度に対して所定の値に達したら自動的に制御回路
が働いて現像液の供給を停止し、現像液の代わり
に水を同一のノズルから流して現像を停止させ
る。この時も、ノズルからの水は層流状になるよ
うに約1/minの流量とする。更に、アームの
先端に水専用のノズルを設け原盤の内周部の現像
液の付着も完全に除去する。最後に、水を止め
て、原盤を高速回転(約1000rpm)させることに
より水切乾燥を行なう。以上、本実施例によれ
ば、1時回折光を安定に検出することが出来、適
切な現像停止が実行できる。従つて、本発明は原
盤のピツト寸法精度の向上に多大の効果を有する
ことは明白であろう。更に、本発明では、現像液
を層流状で供給するために、従来のスプレー状に
比べ、現像液の飛散が全く発生せず、しかも、原
盤から振り落された現像液が再び原盤表面に舞い
戻らない様に、第7図に示す防着板40で現像チ
ヤンバーを仕切ることにより、現像処理工程にお
ける原盤表面の異物付着を完全に防止することが
出来る。従つて、本発明は原盤と欠陥を著しく減
少させ、光デイスクのドロツプアウト低減にも多
大の効果を有する。
In addition, as a third embodiment, as shown in FIG. 6, the developer supply arm 7 having a plurality of nozzles allows the developer to flow in a laminar flow to each nozzle, and in the vicinity of any nozzle, Similarly, by irradiating with laser light, stable detection of first-order diffracted light becomes possible. At this time, by swinging the developer supply arm 7, it is possible to uniformly supply the developer to the entire pit row even on a large master, and this greatly reduces the variation in pit dimensions caused by variations in development speed within the master. It can be improved. This embodiment has the advantage that the amount of developer discharged can be reduced to 1/3 or less compared to the second embodiment due to the difference in nozzle shape. FIG. 7 schematically shows the developing device according to this embodiment. The master 1, which has undergone the prescribed exposure process, is placed on the turntable in the development chamber 45, rotated at approximately 300 rpm, and the developer supply arm 7, which has eight nozzles (diameter approximately 2 mm), is swung along the surface of the master. While moving, approximately 1 developer per minute is supplied from each nozzle in a laminar flow. Next, He−
Ne laser light is irradiated from the back side of the master disc, and the laser light irradiation position is set to fall into one of the laminar flows of developer created for each nozzle. At this time, even if the arm swings and the flow of the developer changes, the laser irradiation position must always remain in a stable laminar flow state. When using the 8-nozzle arm of this example, the swing angle of the arm can be made considerably smaller (30 degrees or less) compared to a small number of nozzles, so fluctuations in the flow of developer due to arm swing are small, and laser irradiation is reduced. It is easy to set the direction of the arm swing so that the developer always flows in a laminar flow at the position. In this state, development progresses,
When pits are formed on the photoresist film on the surface of the master, the laser beam is diffracted by the rows of pits arranged at a pitch of 1 to 2 μm. This first-order diffracted light is detected by the photodiode 20, and when it reaches a predetermined value with respect to the intensity of the incident light 55, the control circuit automatically operates to stop the supply of the developer and replace the developer with water. Flow it through the nozzle to stop development. At this time as well, the flow rate of water from the nozzle is set at about 1/min so that the water flows in a laminar flow. Furthermore, a nozzle exclusively for water is installed at the tip of the arm to completely remove any developer attached to the inner periphery of the master. Finally, the water is turned off and the master is rotated at high speed (approximately 1000 rpm) to remove water and dry it. As described above, according to this embodiment, it is possible to stably detect the 1st time diffracted light, and to appropriately stop development. Therefore, it is clear that the present invention has a great effect on improving the dimensional accuracy of the pits of the master. Furthermore, in the present invention, since the developer is supplied in a laminar flow, there is no scattering of the developer compared to the conventional spray method, and furthermore, the developer that has been shaken off from the master is returned to the surface of the master. By partitioning the developing chamber with an adhesion prevention plate 40 shown in FIG. 7 to prevent foreign matter from coming back, it is possible to completely prevent foreign matter from adhering to the master surface during the development process. Therefore, the present invention significantly reduces the number of defects on master discs, and has a great effect on reducing dropouts of optical discs.

以上の実施例では、レーザ回折光をモニタする
場合を例にとり説明したが、レーザ光の代わりに
タングステンランプ、キセノンランプ等の光を用
いた光学モニタを用いる場合でも本発明は同様の
効果を有する。
In the above embodiments, the case where laser diffraction light is monitored is explained as an example, but the present invention has similar effects even when an optical monitor using light from a tungsten lamp, xenon lamp, etc. is used instead of laser light. .

また、本発明は、光デイスクを例にとり説明し
たが、半導体等で用いられるホトレジスト膜の現
像においても光学モニタを用いたピン現像法を用
いる場合には本発明を適用でき、上記した効果を
得ることが出来る。
Furthermore, although the present invention has been explained using an optical disk as an example, the present invention can also be applied when a pin development method using an optical monitor is used in the development of photoresist films used in semiconductors, etc., and the above-mentioned effects can be obtained. I can do it.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光デイスク等の原盤のピツト
寸法を現像処理中に光学モニタにより安定に調節
できるので、原盤のピツト寸法精度向上に多大の
効果がある。
According to the present invention, the pit size of a master disc such as an optical disk can be stably adjusted using an optical monitor during the development process, which has a great effect on improving the accuracy of the pit size of the master disc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の現像方法を示す模式図、第2図
は従来の現像方法で処理した現像時間と1次回折
光強度の関係線図、第3図は本発明の第1の実施
例を示す模式図、第4図は本発明における現像時
間と1次回折光強度の関係線図、第5図は本発明
の第2の実施例を示す模式図、第6図は本発明の
第3の実施例を示す模式図、第7図は本発明の現
像装置を示す概略図である。 1……原盤、2……ターンテーブル、3……現
像液ノズル、4……現像液、5……レーザ、7…
…アーム、20……ホトタイオード、40……防
着板、45……チヤンバー。
Fig. 1 is a schematic diagram showing a conventional developing method, Fig. 2 is a relationship diagram between the development time and the intensity of the first-order diffracted light processed by the conventional developing method, and Fig. 3 shows the first embodiment of the present invention. A schematic diagram, FIG. 4 is a relationship diagram between the development time and the intensity of the first-order diffracted light in the present invention, FIG. 5 is a schematic diagram showing the second embodiment of the present invention, and FIG. 6 is a diagram showing the third embodiment of the present invention. A schematic diagram showing an example, and FIG. 7 is a schematic diagram showing a developing device of the present invention. 1...Master disc, 2...Turntable, 3...Developer nozzle, 4...Developer, 5...Laser, 7...
... Arm, 20... Photo diode, 40... Anti-adhesion plate, 45... Chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 表面に露光処理されたホトレジスト膜を有す
る基板を回転させながら、その表面に現像液を接
触させてホトレジスト膜を現像処理し、その現像
の進行状態を光学的手法でモニタし、そのモニタ
値により現像処理を停止させる現像装置におい
て、現像液ノズルから基板表面までの現像液の流
れを層流状とし、基板表面に接触した現像液を基
板の回転方向に層流状に流れる領域を設け、この
領域に上記モニタ光の照射位置を設定したことを
特徴とするホトレジストの現像装置。
1. While rotating a substrate having a photoresist film that has been exposed to light on its surface, the photoresist film is developed by bringing a developer into contact with the surface, and the progress of the development is monitored by an optical method, and based on the monitored value. In the developing device that stops the development process, the flow of the developer from the developer nozzle to the substrate surface is made into a laminar flow, and an area is provided in which the developer in contact with the substrate surface flows in a laminar flow in the direction of rotation of the substrate. A photoresist developing device characterized in that the irradiation position of the monitor light is set in a region.
JP12744484A 1984-06-22 1984-06-22 Developing device of photoresist Granted JPS618751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12744484A JPS618751A (en) 1984-06-22 1984-06-22 Developing device of photoresist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12744484A JPS618751A (en) 1984-06-22 1984-06-22 Developing device of photoresist

Publications (2)

Publication Number Publication Date
JPS618751A JPS618751A (en) 1986-01-16
JPH0450663B2 true JPH0450663B2 (en) 1992-08-14

Family

ID=14960079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12744484A Granted JPS618751A (en) 1984-06-22 1984-06-22 Developing device of photoresist

Country Status (1)

Country Link
JP (1) JPS618751A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526693Y2 (en) * 1989-11-15 1997-02-19 株式会社東洋シート Seat frame structure of vehicle seat
JP2010123230A (en) * 2008-11-21 2010-06-03 Sony Disc & Digital Solutions Inc Developing method and developing apparatus

Also Published As

Publication number Publication date
JPS618751A (en) 1986-01-16

Similar Documents

Publication Publication Date Title
US4501480A (en) System for developing a photo-resist material used as a recording medium
US5943313A (en) Information storage medium and information reproducing apparatus having a wobbling pre-groove
KR100448285B1 (en) Apparatus for detecting wobble of a holographic digital storage system
JPH01149243A (en) Production of optical memory element and photomask for producing optical memory element
JPH0450663B2 (en)
US6313453B1 (en) Glassmastering photoresist read after write method and system
US6320839B1 (en) Optical information recording medium, optical information recording method and optical information recording apparatus
US6348294B1 (en) Glassmastering photoresist read after write method and system
AU675125B2 (en) Method and apparatus for process control
JPS6161341B2 (en)
JP2776453B2 (en) Photoresist developing apparatus and developing method
JPS5814343A (en) Method and device for photoresist wet development
JP3672142B2 (en) Development device calibration method
JPS6289253A (en) Optical information recording medium and its production
JPH08329534A (en) Production of master disk for optical disk
JPH0628719A (en) Development processor
JP2524326B2 (en) Optical disc master manufacturing method
JPH0243258B2 (en)
JP2517470B2 (en) Method and device for manufacturing optical disc master
JPS58169336A (en) Optical disc device
JPH04302833A (en) Optical disk and production thereof
JPS62173653A (en) Optical information recording disk and its manufacture
JP2004310960A (en) Device for manufacturing master disk of optical disk
JP2000021017A (en) Optical recording medium and production of optical recording medium as well as substrate for optical recording medium and production of substrate for optical recording medium
JPH06180866A (en) Production of optical master disk