JPH0450280B2 - - Google Patents

Info

Publication number
JPH0450280B2
JPH0450280B2 JP58124008A JP12400883A JPH0450280B2 JP H0450280 B2 JPH0450280 B2 JP H0450280B2 JP 58124008 A JP58124008 A JP 58124008A JP 12400883 A JP12400883 A JP 12400883A JP H0450280 B2 JPH0450280 B2 JP H0450280B2
Authority
JP
Japan
Prior art keywords
crystal
pulled
compound
gaas
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58124008A
Other languages
Japanese (ja)
Other versions
JPS6016899A (en
Inventor
Yoshinari Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58124008A priority Critical patent/JPS6016899A/en
Publication of JPS6016899A publication Critical patent/JPS6016899A/en
Publication of JPH0450280B2 publication Critical patent/JPH0450280B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 この発明は−V化合物結晶及びその引き上げ
の方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a -V compound crystal and a method for pulling the same.

−V化合物による集積回路(以下ICと略称
する。)が高速動作用ICとして期待を集めてい
る。しかし素材として注目されているGaAsや
InP等の−V化合物結晶の品位は十分ではなく
104〜106cm-2の高密度がエツチ・ピツトが観察さ
れるのが普通である。このエツチ・ピツトとして
容易に観察できる転位はIC等を製作する場合に
要求される素子間の特性変動の原因となるばかり
かICの信頼性を左右する重大原因になると考え
られる。
Integrated circuits (hereinafter abbreviated as ICs) based on -V compounds are attracting attention as ICs for high-speed operation. However, GaAs, which is attracting attention as a material,
-V compound crystals such as InP are not of sufficient quality.
High densities of 10 4 to 10 6 cm -2 are commonly observed. These dislocations, which can be easily observed as etch pits, are considered to be a major cause of not only the variation in characteristics between elements required when manufacturing ICs, but also the reliability of the IC.

GaAsIC用の基板としては特にアンドープの引
き上げ結晶(以後LEC結晶と略称する)が最近
注目されている。この結晶中の転位密度の減少に
は各所で種々の対策が講じられているが改善の見
通しはなかなか立たないのが現状である。
Undoped pulled crystals (hereinafter abbreviated as LEC crystals) have recently attracted particular attention as substrates for GaAs ICs. Various measures have been taken in various places to reduce the dislocation density in the crystal, but at present there is no prospect of improvement.

さてLEC結晶への転位導入は引き上がつた結
晶部が急速に冷却され表面に於いて誘起される熱
歪のためになされることが主な原因である。Siで
はアフターヒーテイング法と呼ぶ引き上がつた結
晶部位を加熱するヒータを設け、引き上がつた結
晶部位での温度勾配を緩和することにより転位が
格段に減少することがわかつている。しかし−
V化合物は熱分解が激しく、アフターヒーテイン
ゲの方法を安易に用いることはできない。
The main reason for the introduction of dislocations into LEC crystals is that the lifted crystal part is rapidly cooled and thermal strain is induced on the surface. In Si, it has been found that dislocations can be significantly reduced by providing a heater to heat the pulled-up crystal part, which is called an after-heating method, and relaxing the temperature gradient at the pulled-up crystal part. But-
The V compound undergoes severe thermal decomposition, and the after-heating method cannot be used easily.

本発明は結晶の転位を大幅に減少することので
きる結晶の構造ならびに結晶引き上げの方法を提
供するものである。
The present invention provides a crystal structure and crystal pulling method that can significantly reduce crystal dislocations.

本発明の骨子の第1は溶液より成長させた−
V化合物結晶表面にただちにより強い結晶エネル
ギをもつた−V化合物結晶を付着することを特
徴とする結晶方法であり、このためには該結晶を
構成する族あるいはV族に較べ軽元素であると
ころの族あるいはV族あるいは両者を含んだ反
応性ガスを引き上げた結晶露出雰囲気に導入して
おけばよい。第2は、たとえば第1の方法を用い
ることによつて成長結晶に較べてより強い結合エ
ネルギーをもつた−V化合物で表面がおおわれ
たことを特徴とする−V化合物引き上げ結晶の
構造にある。
The first gist of the present invention is grown from a solution.
This is a crystallization method characterized by immediately attaching -V compound crystals with stronger crystal energy to the surface of V compound crystals. It is sufficient to introduce a reactive gas containing a group of 2 or a group of V or both into the exposed atmosphere of the exposed crystal. The second is the structure of a -V compound pulled crystal whose surface is covered with a -V compound having stronger binding energy than that of the grown crystal by using the first method, for example.

さて本発明の−V化合物結晶の引き上げ方法
ならびに−V化合物引き上げ結晶の構造につい
て実施例に基づき詳細に説明する。実施例として
はGaAsアンドープ結晶を引き上げ(LEC法)法
で製作する場合について示す。
Now, the method for pulling a -V compound crystal and the structure of the pulled -V compound crystal of the present invention will be explained in detail based on Examples. As an example, a case where an undoped GaAs crystal is manufactured by a pulling (LEC method) method will be described.

第1図はGaAsを引き上げる場合の概念図であ
る。窒化ボロンルツボ11内にGaとAsをほぼ当
モル量入れこれにB2O312をかぶせ融点1238℃
程度に加熱しGaとAsの融液13を作り、ここに
種結晶14を接触、種結晶14あるいはルツボ1
1を回転(または両者を回転)させながら種結晶
14を溶液13から離す如く引き上げるとGaAs
結晶15が溶液13から引き上がつてくる。引き
上がつたGaAs結晶15はB2O3溶液12から顔を
出すと同時に急激に冷却される。この時GaAs結
晶15は急激な熱歪をうけ表面より転位が導入さ
れる。しかるに本発明の実施例では引き上がつて
きたGaAs結晶15がB2O3溶液12から顔を出す
部屋16中にトリメチル・アルミニウム(以後
TMAと略称する。)あるいはトリエチル・アル
ミニウム(以後TEAと略称する。)を導入する方
法をとつた。第1図で17がTMAやTEAを導入
するステンレス・パイプを示す。こうすることに
より引き上がつたGaAs結晶15の表面はAlと
Gaの置換反応によりただちにAlxGa1-xAs層18
が形成される。部屋16にTMAあるいはTEAの
濃度として0.01%(但し、部屋16の圧力がアル
ゴンあるいは窒素ガスにより5〜30気圧にしてあ
る。)程度加えた場合AlxGa1-xAs層18のxは
0.3〜0.5程度となつた。もちろんTMAあるいは
TEAの濃度を上げればxは大きくなる。引き上
がつたGaAs結晶15の表面AlGaAs層18の厚
みは5〜100μmになり、引き上がつたGaAs結晶
15の太さが約5cm径であるのでわずかな厚みで
ある。しかし、引き上がつたGaAs結晶15をウ
エーハ状に切り出し、エツチ・ピツト密度を数え
てみると結晶全域に渡り103cm-2台以下となり転
位密度は1桁以上減少していた。これはAlGaAs
層18の結合エネルギーの方がGaAs結晶15に
較べ大きく、このため熱分解が生じにくく、かつ
結合エネルギーが大きいために急激な熱歪が生じ
ても結晶が強く表面からの転位導入が阻止される
ためであると考えられる。即ちTMAあるいは
TMAガスを含んだ部屋に引き上げることにより
B2O3溶液12から顔を出したGaAs結晶15の表
面はただちに結合エネルギーが大きく、機械的強
度も強いAlGaAs層18で被われるため熱歪にと
もなう転位導入が軽減され103cm-2以下の低転位
GaAs引き上げ結晶がえられることを示した。
FIG. 1 is a conceptual diagram when pulling up GaAs. Ga and As are placed in approximately equimolar amounts in a boron nitride crucible 11, and then covered with B 2 O 3 12, the melting point is 1238°C.
A melt 13 of Ga and As is made by heating to a certain degree, and a seed crystal 14 is brought into contact with the melt 13, and the seed crystal 14 or the crucible 1 is
When the seed crystal 14 is pulled up away from the solution 13 while rotating 1 (or rotating both), GaAs
Crystals 15 are pulled up from the solution 13. The lifted GaAs crystal 15 emerges from the B 2 O 3 solution 12 and is rapidly cooled. At this time, the GaAs crystal 15 undergoes rapid thermal strain and dislocations are introduced from the surface. However, in the embodiment of the present invention , trimethyl aluminum (hereinafter referred to as
It is abbreviated as TMA. ) or triethyl aluminum (hereinafter abbreviated as TEA). In Figure 1, 17 indicates the stainless steel pipe into which TMA and TEA are introduced. By doing this, the surface of the GaAs crystal 15 that has been pulled up becomes Al and
Due to Ga substitution reaction, Al x Ga 1-x As layer 18 is formed immediately.
is formed. When a concentration of TMA or TEA of about 0.01% is added to the chamber 16 (however, the pressure in the chamber 16 is set to 5 to 30 atmospheres with argon or nitrogen gas), x of the Al x Ga 1-x As layer 18 is
It was around 0.3 to 0.5. Of course TMA or
As the concentration of TEA increases, x increases. The thickness of the AlGaAs layer 18 on the surface of the pulled GaAs crystal 15 is 5 to 100 μm, which is a small thickness since the pulled GaAs crystal 15 has a diameter of about 5 cm. However, when the pulled GaAs crystal 15 was cut into a wafer shape and the etching pit density was counted, it was found to be less than 10 3 cm -2 over the entire crystal, and the dislocation density was reduced by more than an order of magnitude. This is AlGaAs
The bonding energy of the layer 18 is greater than that of the GaAs crystal 15, so thermal decomposition is less likely to occur, and since the bonding energy is large, even if sudden thermal strain occurs, the crystal is strong and prevents the introduction of dislocations from the surface. This is thought to be due to the i.e. TMA or
By being lifted into a room containing TMA gas.
The surface of the GaAs crystal 15 exposed from the B 2 O 3 solution 12 is immediately covered with the AlGaAs layer 18 which has high bonding energy and strong mechanical strength, reducing the introduction of dislocations due to thermal strain and reducing the temperature to 10 3 cm -2 or less. low dislocation of
It was shown that GaAs pulled crystals can be obtained.

以上の説明では表面層18としてAlGaAsとな
るようにしたがもちろんAsの圧力を部屋16に
加えた場合にはむしろAlGaAs18が部屋16内
のTEAあるいはTMAとAsの気相よりGaAs結晶
15の表面に堆積し、厚くなる。同様にTEMや
TMAに代わつてNH3を部屋16内に供給するな
らば表面にはGaN層が生じこの場合にも転位密
度を軽減する効果がある。ただしN2ガス等の安
定なガスでは効果はない。さらに本発明はGaAs
引き上げに限ることがないのは明らかでありInP
を引き上げる場合にNH3を部屋16内に導入し
表面層18にInN層が生じ転位密度軽減が成され
るもので−V化合物結晶全般に適用することが
できるのは明らかである。
In the above explanation, the surface layer 18 is made of AlGaAs, but of course, when the pressure of As is applied to the chamber 16, the AlGaAs 18 is formed on the surface of the GaAs crystal 15 rather than the gas phase of TEA or TMA and As in the chamber 16. It accumulates and becomes thicker. Similarly, TEM and
If NH 3 is supplied into the chamber 16 instead of TMA, a GaN layer is formed on the surface, which also has the effect of reducing the dislocation density. However, stable gases such as N 2 gas have no effect. Furthermore, the present invention
It is clear that the increase is not limited to InP.
When pulling up NH 3 , NH 3 is introduced into the chamber 16, an InN layer is formed on the surface layer 18, and the dislocation density is reduced, and it is clear that this method can be applied to all -V compound crystals.

さらに以上の例では−V化合物半導体を構成
する族あるいはV族を入れかえた結晶層で引き
上げ結晶の表面をおおう方法をしめしたがGaAs
結晶等の引き上げに対してボラゾールを部屋16
に導入し表面層としてBN層を形成することも転
位軽減に効果がある。以上の説明から明らかなよ
うに引き上げられた結晶表面層としては引き上げ
結晶とかならずしも格子整合がとれたものではあ
る必要はない。また前記実施例ではLEC法につ
いて説明したが、他の方法、例えばHB法等でも
効果がある。
Furthermore, in the above example, a method was shown in which the surface of the pulled crystal was covered with a crystal layer in which the group or V group constituting the -V compound semiconductor was replaced.
Use borazole in room 16 for pulling up crystals, etc.
Forming a BN layer as a surface layer is also effective in reducing dislocations. As is clear from the above explanation, the pulled crystal surface layer does not necessarily need to be a pulled crystal or one with lattice matching. Furthermore, although the LEC method has been described in the above embodiments, other methods such as the HB method are also effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は−V化合物結晶引き上げ時の概念図
を示すものである。図で 11は窒化ボロンルツボ、12はB2O3、13
はGaとAsからなる融液、14は種結晶、15は
引きあがつたGaAs結晶、16は引きあがつた
GaAs結晶が露出される部屋、17は本発明を達
成するための族あるいはV族あるいは両者を含
んだガスを供給するステンレスパイプ、18は
AlGaAs結晶層。
FIG. 1 shows a conceptual diagram when pulling a -V compound crystal. In the figure, 11 is a boron nitride crucible, 12 is B 2 O 3 , 13
is a melt consisting of Ga and As, 14 is a seed crystal, 15 is a pulled GaAs crystal, and 16 is a pulled GaAs crystal.
A room in which the GaAs crystal is exposed, 17 a stainless steel pipe for supplying a gas containing group or V group or both for achieving the present invention, 18 a
AlGaAs crystal layer.

Claims (1)

【特許請求の範囲】 1 −V化合物引き上げ結晶において、露出表
面が該結晶に較べて結合エネルギーの大きな−
V化合物でおおわれていることを特徴とする−
V化合物引き上げ結晶。 2 結晶を構成する元素を少なくも含んだ溶液に
種結晶を接触させ、該種結晶に該結晶を析出させ
る結晶成長法において、溶液相から引き上げられ
た結晶露出雰囲気に、該結晶との間で該結晶に比
べて結合エネルギーの大きい−V化合物を形成
するような、元素あるいはV元素のうち少なく
とも一方を含む反応性ガスを導入したことを特徴
とする−V化合物結晶の引き上げ方法。
[Claims] 1. In a pulled crystal of a -V compound, the exposed surface has a larger binding energy than that of the crystal.
It is characterized by being covered with a V compound.
V compound pulled crystal. 2. In a crystal growth method in which a seed crystal is brought into contact with a solution containing at least an element constituting the crystal, and the crystal is precipitated on the seed crystal, the crystal is exposed to an atmosphere that is pulled up from the solution phase, and between the crystal and the crystal. 1. A method for pulling a -V compound crystal, which comprises introducing a reactive gas containing at least one of an element or V element to form a -V compound having a larger binding energy than the crystal.
JP58124008A 1983-07-07 1983-07-07 Ii-v compound crystal and its pulling method Granted JPS6016899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58124008A JPS6016899A (en) 1983-07-07 1983-07-07 Ii-v compound crystal and its pulling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58124008A JPS6016899A (en) 1983-07-07 1983-07-07 Ii-v compound crystal and its pulling method

Publications (2)

Publication Number Publication Date
JPS6016899A JPS6016899A (en) 1985-01-28
JPH0450280B2 true JPH0450280B2 (en) 1992-08-13

Family

ID=14874741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58124008A Granted JPS6016899A (en) 1983-07-07 1983-07-07 Ii-v compound crystal and its pulling method

Country Status (1)

Country Link
JP (1) JPS6016899A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2822465B2 (en) * 1989-07-20 1998-11-11 住友化学工業株式会社 Method for producing fiber reinforced thermoplastic resin product
JP7106108B2 (en) * 2018-07-20 2022-07-26 国立大学法人東北大学 Method for producing aluminum nitride crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938869A (en) * 1972-08-18 1974-04-11
JPS5260069A (en) * 1975-11-12 1977-05-18 Nec Corp Crystal growth

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938869A (en) * 1972-08-18 1974-04-11
JPS5260069A (en) * 1975-11-12 1977-05-18 Nec Corp Crystal growth

Also Published As

Publication number Publication date
JPS6016899A (en) 1985-01-28

Similar Documents

Publication Publication Date Title
JP3373853B2 (en) Multilayer crystal structure and method of manufacturing the same
US6194742B1 (en) Strain engineered and impurity controlled III-V nitride semiconductor films and optoelectronic devices
US6440823B1 (en) Low defect density (Ga, Al, In)N and HVPE process for making same
JP3239622B2 (en) Method of forming semiconductor thin film
KR20060079249A (en) Method of producing self-supporting substrates comprising iii-nitrides by means of heteroepitaxy on a sacrificial layer
JPH06105797B2 (en) Semiconductor substrate and manufacturing method thereof
Weeks Jr et al. Undoped and doped GaN thin films deposited on high-temperature monocrystalline AlN buffer layers on vicinal and on-axis α (6H)–SiC (0001) substrates via organometallic vapor phase epitaxy
JP2001525121A (en) Recovery of silicon carbide substrate with adjusted surface
JPS6272595A (en) Silicon semiconductor substrate material and manufacture
US5016065A (en) Compound semiconductor substrate with InGaP layer
TW426887B (en) Method for growing nitride compound semiconductor
WO1997013891A1 (en) METHOD OF MANUFACTURING EPITAXIAL LAYERS OF GaN OR Ga(A1,In)N ON SINGLE CRYSTAL GaN AND MIXED Ga(A1,In)N SUBSTRATES
JP3353527B2 (en) Manufacturing method of gallium nitride based semiconductor
KR19990016925A (en) Baline single crystal manufacturing method
JP3758537B2 (en) Method for producing group III nitride compound semiconductor
JP3982788B2 (en) Method for forming semiconductor layer
JPH0450280B2 (en)
JP3174257B2 (en) Method for producing nitride-based compound semiconductor
JP2002293697A (en) METHOD OF GROWING GaN EPITAXIAL LAYER
US5183778A (en) Method of producing a semiconductor device
JP7046242B1 (en) Method for manufacturing indium phosphide single crystal ingot and method for manufacturing indium phosphide substrate
JP4206609B2 (en) Semiconductor device, manufacturing method thereof, and manufacturing method of semiconductor substrate
JPS63116420A (en) Semiconductor substrate
Davis et al. Growth of AlN, GaN and AlxGa1− xN thin films on vicinal and on-axis 6H SiC (0001) substrates
JP2000012901A (en) Manufacture of gallium nitride-based compound semiconductor single crystal