JPH044974B2 - - Google Patents

Info

Publication number
JPH044974B2
JPH044974B2 JP11363784A JP11363784A JPH044974B2 JP H044974 B2 JPH044974 B2 JP H044974B2 JP 11363784 A JP11363784 A JP 11363784A JP 11363784 A JP11363784 A JP 11363784A JP H044974 B2 JPH044974 B2 JP H044974B2
Authority
JP
Japan
Prior art keywords
alkali metal
titanate
reduced
metal titanate
ammonia gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11363784A
Other languages
Japanese (ja)
Other versions
JPS60260425A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11363784A priority Critical patent/JPS60260425A/en
Publication of JPS60260425A publication Critical patent/JPS60260425A/en
Publication of JPH044974B2 publication Critical patent/JPH044974B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は一般式M2O・nTiO2-x(式中Mはアル
カリ金属、nは2〜12の整数、xは1≦x<2の
正の実数を意味する。)で示される組成の還元チ
タン酸アルカリ金属塩の製造法に関するものであ
る。 還元チタン酸アルカリ金属塩は導電性を有して
おり、導電性材料として有用である。 (従来の技術) 科学技術の発達とニーズの多様化に伴ない高性
能、多機能素材の開発が活発に行われ、プラスチ
ツク業界にあつても導電性高分子材料の開発につ
いての研究が種々試みられており、例えばカーボ
ン粒子もしくは繊維又は銅、銀、金等の金属粉を
導電性充填剤として用いた高分子材料が提案され
ている。しかしながら、カーボン粒子、カーボン
繊維、銅、銀、金等の金属粉等は、いずれも黒色
又は金属独自の色調を有するものであり、しかも
これら導電性充填剤はカーボン繊維を除き非補強
性の充填剤である。またカーボン繊維は、補強性
の導電性充填剤ではあるが、繊維長を均質に揃え
るのが困難であり、アスペクト比が不揃いとなる
ため、成型加工性が悪く、また成型品の表面平滑
性、研摩性が劣る。 以上の如き実状に鑑み耐熱性、補強性の優れた
チタン酸アルカリ金属塩系の充填剤の開発が行わ
れているが、従来の方法では加熱温度として高温
を必要とするために粒子が大きくなつたり、繊維
が焼結する欠点があり、所望の還元チタン酸アル
カリ金属塩を得ることが困難であつた。 (発明の目的) 本発明の目的は耐熱性、補強性に優れた還元チ
タン酸アルカリ金属塩の製造法を提供することに
ある。 また本発明の目的は成型加工性、成型品の表面
平滑性、研摩性に優れた成型品を与えることので
きる還元チタン酸アルカリ金属塩の製造法を提供
することにある。 (発明の構成) 本発明は一般式M2O・nTiO2(式中Mはアルカ
リ金属、nは2〜12の整数を意味する。)で示さ
れる組成のチタン酸アルカリ金属塩をアンモニア
ガス雰囲気中で約500〜1000℃の温度で加熱還元
することを特徴とする一般式M2O・nTiO2-x(式
中xは1≦x<2の正の実数を示す。M及びnは
上記に同じ。)で示される還元チタン酸アルカリ
金属塩の製造法に係る。 本発明において、原料のチタン酸アルカリ金属
塩は公知の化合物であり、従来大別して水熱合成
法、融剤法(フラツクス法)及び焼成法等で製造
されているものである。本発明では、前記一般式
に含有される限り公知のチタン酸アルカリ金属塩
をいずれも使用でき、例えばチタン酸ナトリウ
ム、チタン酸カリウム、チタン酸リチウム等が挙
げられる。特に式K2O・6TiO2で表わされるチタ
ン酸カリウムは、耐火・断熱性、機械的強度が優
れ、しかも充填剤として用いた時、表面平滑性が
優れている点有利である。チタン酸アルカリ金属
塩は、一般に粉末又は繊維状の単結晶体である
が、本発明ではこれらいずれの形態でも使用可能
である。しかし、なかでも繊維状物質が好まし
く、一般的には繊維状のチタン酸カリウムが実用
上好ましいものであり、このうち繊維長5μm以
上、アスペクト比20以上、特に100以上のものが
補強性充填剤として適している。 本発明の還元チタン酸アルカリ金属塩は、上述
のチタン酸アルカリ金属塩をアンモニアガス雰囲
気中で約500〜1000℃で加熱還元することにより
製造することができる。後に実施例で詳述するが
例えばチタン酸アルカリ金属塩を密閉型高温加熱
炉に入れてから減圧下で系内の空気を窒素でまず
置換し、次いでアンモニアガスを流しながら約
500〜1000℃まで昇温させ反応を行なわしめ、チ
タン酸アルカリ金属塩の結晶より酸素を引きぬい
て酸素欠陥を生成させることにより導電性を付与
させるのがよい。ここで使用されるアンモニアガ
スは実質的に入手可能な工業用アンモニアガスで
充分であり、特別の精製は特に必要でない。また
アンモニアガスは反応系が実質的にアンモニア雰
囲気となる量存在させれば良い。 本発明の加熱温度としては、通常約500〜1000
℃、好ましくは約600〜950℃の範囲であり、加熱
時間は、通常約20〜180分、好ましくは約30〜90
分の範囲である。加熱時間が上記範囲の場合は、
チタン酸アルカリ金属塩の形状を損わず優れた導
電性を付与するため特に好ましい。 (発明の効果) 本発明に係る還元されたチタン酸アルカリ金属
塩は、還元前のチタン酸アルカリ金属塩の諸物
性、特に耐熱性、複合材料として用いた時の補強
性及び表面平滑性等の特長を何ら失うことなく、
青色を呈する色調を保持し、複合材料として用い
た時、白色の顔料又は着色剤を併用することによ
り所望する任意の色調に調整することが出来、帯
電防止、静電気除去、導電性材料等のニーズ適合
性が、従来の還元チタン酸アルカリ金属塩等に比
し大きく改善され、特にシート、紙、布帛、フイ
ルム等の導電材料等への適合性に関し、補強性、
表面平滑性を失することなく導電性を付加出来る
処理剤として産業利用性の高いものである。本発
明の導電性チタン酸アルカリ金属塩はプラスチツ
クの補強材料、導電性ペーパーの充填剤、導電性
インキ等の種々の用途に広く使用され得る。 (実施例) 以下に実施例を挙げて説明する。 実施例 1 チタン酸カリウム[大塚化学(株)製、商品名テイ
スモD]5gを30mlの白金製の容器にみたし、シ
リコニツト製の管状電気炉内に移し、室温で窒素
ガス150ml/分の流量で約1時間流し、雰囲気調
整後、窒素ガス導入下で500℃まで昇温させた。 次いで導入ガスをアンモニアガスに切り換え、
アンモニアガスを流量120ml/分で導入950℃で1
時間保持後、電気炉の電源を切つてアンモニアガ
スを流したまま放冷し、200℃で導入ガスを窒素
ガスに切りかえたのち炉外に取り出した。 上述方法で還元処理することにより、青色に帯
色した還元チタン酸カリウムが得た。 実施例 2 加熱温度を850℃にした以外は実施例1と同様
にして還元チタン酸カリウムを得た。 実施例 3 加熱温度を750℃にした以外は実施例1と同様
にして還元チタン酸カリウムを得た。 実施例 4 チタン酸ナトリウム[大塚化学(株)製]5gを30
mlの白金製の容器にみたし、シリコニツト製の管
状電気炉内に移し、実施例1と同じような雰囲気
調整後、500℃まで昇温させた後、アンモニアガ
スに切り換え、アンモニアガスを流量120ml/分
で導入下900℃で1時間保持後、電気炉の電源を
切つてアンモニアガスを流したまま放冷し、200
℃まで下がつたところで導入ガスを窒素ガスに切
りかえたのち炉外に取り出して、青色の還元チタ
ン酸カリウムを得た。 試験例 1 上記で得られた各々の還元チタン酸アルカリ金
属塩90部、流動パラフイン10部を乳鉢で良く混合
後、内径10mm、長さ20mmの金型にて50Kg/cm2で10
分間、加圧成型後、成型体の両面の銀ペーストを
塗布し、デジタルマルチメーター(タケダ理研社
製)を用いて導電性を測定し、体積抵抗率を下式
で換算算出した。結果を第1表に示す。 体積抵抗率(Ω・cm) =測定抵抗(Ω)×電極面積(cm2)/電極間距離(c
m) 【表】
Detailed Description of the Invention (Field of Industrial Application) The present invention is based on the general formula M 2 O・nTiO 2-x (where M is an alkali metal, n is an integer from 2 to 12, and x is 1≦x<2 The present invention relates to a method for producing a reduced alkali metal titanate having a composition represented by (meaning a positive real number). Reduced alkali metal titanates have electrical conductivity and are useful as electrically conductive materials. (Conventional technology) With the development of science and technology and the diversification of needs, the development of high-performance, multifunctional materials has been actively conducted, and even in the plastics industry, various research efforts have been made on the development of conductive polymer materials. For example, polymer materials using carbon particles or fibers or metal powders such as copper, silver, and gold as conductive fillers have been proposed. However, carbon particles, carbon fibers, metal powders such as copper, silver, and gold are all black or have a color unique to the metal, and these conductive fillers are non-reinforcing fillers except for carbon fibers. It is a drug. Although carbon fiber is a reinforcing conductive filler, it is difficult to make the fiber length uniform and the aspect ratio becomes uneven, resulting in poor moldability and poor surface smoothness of molded products. Poor abrasiveness. In view of the above-mentioned circumstances, alkali metal titanate-based fillers with excellent heat resistance and reinforcing properties have been developed, but conventional methods require high heating temperatures, resulting in large particles. Also, the fibers were sintered, making it difficult to obtain the desired reduced alkali metal titanate. (Object of the Invention) An object of the present invention is to provide a method for producing a reduced alkali metal titanate having excellent heat resistance and reinforcing properties. Another object of the present invention is to provide a method for producing a reduced alkali metal titanate salt that can provide a molded product with excellent moldability, surface smoothness, and abrasiveness. (Structure of the Invention) The present invention provides an alkali metal titanate salt having a composition represented by the general formula M 2 O・nTiO 2 (in the formula, M is an alkali metal, and n is an integer from 2 to 12) in an ammonia gas atmosphere. General formula M 2 O・nTiO 2-x (wherein x represents a positive real number of 1≦x<2. M and n are the above-mentioned The same applies to the method for producing a reduced alkali metal titanate salt shown in In the present invention, the raw material alkali metal titanate is a known compound, which has conventionally been produced by a hydrothermal synthesis method, a flux method, a calcination method, etc. In the present invention, any known alkali metal titanate can be used as long as it is included in the above general formula, and examples thereof include sodium titanate, potassium titanate, lithium titanate, and the like. In particular, potassium titanate represented by the formula K 2 O.6TiO 2 is advantageous in that it has excellent fire resistance, heat insulation properties, and mechanical strength, and also has excellent surface smoothness when used as a filler. Alkali metal titanate salts are generally in the form of powder or fibrous single crystals, but any of these forms can be used in the present invention. However, among these, fibrous substances are preferable, and fibrous potassium titanate is generally preferable for practical purposes. Among these, those with a fiber length of 5 μm or more and an aspect ratio of 20 or more, especially 100 or more are reinforcing fillers. It is suitable as The reduced alkali metal titanate of the present invention can be produced by heating and reducing the above-mentioned alkali metal titanate at about 500 to 1000°C in an ammonia gas atmosphere. As will be described in detail later in Examples, for example, an alkali metal titanate salt is placed in a closed high-temperature heating furnace, the air in the system is first replaced with nitrogen under reduced pressure, and then ammonia gas is passed through the furnace for approximately 20 minutes.
It is preferable to conduct a reaction by raising the temperature to 500 to 1000°C, and to extract oxygen from the crystals of the alkali metal titanate to generate oxygen defects, thereby imparting conductivity. As the ammonia gas used here, practically available industrial ammonia gas is sufficient, and no special purification is particularly required. Further, ammonia gas may be present in such an amount that the reaction system becomes substantially an ammonia atmosphere. The heating temperature of the present invention is usually about 500 to 1000
°C, preferably in the range of about 600 to 950 °C, and the heating time is usually about 20 to 180 minutes, preferably about 30 to 90 minutes.
range of minutes. If the heating time is within the above range,
It is particularly preferred because it imparts excellent conductivity without impairing the shape of the alkali metal titanate. (Effect of the invention) The reduced alkali metal titanate according to the present invention has various physical properties of the alkali metal titanate before reduction, especially heat resistance, reinforcing properties and surface smoothness when used as a composite material. without losing any of its features.
It maintains a blue color tone, and when used as a composite material, it can be adjusted to any desired color tone by using white pigments or colorants, and meets the needs of antistatic, static electricity removal, conductive materials, etc. Compatibility has been greatly improved compared to conventional reduced alkali metal titanate salts, etc., and particularly with regard to compatibility with conductive materials such as sheets, papers, fabrics, and films, reinforcing properties,
It has high industrial applicability as a treatment agent that can add conductivity without losing surface smoothness. The conductive alkali metal titanate of the present invention can be widely used in various applications such as reinforcing materials for plastics, fillers for conductive papers, and conductive inks. (Example) Examples will be described below. Example 1 5 g of potassium titanate [manufactured by Otsuka Chemical Co., Ltd., trade name Teismo D] was placed in a 30 ml platinum container, transferred to a tubular electric furnace made of siliconite, and a nitrogen gas flow rate of 150 ml/min was set at room temperature. After the atmosphere was adjusted, the temperature was raised to 500°C while introducing nitrogen gas. Next, switch the introduced gas to ammonia gas,
Ammonia gas was introduced at a flow rate of 120 ml/min at 950°C.
After holding for a certain period of time, the electric furnace was turned off and allowed to cool while ammonia gas was flowing, and the introduced gas was changed to nitrogen gas at 200°C, and then taken out of the furnace. By carrying out the reduction treatment using the method described above, a blue-colored reduced potassium titanate was obtained. Example 2 Reduced potassium titanate was obtained in the same manner as in Example 1 except that the heating temperature was 850°C. Example 3 Reduced potassium titanate was obtained in the same manner as in Example 1 except that the heating temperature was 750°C. Example 4 5g of sodium titanate [manufactured by Otsuka Chemical Co., Ltd.]
ml of platinum, transferred to a siliconite tubular electric furnace, adjusted the atmosphere in the same manner as in Example 1, raised the temperature to 500°C, then switched to ammonia gas, and heated the ammonia gas at a flow rate of 120 ml. After holding the temperature at 900℃ for 1 hour, the electric furnace was turned off and left to cool while ammonia gas was flowing.
When the temperature dropped to ℃, the introduced gas was changed to nitrogen gas and then taken out of the furnace to obtain blue reduced potassium titanate. Test Example 1 90 parts of each reduced alkali metal titanate salt obtained above and 10 parts of liquid paraffin were mixed well in a mortar, and then mixed at 50 kg/cm 2 in a mold with an inner diameter of 10 mm and a length of 20 mm.
After pressure molding for 1 minute, silver paste was applied to both sides of the molded body, the conductivity was measured using a digital multimeter (manufactured by Takeda Riken Co., Ltd.), and the volume resistivity was calculated using the following formula. The results are shown in Table 1. Volume resistivity (Ω・cm) = Measuring resistance (Ω) x electrode area (cm 2 )/interelectrode distance (c
m) [Table]

Claims (1)

【特許請求の範囲】 1 一般式M2O・nTiO2(式中Mはアルカリ金属、
nは2〜12の整数を意味する。)で示される組成
のチタン酸アルカリ金属塩をアンモニアガス雰囲
気中で約500〜1000℃の温度で加熱還元すること
を特徴とする一般式M2O・nTiO2-x(式中xは1
≦x<2の正の実数を示す。M及びnは上記に同
じ。)で示される還元チタン酸アルカリ金属塩の
製造法。 2 チタン酸アルカリ金属塩が繊維状である特許
請求の範囲第1項に記載の製造法。
[Claims] 1 General formula M 2 O・nTiO 2 (wherein M is an alkali metal,
n means an integer from 2 to 12. ) is reduced by heating at a temperature of about 500 to 1000 °C in an ammonia gas atmosphere.
Indicates a positive real number with ≦x<2. M and n are the same as above. ) A method for producing a reduced alkali metal titanate salt. 2. The manufacturing method according to claim 1, wherein the alkali metal titanate is fibrous.
JP11363784A 1984-06-02 1984-06-02 Manufacture of reduced alkali metallic titanate Granted JPS60260425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11363784A JPS60260425A (en) 1984-06-02 1984-06-02 Manufacture of reduced alkali metallic titanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11363784A JPS60260425A (en) 1984-06-02 1984-06-02 Manufacture of reduced alkali metallic titanate

Publications (2)

Publication Number Publication Date
JPS60260425A JPS60260425A (en) 1985-12-23
JPH044974B2 true JPH044974B2 (en) 1992-01-30

Family

ID=14617280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11363784A Granted JPS60260425A (en) 1984-06-02 1984-06-02 Manufacture of reduced alkali metallic titanate

Country Status (1)

Country Link
JP (1) JPS60260425A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252928A (en) * 1987-04-10 1988-10-20 Ibiden Co Ltd Electrically conductive titanate fiber and production thereof
KR101793762B1 (en) 2010-03-31 2017-11-03 닛뽄 케미콘 가부시끼가이샤 Lithium titanate nanoparticles, composite of lithium titanate nanoparticles and carbon, method for producing said composite, electrode material comprising said composite, electrode using said electrode material, electrochemical element, and electrochemical capacitor
DE102010062726A1 (en) * 2010-12-09 2012-06-14 Robert Bosch Gmbh Sodium titanate sodium ion conductor

Also Published As

Publication number Publication date
JPS60260425A (en) 1985-12-23

Similar Documents

Publication Publication Date Title
Ogihara et al. Formation of monodispersed Ta 2 O 5 powders
SE447820B (en) PROCEDURE FOR PREPARING A CERAMIC ELEMENT OF TITANIDE Dioxide
JPH044974B2 (en)
JPH0352411B2 (en)
JP2656415B2 (en) Lithium crystallized glass
JPH0380724B2 (en)
JPS6044274B2 (en) Method of producing boron nitride fiber articles from boron oxide fibers
JPH0433732B2 (en)
JPS6120508B2 (en)
JPS60112619A (en) Manufacture of modified alkali titanate
JPH02311361A (en) Production of aluminum titanate sintered compact stable at high temperature
Kanbara et al. Preparation and characterization of porous and electrically conducting carbon-clay composites
JPH0575698B2 (en)
CN108323170A (en) A kind of preparation method of composite membrane for thermistor
JPH0577610B2 (en)
JPS61247662A (en) Electroconductive ceramics and manufacture
JPS61197422A (en) Electrically conductive alkali metal titanate and production thereof
JPS5833191B2 (en) Lantern - Cobalt Fukugo Sunkabutsu Shouketsutaino Seizouhou
JPH01115876A (en) Oxidation-resistant sintered form of high strength
JPS609060A (en) Carbon black for battery
JP4320398B2 (en) Composite oxide, method for producing composite oxide, temperature sensor material for resistance thermometer, and resistance thermometer
JPH0527573B2 (en)
JPH044975B2 (en)
JPS6142548A (en) Electrically conductive expandable thermoplastic resin composition
JPS6278153A (en) Manufacture of mica composite ceramic material