JPH0380724B2 - - Google Patents

Info

Publication number
JPH0380724B2
JPH0380724B2 JP15184184A JP15184184A JPH0380724B2 JP H0380724 B2 JPH0380724 B2 JP H0380724B2 JP 15184184 A JP15184184 A JP 15184184A JP 15184184 A JP15184184 A JP 15184184A JP H0380724 B2 JPH0380724 B2 JP H0380724B2
Authority
JP
Japan
Prior art keywords
alkali metal
titanate
gas
metal titanate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15184184A
Other languages
Japanese (ja)
Other versions
JPS6131316A (en
Inventor
Kihachiro Nishiuchi
Kenichi Wada
Masayoshi Suzue
Yukya Haruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP15184184A priority Critical patent/JPS6131316A/en
Publication of JPS6131316A publication Critical patent/JPS6131316A/en
Publication of JPH0380724B2 publication Critical patent/JPH0380724B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は還元チタン酸アルカリ金属塩の製造法
に関する。 還元チタン酸アルカリ金属塩は導電性を有して
おり、導電性材料として有用である。 (従来の技術) 科学技術の発達とニーズの多様化に伴ない高性
能、多機能素材の開発が活発に行われ、プラスチ
ツク業界にあつても導電性高分子材料の開発につ
いての研究が種々試みられており、例えばカーボ
ン粒子もしくは繊維又は銅、銀、金等の金属粉を
導電性充填剤として用いた高分子材料が提案され
ている。しかしながら、カーボン粒子、カーボン
繊維、銅、銀、金等の金属粉等は、いずれも黒色
又は金属独自の色調を有するものであり、しかも
これら導電性充填剤はカーボン繊維を除き非補強
性の充填剤である。又、カーボン繊維は当初高性
能強化剤として開発されたが最近に至つては導電
性付与剤としての研究が盛んである。しかしなが
らカーボン繊維自体が高価であるため経済効果か
ら見てあまり高充填できず、従つて導電性付与効
果にもおのずと限界がある。 本発明者はプラスチツク充填剤としてはバラン
スの良い性能を発揮するチタン酸アルカリ金属
塩、特に繊維状チタン酸アルカリ金属塩に注目
し、導電性組成物、金属被膜を有するチタネート
及びその製造法、還元チタン酸アルカリ金属塩の
製造法等、導電性を付与したチタン酸アルカリ金
属塩を開発し特許出願中である。しかしながら先
願のこれらの技術は今だ充分なものとは言いがた
い。即ち、例えばチタン酸アルカリ金属塩の表面
に導電性を有する金属被膜を形成する技術におい
てはチタン酸アルカリ金属塩に対し、同量もしく
は5〜10倍の金属材料が必要であり産業上の利用
性は低く、また還元することによりチタン酸アル
カリ金属塩に導電性を付与する技術は還元温度が
高いこと、還元時間が長く必要であることなどか
ら、結晶の大きさが変化したりして所望の導電性
を有するチタン酸アルカリ金属塩を得ることが困
難であつた。 (発明が解決しようとする問題点) 本発明の目的はチタン酸アルカリ金属塩を、お
だやかな還元条件で還元して、導電性に優れた還
元チタン酸アルカリ金属塩を製造する方法を提供
することにある。 (問題点を解決するための手段) 本発明は一般式M2O・nTiO2(式中Mはアルカ
リ金属、nは2〜12の整数を意味する)で示され
る組成のチタン酸アルカリ金属塩にカルシウムカ
ーバイドを添加し、不活性ガス雰囲気あるいは還
元性雰囲気下で焼成することを特徴とする還元チ
タン酸アルカリ金属塩の製造法に係る。 本発明において、原料のチタン酸アルカリ金属
塩は公知の化合物であり、従来大別して水熱合成
法、融剤法(フラツクス法)及び焼成法等で製造
されているものである。本発明では、前記一般式
に包含される限り公知のチタン酸アルカリ金属塩
をいずれも使用でき、例えばチタン酸ナトリウ
ム、チタン酸カリウム、チタン酸リチウム等が挙
げられる。特に式K2O・(4〜6)TiO2で表わさ
れるチタン酸カリカムは、耐火・断熱性、機械的
強度が優れ、しかも充填剤として用いた時、表面
平滑性が優れている点有利である。チタン酸アル
カリ金属塩は、一般に粉末又は繊維状の単結晶体
であるが、本発明ではこれらいずれの形態でも使
用可能である。しかし、なかでも繊維状物質が好
ましく、一般的には繊維状のチタン酸カリウムが
実用上好ましいものであり、このうち繊維長5μm
以上、アスペクト比20以上、特に100以上のもの
が補強性充填剤として適している。 本発明に使用するカルシウムカーバイドは実質
的に入手可能な工業用カルシウムカーバイドでも
充分である。その粒径は小さい方がよく、好まし
くは100メツシユ以下、より好ましくは200メツシ
ユ以下である。カルシウムカーバイドの添加量は
チタン酸アルカリ金属塩100重量部に対し、好ま
しくは0.5〜20重量部、より好ましくは1〜10重
量部である。 本発明において不活性ガス雰囲気とは反応炉内
のガスが本発明の焼成温度範囲でチタン酸アルカ
リ金属塩と反応しないものであることを意味し、
アルゴンガス、窒素ガスなどを挙げることが出来
る。又、還元性雰囲気とは反応炉のガスが全く存
在していないかあるいは水素ガス、アンモニアガ
スなどで充填されている雰囲気を意味する。本発
明で使用できる窒素ガス等の各種不活性ガス、水
素ガス、アンモニアガスなどは実質的に入手可能
な工業用ガスで充分であり、特別の精製は必要で
ない。 本発明の還元チタン酸アルカリ金属塩は、上述
のチタン酸アルカリ金属塩とカルシウムカーバイ
ドの混合物を不活性ガス雰囲気又は還元性雰囲気
で焼成することにより製造することができる。後
に実施例で詳述するが例えばチタン酸アルカリ金
属塩とカルシウムカーバイドの混合物を密閉型高
温加熱炉に入れてから減圧下で系内の空気を除去
するか又は炉内に窒素ガス等の不活性ガスを導入
し空気を窒素でまず置換し、次いで昇温して加熱
還元するか、又は昇温した後に水素ガス等の還元
性ガスを導入し、所定の温度で反応を行なわし
め、チタン酸アルカリ金属塩の結晶より酸素を引
きぬいて酸素欠陥を生成させることにより導電性
を付与させるのがよい。 本発明の焼成温度としては、好ましくは約500
〜1000℃、より好ましくは約600〜900℃の範囲で
あり、焼成時間は、通常約10〜180分、好ましく
は約20〜60分の範囲である。焼成時間が上記範囲
の場合は、チタン酸アルカリ金属塩の形状を損わ
ず優れた導電性を付与するため特に好ましい。 (発明の効果) 本発明に係る還元されたチタン酸アルカリ金属
塩は、還元前のチタン酸アルカリ金属塩の諸物
性、特に耐熱性、複合材料として用いた時の補強
性及び表面平滑性等の特長を何ら失うことなく、
導電性が付与され、複合材料として用いた時、帯
電防止、静電気除去、導電性材料等のニーズ適合
性が、従来の還元チタン酸アルカリ金属塩等に比
し改善され、特にシート、紙、布帛、フイルム等
の導電材料等への適合性に関し、補強性、表面平
滑性を失することなく導電性を付加出来る処理剤
として産業利用性の高いものである。本発明の導
電性チタン酸アルカリ金属塩はプラスチツクの補
強材料、導電性ペーパーの充填剤、導電性インキ
等の種々の用途に広く使用され得る。 (実施例) 以下に実施例を挙げて説明する。 実施例 1 繊維状チタン酸カリウム[繊維長15〜20μ、繊
維径0.2〜0.3μm、大塚化学(株)、商品名テイスモ]
5gと、粉砕したカルシウムカーバイド[東洋電
化工業(株)製]0.5gをよく混合し、該混合物を30
mlの白金製の容器にみたし、シリコニツト製管状
電気炉内に移し、室温で窒素ガスを150ml/分の
流量で約1時間流し雰囲気調整後、窒素ガス導入
を続けながら昇温させ、約900℃に60分間保持し
て加熱焼成した。 そのあと、電気炉の電源を切つて放冷し、200
℃まで冷却後、容器を炉外に取り出した。容器よ
り焼成物を取り出し大量の水に分散した後、ロ別
乾燥すると還元チタン酸カリウムが得られた。原
料の繊維状チタン酸カリウムが白色物質であるの
に対し、得られた還元チタン酸カリウムは青黒色
に帯色していた。 実施例 2 繊維状チタン酸カリウム(実施例1と同じも
の)5gと、325メツシユパスに粉砕したカルシ
ウムカーバイド[東洋電化工業(株)製]0.5gを充
分に混合し、該混合物を30mlの白金製の容器にみ
たし、シリコニツト製管状電気炉内に移し、室温
で窒素ガスを150ml/分の流量で約1時間流し、
雰囲気調整後、窒素ガス導入下で500℃まで昇温
させた。次いで導入ガスを水素ガスに切り換え、
水素ガスを流量120ml/分で導入しながら850℃で
40分間保持し加熱焼成した。 そのあと電気炉の電源を切つて、水素ガスを流
したまま放冷し、200℃で導入ガスを窒素ガスに
切り換えたのち、白金製の容器を炉外に取り出し
た。容器より焼成物を取り出し大量の水に分散さ
せて後、ロ別乾燥すると還元チタン酸カリウムが
得られた。原料の繊維状チタン酸カリウムが白色
物質であるのに対し、得られた還元チタン酸カリ
ウムは青味がかつた黒色に帯色していた。 実施例 3 繊維状チタン酸カリウム(実施例1と同じも
の)500gと、325メツシユパスに粉砕したカルシ
ウムカーバイド[東洋電化工業(株)製]50g、ポリ
エチレングリコール50g、水2000mlを混合してス
ラリー状となし、スプレードライ装置でスプレー
ドライし、粉体を得た。この粉体5gを30mlの白
金製の容器に満たし、シリコニツト製管状電気炉
内に移し、室温で窒素ガスを150ml/分の流量で
約1時間流し、雰囲気調整後、窒素ガス導入下で
炉内温度を500℃まで昇温させた。このあと導入
ガスをアンモニアガスに切り換えてから、更に温
度を上昇させ800℃となし、この温度で45分間維
持し焼成を行つた。ついで電気炉の電源を切り、
アンモニアガスを導入しながら放冷し、200℃で
導入ガスを窒素ガスに切り換えた後、白金製の容
器を炉外に取り出した。焼成物を水中に投入し、
充分洗浄を行ない、ロ別乾燥すると還元チタン酸
カリウムが得られた。得られた還元チタン酸カリ
ウムは黒色に帯色していた。 実施例 4 チタン酸ナトリウム[大塚化学(株)製]5g及び
カルシウムカーバイド[325メツシユパス、東洋
電化工業(株)製]0.3gを充分に混合し、該混合物
を30mlの白金製の容器にみたし、シリコニツト製
管状電気炉内へ移し、室温で窒素ガスを150ml/
分の流量で約1時間流し、炉内雰囲気を調整す
る。こののち炉内温度を500℃まで昇温させた後、
アルゴン/水素(1:1)の混合ガスを120ml/
分で流しながら炉内温度を850℃に上げてから60
分間この温度を維持し焼成を行う。ついで電気炉
の電源を切り、200℃まで自然冷却してから導入
ガスを窒素に切りかえ、白金製の容器を炉外に取
り出し、反応を終了した。以下は実施例2と同様
の操作を行ない、青黒色に帯色した環元チタン酸
ナトリウムを得た。 試験例 1 上記で得られた各々の還元チタン酸アルカリ金
属塩90部、流動パラフイン10部を乳鉢で良く混合
後、内径10mm、長さ20mmの金型にて50Kg/cm2で10
分間、加圧成型した後、成型体の両面に銀ペース
トを塗布し、デジタルマルチメーター(タケダ理
研社製)を用いて導電性を測定し、体積抵抗率を
下式で換算算出した。結果を第1表に示す。 体積抵抗率(Ω・cm) =測定抵抗(Ω)×電極面積(cm2)/電極間
距離(cm) 【表】
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a reduced alkali metal titanate. Reduced alkali metal titanates have electrical conductivity and are useful as electrically conductive materials. (Conventional technology) With the development of science and technology and the diversification of needs, the development of high-performance, multifunctional materials has been actively conducted, and even in the plastics industry, various research efforts have been made on the development of conductive polymer materials. For example, polymer materials using carbon particles or fibers or metal powders such as copper, silver, and gold as conductive fillers have been proposed. However, carbon particles, carbon fibers, metal powders such as copper, silver, and gold are all black or have a color unique to the metal, and these conductive fillers are non-reinforcing fillers except for carbon fibers. It is a drug. Further, carbon fiber was initially developed as a high-performance reinforcing agent, but recently it has been actively researched as a conductivity imparting agent. However, since carbon fiber itself is expensive, it cannot be filled very highly from an economic standpoint, and therefore there is a limit to the effect of imparting electrical conductivity. The present inventor has focused on alkali metal titanates, especially fibrous alkali metal titanates, which exhibit well-balanced performance as plastic fillers, and has developed a conductive composition, a titanate with a metal coating, a method for producing the same, and a reduction method. We have developed an alkali metal titanate with electrical conductivity, including a manufacturing method for the alkali metal titanate, and are currently applying for a patent. However, these technologies of the earlier application are still far from being sufficient. That is, for example, in the technology of forming a conductive metal film on the surface of an alkali metal titanate, the same amount or 5 to 10 times as much metal material as the alkali metal titanate is required, making it difficult for industrial applicability. In addition, the technology that imparts conductivity to alkali metal titanate by reduction requires a high reduction temperature and long reduction time, so the size of the crystals may change and it may not be possible to achieve the desired result. It has been difficult to obtain an alkali metal titanate having conductivity. (Problems to be Solved by the Invention) An object of the present invention is to provide a method for producing a reduced alkali metal titanate having excellent conductivity by reducing an alkali metal titanate under mild reducing conditions. It is in. (Means for Solving the Problems) The present invention provides an alkali metal titanate having a composition represented by the general formula M 2 O·nTiO 2 (wherein M is an alkali metal and n is an integer from 2 to 12). The present invention relates to a method for producing a reduced alkali metal titanate salt, which is characterized by adding calcium carbide to the compound and sintering it in an inert gas atmosphere or a reducing atmosphere. In the present invention, the raw material alkali metal titanate is a known compound, which has conventionally been produced by a hydrothermal synthesis method, a flux method, a calcination method, etc. In the present invention, any known alkali metal titanate can be used as long as it is included in the above general formula, and examples thereof include sodium titanate, potassium titanate, lithium titanate, and the like. In particular, potassium titanate, which is represented by the formula K 2 O (4-6) TiO 2 , is advantageous in that it has excellent fire resistance, heat insulation, and mechanical strength, and also has excellent surface smoothness when used as a filler. be. Alkali metal titanate salts are generally in the form of powder or fibrous single crystals, but any of these forms can be used in the present invention. However, among these, fibrous substances are preferable, and fibrous potassium titanate is generally preferable for practical purposes.
As mentioned above, those having an aspect ratio of 20 or more, especially 100 or more are suitable as reinforcing fillers. As the calcium carbide used in the present invention, practically available industrial calcium carbide is sufficient. The smaller the particle size, the better, preferably 100 mesh or less, more preferably 200 mesh or less. The amount of calcium carbide added is preferably 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight, per 100 parts by weight of the alkali metal titanate. In the present invention, an inert gas atmosphere means that the gas in the reactor does not react with the alkali metal titanate within the firing temperature range of the present invention,
Examples include argon gas and nitrogen gas. Further, the term "reducing atmosphere" means an atmosphere in which no reactor gas exists or is filled with hydrogen gas, ammonia gas, or the like. Various inert gases such as nitrogen gas, hydrogen gas, ammonia gas, etc. that can be used in the present invention are practically available industrial gases, and no special purification is necessary. The reduced alkali metal titanate of the present invention can be produced by firing a mixture of the above-mentioned alkali metal titanate and calcium carbide in an inert gas atmosphere or a reducing atmosphere. As will be described in detail later in Examples, for example, a mixture of alkali metal titanate and calcium carbide is placed in a closed high-temperature heating furnace, and then the air in the system is removed under reduced pressure, or the furnace is filled with inert gas such as nitrogen gas. Either a gas is introduced and the air is replaced with nitrogen, and then the temperature is raised for thermal reduction, or after the temperature has been raised, a reducing gas such as hydrogen gas is introduced and the reaction is carried out at a predetermined temperature to form an alkali titanate. It is preferable to provide conductivity by extracting oxygen from the metal salt crystal to generate oxygen defects. The firing temperature of the present invention is preferably about 500
-1000°C, more preferably about 600-900°C, and the firing time is usually about 10-180 minutes, preferably about 20-60 minutes. When the firing time is within the above range, it is particularly preferable because excellent conductivity is imparted without damaging the shape of the alkali metal titanate salt. (Effect of the invention) The reduced alkali metal titanate according to the present invention has various physical properties of the alkali metal titanate before reduction, especially heat resistance, reinforcing properties and surface smoothness when used as a composite material. without losing any of its features.
When it is given conductivity and used as a composite material, its suitability for antistatic, static electricity removal, and conductive material needs is improved compared to conventional reduced alkali metal titanate salts, etc., and it is especially suitable for sheets, paper, and fabrics. Regarding its compatibility with conductive materials such as films, it has high industrial applicability as a processing agent that can add conductivity without losing reinforcing properties and surface smoothness. The conductive alkali metal titanate of the present invention can be widely used in various applications such as reinforcing materials for plastics, fillers for conductive papers, and conductive inks. (Example) Examples will be described below. Example 1 Fibrous potassium titanate [fiber length 15-20 μm, fiber diameter 0.2-0.3 μm, Otsuka Chemical Co., Ltd., trade name Teismo]
5 g and 0.5 g of crushed calcium carbide [manufactured by Toyo Denka Kogyo Co., Ltd.] were mixed well, and the mixture was heated to 30 g.
ml in a platinum container, transferred to a siliconite tubular electric furnace, and after adjusting the atmosphere by flowing nitrogen gas at a flow rate of 150 ml/min at room temperature for about 1 hour, the temperature was raised while continuing to introduce nitrogen gas, and the temperature was raised to about 900 ml. The mixture was heated and baked at ℃ for 60 minutes. After that, turn off the power to the electric furnace and let it cool down to 200
After cooling to ℃, the container was taken out of the furnace. The fired product was taken out of the container, dispersed in a large amount of water, and then filtered and dried to obtain reduced potassium titanate. While the raw material fibrous potassium titanate was a white substance, the obtained reduced potassium titanate was blue-black in color. Example 2 5 g of fibrous potassium titanate (same as in Example 1) and 0.5 g of calcium carbide (manufactured by Toyo Denka Kogyo Co., Ltd.) ground to 325 mesh size were thoroughly mixed, and the mixture was poured into a 30 ml platinum tube. The mixture was poured into a container, transferred to a siliconite tubular electric furnace, and nitrogen gas was flowed at a flow rate of 150 ml/min at room temperature for about 1 hour.
After adjusting the atmosphere, the temperature was raised to 500°C while introducing nitrogen gas. Next, switch the introduced gas to hydrogen gas,
At 850℃ while introducing hydrogen gas at a flow rate of 120ml/min.
It was held for 40 minutes and fired. After that, the power to the electric furnace was turned off, and the furnace was allowed to cool with hydrogen gas flowing through it. After the temperature was at 200°C, the introduced gas was switched to nitrogen gas, and the platinum container was taken out of the furnace. The fired product was taken out from the container, dispersed in a large amount of water, and then filtered and dried to obtain reduced potassium titanate. While the raw material fibrous potassium titanate was a white substance, the obtained reduced potassium titanate was black with a bluish tinge. Example 3 A slurry was prepared by mixing 500 g of fibrous potassium titanate (same as in Example 1), 50 g of calcium carbide (manufactured by Toyo Denka Kogyo Co., Ltd.) ground to 325 mesh paste, 50 g of polyethylene glycol, and 2000 ml of water. None, spray-dried using a spray-drying device to obtain powder. Fill a 30 ml platinum container with 5 g of this powder, transfer it to a siliconite tubular electric furnace, and flow nitrogen gas at a flow rate of 150 ml/min at room temperature for about 1 hour. After adjusting the atmosphere, place the inside of the furnace under nitrogen gas introduction. The temperature was raised to 500°C. Thereafter, the introduced gas was switched to ammonia gas, and the temperature was further increased to 800°C, and this temperature was maintained for 45 minutes to perform firing. Then turn off the electric furnace,
After cooling while introducing ammonia gas and switching the introduced gas to nitrogen gas at 200°C, the platinum container was taken out of the furnace. Put the baked product into water,
After thorough washing and drying, reduced potassium titanate was obtained. The obtained reduced potassium titanate was black in color. Example 4 5 g of sodium titanate [manufactured by Otsuka Chemical Co., Ltd.] and 0.3 g of calcium carbide [325 mesh pass, manufactured by Toyo Denka Kogyo Co., Ltd.] were thoroughly mixed, and the mixture was poured into a 30 ml platinum container. , transferred to a siliconite tubular electric furnace, and heated with 150 ml of nitrogen gas at room temperature.
Flow for about 1 hour at a flow rate of 100 mL to adjust the atmosphere in the furnace. After this, after raising the temperature inside the furnace to 500℃,
120ml/120ml of argon/hydrogen (1:1) mixed gas
Raise the temperature inside the furnace to 850℃ while flowing for 60 minutes.
Maintain this temperature for several minutes to perform baking. Next, the power to the electric furnace was turned off, the furnace was allowed to cool naturally to 200°C, the introduced gas was changed to nitrogen, and the platinum container was taken out of the furnace to complete the reaction. The following operations were carried out in the same manner as in Example 2 to obtain a ring-based sodium titanate having a blue-black color. Test Example 1 90 parts of each reduced alkali metal titanate salt obtained above and 10 parts of liquid paraffin were mixed well in a mortar, and then mixed at 50 kg/cm 2 in a mold with an inner diameter of 10 mm and a length of 20 mm.
After press molding for 1 minute, silver paste was applied to both sides of the molded body, conductivity was measured using a digital multimeter (manufactured by Takeda Riken Co., Ltd.), and the volume resistivity was calculated using the following formula. The results are shown in Table 1. Volume resistivity (Ω・cm) = Measured resistance (Ω) x Electrode area (cm 2 )/Distance between electrodes (cm) [Table]

Claims (1)

【特許請求の範囲】 1 一般式M2O・nTiO2(式中Mはアルカリ金属、
nは2〜12の整数を意味する)で示される組成の
チタン酸アルカリ金属塩にカルシウムカーバイド
を添加し、不活性ガス雰囲気あるいは還元性雰囲
気下で焼成することを特徴とする還元チタン酸ア
ルカリ金属塩の製造法。 2 焼成温度が500〜1000℃である請求の範囲第
1項に記載の製造法。 3 チタン酸アルカリ金属塩が繊維状である請求
の範囲第1項に記載の製造法。
[Claims] 1 General formula M 2 O・nTiO 2 (wherein M is an alkali metal,
A reduced alkali metal titanate, which is produced by adding calcium carbide to an alkali metal titanate having a composition represented by (n means an integer from 2 to 12) and firing the mixture in an inert gas atmosphere or a reducing atmosphere. Salt manufacturing method. 2. The manufacturing method according to claim 1, wherein the firing temperature is 500 to 1000°C. 3. The manufacturing method according to claim 1, wherein the alkali metal titanate is fibrous.
JP15184184A 1984-07-20 1984-07-20 Production of reduced alkali metallic salt of titanic acid Granted JPS6131316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15184184A JPS6131316A (en) 1984-07-20 1984-07-20 Production of reduced alkali metallic salt of titanic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15184184A JPS6131316A (en) 1984-07-20 1984-07-20 Production of reduced alkali metallic salt of titanic acid

Publications (2)

Publication Number Publication Date
JPS6131316A JPS6131316A (en) 1986-02-13
JPH0380724B2 true JPH0380724B2 (en) 1991-12-25

Family

ID=15527457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15184184A Granted JPS6131316A (en) 1984-07-20 1984-07-20 Production of reduced alkali metallic salt of titanic acid

Country Status (1)

Country Link
JP (1) JPS6131316A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101793762B1 (en) 2010-03-31 2017-11-03 닛뽄 케미콘 가부시끼가이샤 Lithium titanate nanoparticles, composite of lithium titanate nanoparticles and carbon, method for producing said composite, electrode material comprising said composite, electrode using said electrode material, electrochemical element, and electrochemical capacitor
JP2019210155A (en) * 2018-05-31 2019-12-12 大塚化学株式会社 Pigment particles, production method thereof and coating composition

Also Published As

Publication number Publication date
JPS6131316A (en) 1986-02-13

Similar Documents

Publication Publication Date Title
JP2001502367A (en) Compositions and thermal insulators with low thermal conductivity
KR830007874A (en) Dispersion reinforced copper alloy
US4152280A (en) Molten salt synthesis of modified lead zirconate titanate solid solution powder
JPH0380724B2 (en)
JPH0352411B2 (en)
JPH0345014B2 (en)
JPH044974B2 (en)
JPS589782B2 (en) Refractory products and manufacturing methods
JP2003231098A (en) Complex including thin-film type particle having skeleton composed of carbon and its manufacturing method
US4609694A (en) Process for preparing metamorphosed alkaline titanates
JPH0433732B2 (en)
JPS6217021A (en) Production of reduced titanium oxide
JPS6120508B2 (en)
JPS61197422A (en) Electrically conductive alkali metal titanate and production thereof
JPH0577610B2 (en)
KR20160055522A (en) Ceramic powder-cnt complex and method of manufacturing the same
SU1728888A1 (en) Composite current-conducting material
JPH0621036B2 (en) Conductive titanate derivative and method for producing the same
JP2996539B2 (en) Acetylene black and its production method and use
JPH044975B2 (en)
JPS62287570A (en) Material for gas diffusion electrode
JPS6018081B2 (en) Improved conductive composite ceramics
JPS60501082A (en) Electrically conductive ceramic materials, current collectors and batteries for sodium-sulfur batteries
KR0127489B1 (en) Method of manufacturing insulated fillers
JPS60112618A (en) Manufacture of modified titanic acid compound