JPS6217021A - Production of reduced titanium oxide - Google Patents

Production of reduced titanium oxide

Info

Publication number
JPS6217021A
JPS6217021A JP15449485A JP15449485A JPS6217021A JP S6217021 A JPS6217021 A JP S6217021A JP 15449485 A JP15449485 A JP 15449485A JP 15449485 A JP15449485 A JP 15449485A JP S6217021 A JPS6217021 A JP S6217021A
Authority
JP
Japan
Prior art keywords
titanium oxide
boron
atmosphere
conductive
electrically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15449485A
Other languages
Japanese (ja)
Other versions
JPH0575698B2 (en
Inventor
Kihachiro Nishiuchi
西内 紀八郎
Kenichi Wada
和田 憲一
Masayoshi Suzue
鈴江 正義
Yukiya Haruyama
幸哉 晴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP15449485A priority Critical patent/JPS6217021A/en
Publication of JPS6217021A publication Critical patent/JPS6217021A/en
Publication of JPH0575698B2 publication Critical patent/JPH0575698B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain reduced titanium oxide which has high electrical conductivity and is preferable as a raw material of electrically-conductive paint at comparatively low temp. in the calcination of short time by adding boron (compd.) to titanium oxide (precursor) and calcining the mixture in an inert gas or the reducing atmosphere. CONSTITUTION:One or more kinds of boron (e.g. crystalline boron, amorphous boron) or boron compd. (e.g. bonic acid, borax) are added to titanium oxide or a substance (e.g. titanium hydroxide) made to titanium oxide by roasting. The aimed reduced titanium oxide is obtained by calcining the mixture at 500-1,100 deg.C in an inert gas atmosphere (e.g. N2, Ar atmosphere) or the reducing atmosphere (e.g. gaseous H2 atmosphere, carbonpacked atmosphere). The obtained reduced titanium oxide is a fine powdery electrically-conductive material and electrically-conductive paint can be obtained by kneading it with a binder and an electrically-conductive sheet can be obtained by kneading it with resin.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、−元酸化チタンの製法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing -based titanium oxide.

(発明の背景) 近年、エレクトロニクス産業の9.展に伴って、導電性
材料に関するニーズが高まってきており、静電気除去材
料、帯電防1F材料及び導電性材料となりうる新素材が
開発又は研究されつつある。従来、これらの導電性素材
としては、金、銀、白金、銅、ニッケル等の導電性金属
類、カーボンブラックなどの炭素材料類、酸化錫、酸化
アンチモン等の金属酸化物、更にはポリピロール、ポリ
アセチレン等の有機導電性化合物等が知られており、こ
れらの導電性素材を導電性の塗料、接着剤、インキ、布
帛、繊維、成形体及び焼結体等に加工して種々の用途に
利用されている。また卑近な例では、顔料として化粧品
などの着色にも利用されている。
(Background of the invention) In recent years, 9. With the exhibition, the need for conductive materials is increasing, and new materials that can be used as static electricity removal materials, antistatic 1F materials, and conductive materials are being developed or researched. Conventionally, these conductive materials include conductive metals such as gold, silver, platinum, copper, and nickel, carbon materials such as carbon black, metal oxides such as tin oxide and antimony oxide, and even polypyrrole and polyacetylene. Organic conductive compounds, such as ing. As a more common example, it is also used as a pigment to color cosmetics.

(従来の技術) 一般に酸化チタン又は焼成して酸化チタンとなる物質(
以後、酸化チタンという)に導電性を付与する方法とし
ては、酸化チタンの表面を導電性物質で被覆する方法、
酸化チタンを還元して低次酸化物からなる酸化チタンを
得る方法が知られている。
(Prior art) Generally, titanium oxide or a substance that becomes titanium oxide when fired (
Methods of imparting conductivity to titanium oxide (hereinafter referred to as titanium oxide) include coating the surface of titanium oxide with a conductive substance;
A method of reducing titanium oxide to obtain titanium oxide consisting of a lower oxide is known.

前者の被覆法は、酸化チタンの表面に導電性物質を物理
的又は化学的方法を用いて沈着させ、導電性物質で被覆
されたチタン酸塩を得るものであって、ここに導電性物
質としては、銀、銅、ニンケル、錫、アンチモン等が使
用される。この方法は、無電解メッキ関連の技術を利用
できるので操作が簡単であるという特長に加え、基質と
なる酸化チタンを何ら変質させることなしに導電性を付
与できるという利点はあるが、コストが高くつくとう問
題がある。即ち、原料となる酸化チタ△ ンは一般に微粉末状であって、その比表面積がl〜10
0m’/gにも達するため、該粉体の表面を均質に被覆
して導電性を発揮させるためには、原料酸化チタン1g
に対し、1〜5gもの被覆用導電性物質を必要とする。
The former coating method involves depositing a conductive substance on the surface of titanium oxide using a physical or chemical method to obtain a titanate coated with the conductive substance. Silver, copper, nickel, tin, antimony, etc. are used. This method has the advantage of being easy to operate because it can use electroless plating technology, and it also has the advantage of imparting conductivity to the titanium oxide substrate without changing its properties, but it is expensive. There is a problem. That is, the raw material titanium oxide is generally in the form of a fine powder, and its specific surface area is 1 to 10.
0 m'/g, so in order to uniformly coat the surface of the powder and exhibit conductivity, 1 g of titanium oxide as a raw material is required.
However, 1 to 5 g of conductive material for coating is required.

これは毛針組成として、被覆物質が酸化チタンと同廣又
はそれ以上となることを意味し、必然的に製品が高価な
ものとなる他、酸化チタン本来の特性も損なわれること
になり、ひいては産業上の利用性も低下する。
This means that the coating material is the same or larger than titanium oxide in terms of needle composition, which inevitably makes the product more expensive, and also impairs the original properties of titanium oxide. Industrial applicability is also reduced.

後者の還元法においては、酸化チタンを還元雰囲気で焼
成するか、酸化チタンの製造時還元雰囲気にすることに
より、式、 TE01−x(但しo<x<2) で表される導電性を示す低次酸化物からなる酸化チタン
が得られる。この還元法によれば、還元条件の制御次第
で夫々導電性を異にする任意の低次元の酸化物からなる
酸化チタンを得ることができるから、導電性酸化チタン
の製造手段として極めて有用性の高いものであるが、酸
化チタンの種類によっては還元が困難で、還元処理を高
温で又は長時間行う必要あり、このため、還元処理の過
程で、酸化チタンが熔融して焼結体を形成したり、又は
製品の結晶状態が変化したりする現象を認めることがあ
った。
In the latter reduction method, by firing titanium oxide in a reducing atmosphere or using a reducing atmosphere during production of titanium oxide, it exhibits conductivity expressed by the formula, TE01-x (where o<x<2). Titanium oxide consisting of a lower oxide is obtained. According to this reduction method, it is possible to obtain titanium oxide consisting of any low-dimensional oxide with different conductivity depending on the control of the reduction conditions, so it is extremely useful as a means for producing conductive titanium oxide. However, depending on the type of titanium oxide, it is difficult to reduce it, and the reduction process must be carried out at high temperatures or for a long time. Therefore, during the reduction process, the titanium oxide may melt and form a sintered body. In some cases, a phenomenon in which the crystalline state of the product changed was observed.

(発明が解決しようとする問題点) 本発明の目的は、酸化チタンを還元して導電性酸化チタ
ンを製造するに当り、被処理物を熔融させたり又はその
結晶状態を変化させたりしない温度領域内で、短時間内
に被還元目的物を収得できる製法を提供することにある
(Problems to be Solved by the Invention) An object of the present invention is to reduce titanium oxide to produce conductive titanium oxide in a temperature range that does not melt the object to be treated or change its crystalline state. The object of the present invention is to provide a manufacturing method capable of obtaining a target product to be reduced within a short period of time.

また本発明の他の目的は、還元焼成により生成した導電
性酸化チタンの物性が導電性以外の点では原8酸化チタ
ンの物性を全く喪失していない還元酸化チタンを取得す
るための製法を提供することにある。
Another object of the present invention is to provide a manufacturing method for obtaining reduced titanium oxide, in which the physical properties of conductive titanium oxide produced by reduction firing do not lose any of the physical properties of original titanium octoxide other than conductivity. It's about doing.

さらに本発明の目的は、導電性にバラツキのない還元酸
化チタンを収得するため勿の製法を提供することにある
A further object of the present invention is to provide a manufacturing method for obtaining reduced titanium oxide with uniform conductivity.

(問題点を解決するための手段) 以上の問題点を解決せんがため、本発明の還元酸化チタ
ンの製造法は、酸化チタン又は焙焼により酸化チタンと
なる物質に硼素又は硼素化合物の1種以上を添加し、不
活性ガス雰囲気又は還元性雰囲気下で500〜1100
’0の温度で焼成することな特徴とする。
(Means for Solving the Problems) In order to solve the above problems, the method for producing reduced titanium oxide of the present invention includes adding boron or one type of boron compound to titanium oxide or a substance that becomes titanium oxide by roasting. 500 to 1100 under an inert gas atmosphere or reducing atmosphere.
It is characterized by being fired at a temperature of 0.

以上の発明方法において、本発明の原V)となる酸化チ
タンは、微細粉末状が好ましいが、酸化チタン代えて、
酸化チタンにするための焙焼工程前の水酸化チタンを用
いてもよいし、またルチルサンドなどの天然に産する高
Ti0z含量の微細鉱物粉末でも使用可1屯である。
In the above invention method, the titanium oxide serving as the raw material V) of the present invention is preferably in the form of fine powder, but instead of titanium oxide,
Titanium hydroxide before the roasting process to produce titanium oxide may be used, or naturally occurring fine mineral powder with a high Ti0z content such as rutile sand may also be used.

本発明で使用する硼素又は硼素化合物は次に述べるもの
である。即ち、硼素は結晶状又はアモルファスの粉末状
のものが好ましい、また硼素化合物としては、酸化硼素
、硼酸アルカリ金属塩、塩化硼素などのハロゲン化硼素
及びポロンアルコラードなどの有機硼素化合物等を挙げ
ることができるが、殊に、酸化硼素の急水物が好ましい
。これらの硼素化合物を原料酸化チタン又はその均等物
(例えば水酸化チタン)と混合する手段については特に
制限なく、実質的に両者を緊密に混合できる方法である
限りどのような方法を採用するのも任意である。しかし
一般的には、硼素又は硼素化合物を粉末状で使用する場
合はなるべく粒径は小さい方が良く、殊に、これらに多
少の水などを加えて原料である酸化チタンと混合してス
ラリー化した後、スプレードライして均一な混合体を調
製するのが良い。また、原料硼素又は硼素化合物が水や
アルコールなどの溶剤に可溶性である場合は、これらを
溶媒に溶解させて溶液状とし原料酸化チタン又はその均
等物(以下「酸化チタン等」と呼ぶ。)に散布する方法
などを採ることができる。しかしこの場合でも、単に該
溶液を酸化チタン等に単に散布するよりは、当該溶液中
に原料である酸化チタン等を混合してスラリー状とした
後、噴霧乾燥法により均一な混合体とするのが好ましい
The boron or boron compound used in the present invention is as follows. That is, boron is preferably in the form of crystalline or amorphous powder, and boron compounds include boron oxide, alkali metal borate, boron halides such as boron chloride, and organic boron compounds such as poron alcoholade. However, a dehydrated product of boron oxide is particularly preferred. There are no particular restrictions on the means for mixing these boron compounds with the raw material titanium oxide or its equivalent (e.g. titanium hydroxide), and any method may be used as long as the two can be substantially intimately mixed. Optional. However, in general, when using boron or boron compounds in powder form, the particle size should be as small as possible, and in particular, it is better to add some water etc. to these and mix them with the raw material titanium oxide to form a slurry. After that, it is best to spray dry to prepare a homogeneous mixture. In addition, if the raw material boron or boron compound is soluble in a solvent such as water or alcohol, it can be dissolved in a solvent to form a solution and converted into raw material titanium oxide or its equivalent (hereinafter referred to as "titanium oxide, etc."). A method such as dispersion can be adopted. However, even in this case, rather than simply spraying the solution onto titanium oxide, etc., it is preferable to mix the raw material, such as titanium oxide, into the solution and make a slurry, and then use a spray drying method to make a uniform mixture. is preferred.

硼素又は硼素化合物の添加量に特に制限はないが1通常
は酸化チタン100重量部に対し、硼素においては約0
.1〜15重量部程度、硼素化合物においても硼素に換
算して約0.1〜15重量部重量部加すれば充分本発明
の目的を達成することができる。
There is no particular limit to the amount of boron or boron compound added, but it is usually about 0 for boron per 100 parts by weight of titanium oxide.
.. The object of the present invention can be sufficiently achieved by adding about 1 to 15 parts by weight, or about 0.1 to 15 parts by weight in terms of boron in the case of a boron compound.

本発明の還元酸化チタンは、上述の硼素又は硼素化合物
より選ばれた一つ以上の物質を混合した酸化チタン笠を
不活性ガス雰囲気又は綴元性雰囲気下で500〜100
0°Cの温度で焼成することにより製造することができ
る。後に実施例で詳述するが、例えば酸化チタンを密閉
型高温加熱炉に入れてから減圧下で系内の空気を除去す
るか、又は炉内に窒毒カスを導入して空気を窒素で先ず
置換し、次いで昇温させて炉温か500〜1000°C
になった後にそのまま反応させるか、又は水素ガスを炉
内に導入して反応させることにより、酸化チタンの結晶
から酸素を引さ抜かれた電気伝導性還元酸化チタンが得
られる。
The reduced titanium oxide of the present invention is prepared by mixing a titanium oxide shade with one or more substances selected from the above-mentioned boron or boron compounds in an inert gas atmosphere or an orthostatic atmosphere.
It can be manufactured by firing at a temperature of 0°C. As will be described in detail later in Examples, for example, titanium oxide may be placed in a closed high-temperature heating furnace and the air inside the system may be removed under reduced pressure, or nitrous scum may be introduced into the furnace and the air may be first flushed with nitrogen. Replace the air and then raise the temperature to a furnace temperature of 500 to 1000°C.
Electrically conductive reduced titanium oxide in which oxygen has been extracted from the titanium oxide crystals can be obtained by reacting the titanium oxide as it is or by introducing hydrogen gas into the furnace and causing the reaction.

、本発明において、硼素の共存する系がl 500〜1
000°Cに加熱されると、酸化チタンの格子を構成し
ている酸素原子が活性を帯びた硼素と反応して引き抜か
れる。ここに生成した酸化硼素の一部は酸化チタンと固
溶体を形成するが、大部分は蒸発してしまうため、酸化
チタンの物性は殆ど変化しない。また、水素ガスを導入
すると、さらに水素による酸素引き抜きが起こり、短時
間で還元酸化チタンを収得することができる。この場合
、容器としてカーボン性の材料を使用するとさらに良い
結果が得られる。
, in the present invention, the system in which boron coexists is l500~1
When heated to 000°C, the oxygen atoms that make up the lattice of titanium oxide react with the activated boron and are extracted. A part of the boron oxide generated here forms a solid solution with titanium oxide, but most of it evaporates, so the physical properties of titanium oxide hardly change. Moreover, when hydrogen gas is introduced, oxygen is further extracted by the hydrogen, and reduced titanium oxide can be obtained in a short time. In this case, better results can be obtained if a carbonaceous material is used as the container.

硼素系化合物を混合した場合、炉内の雰囲気が500°
Cを越えた頃から硼素系化合物が分解又は熔融して酸化
チタン中に酸化硼素が固溶、拡散し、次いで水素ガスが
導入されることにより、酸素引き抜さと同時にイオン価
の異なる硼素イオンの導入により、著しい導電性を有す
る還元酸化チタンが得られる。この場合も、容器にカー
ボン系の素材を使用することにより一層良い結果が得ら
れる。これら反応容器としてのカーボン系材料使用が好
結果をもたらす理由は、該材料により炉内雰囲気が還元
雰囲気となる結果であるとして説明されうる。又、カー
ボン粉末を酸化チタンに予め混入させておいてもよい。
When boron-based compounds are mixed, the atmosphere in the furnace is 500°
From the time when C is exceeded, the boron-based compound decomposes or melts, and boron oxide becomes a solid solution and diffuses in the titanium oxide. Then, hydrogen gas is introduced, and at the same time, boron ions with different ionic valences are extracted. The introduction results in reduced titanium oxide with significant electrical conductivity. In this case as well, better results can be obtained by using a carbon-based material for the container. The reason why the use of carbon-based materials as the reaction vessel produces good results can be explained as the result that the material creates a reducing atmosphere in the furnace. Further, carbon powder may be mixed into titanium oxide in advance.

添加物として硼素が使用される場合は、反応の雰囲気は
窒素ガス又はアルゴンガスなどの不活性ガス雰囲気又は
水素ガスなどの還元雰囲気いずれでもよい。一方、硼素
系化合物の使用される場合は、不活性ガスとカーボン系
素材の組合せ又は水素ガスを使用する還元雰囲気での焼
成が好ましい。
When boron is used as an additive, the reaction atmosphere may be either an inert gas atmosphere such as nitrogen gas or argon gas, or a reducing atmosphere such as hydrogen gas. On the other hand, when a boron-based compound is used, firing in a reducing atmosphere using a combination of an inert gas and a carbon-based material or hydrogen gas is preferred.

本発明方法における焼成温度は、通常、500〜100
0°C1好ましくは600〜800℃の範囲であり。
The firing temperature in the method of the present invention is usually 500 to 100
0°C1 is preferably in the range of 600 to 800°C.

焼成時間は通常15〜120分、好ましくは20〜70
分の範囲である。
Firing time is usually 15 to 120 minutes, preferably 20 to 70 minutes.
range of minutes.

本発明の製法で得られる還元酸化チタンは*IB粉末状
の形状を有する導電性素材であり、焼結することにより
導電性焼結体を、また結合剤と混練することにより導電
性塗料、インキ及び接着剤を、樹脂と混練することによ
り導電性コンパウンド、シート等を、抄造又は混紡する
ことにより導電性の布帛、繊維及びペーパーを夫々得る
ことができるが、この他、また無害の着色料として、化
粧品などの石仏にも好適に使用することができる。
The reduced titanium oxide obtained by the production method of the present invention is a conductive material in the form of *IB powder, and can be sintered to produce a conductive sintered body, and kneaded with a binder to be used in conductive paints and inks. By kneading conductive compounds and adhesives with resins, conductive compounds, sheets, etc. can be obtained by papermaking or blending to obtain conductive fabrics, fibers, and papers, respectively. It can also be suitably used for stone Buddha statues such as cosmetics.

(実施例) 以下に実施例を挙げて説明するが、例示は単に説明用の
ものであって1発明精神の限界を示すものではない。
(Example) Examples will be described below, but the examples are merely for explanation and do not indicate the limits of the spirit of the invention.

実施例1 酸化チタン[和光紬薬工業v4製]5g及び硼素[和光
紬薬工業株製] 0.1 gに水を加えて混合し、スラ
リー化後、スプレードライして顆粒状の緊密な混合物を
作成した。この混合物を黒鉛性の坩堝内に満たしてシリ
コニット製管状電気炉内に移し、密封後、室温で窒素ガ
スを150I111/分の流計で約1時間流し、雰囲気
を調整後、窒素ガス導入下で500℃まで昇温させた。
Example 1 Water was added to 5 g of titanium oxide [manufactured by Wako Tsumugi Kogyo Co., Ltd.] and 0.1 g of boron [manufactured by Wako Tsumugi Kogyo Kogyo Co., Ltd.], mixed, slurried, and spray-dried to form a granular intimate mixture. It was created. This mixture was filled in a graphite crucible and transferred to a siliconite tubular electric furnace. After sealing, nitrogen gas was flowed at room temperature using a flowmeter of 150I111/min for about 1 hour to adjust the atmosphere. The temperature was raised to 500°C.

次いで導入ガスを水套ガスに切り換え、水素ガスを流に
120 m17分の割合で導入しつつ、850°Cで約
1時間保持後、電気炉の電源を丈って水素ガスを流した
まま放冷した。200℃まで降温したとき導入ガスを窒
素ガスに切り換え、生成物を炉外に取り出した。得られ
た生成物は、黒色に帯色した還元酸化チタンであった。
Next, the introduced gas was changed to water cannula gas, and while hydrogen gas was introduced into the flow at a rate of 120 ml/17 min, it was held at 850°C for about 1 hour, then the electric furnace was turned off and the hydrogen gas was left flowing. It got cold. When the temperature was lowered to 200° C., the introduced gas was switched to nitrogen gas, and the product was taken out of the furnace. The obtained product was reduced titanium oxide with a black color.

実施例2 酸化チタン5g(上掲会社製)及び無水硼酸05g(同
上)に水を加えてスラリー化後、スプレードライして混
合体を作成した。当該混合体を30m1用の合金製容器
内に満たしてシリコニy)製管状電気炉内に移し、室温
で窒;にガスを151/分の流48.で約1時間流し、
雰囲気を調整した。その後、窒素カスを導入しつつ60
0°Cまで昇温させ、約20分間同温度に維持した後、
導入カスを水素カスに切り換え、該カスを流計120 
ml1分の割合で導入しながら900℃まで昇温させた
。次いで、同温度に約1時間保持した後、電気炉の電源
を切り、なお水素ガスの導入を続けながら200℃まで
放冷した後、導入カスを窒素に切り換え、炉温か室温ま
で硬化した後、生成物を炉外に取り出した。得られた目
的物は、黒色に帯色した還元酸化チタンであった。
Example 2 Water was added to 5 g of titanium oxide (manufactured by the above-mentioned company) and 05 g of boric anhydride (same as above) to form a slurry, and the slurry was then spray-dried to prepare a mixture. The mixture was filled into a 30 ml alloy container and transferred to a silicone tubular electric furnace, and nitrogen gas was added at room temperature at a rate of 151/min. Let it run for about an hour,
Adjusted the atmosphere. After that, while introducing nitrogen scum,
After raising the temperature to 0°C and maintaining the same temperature for about 20 minutes,
The introduced sludge is changed to hydrogen sludge, and the sludge is transferred to the flow meter 120.
The temperature was raised to 900° C. while introducing ml at a rate of 1 minute. Next, after holding at the same temperature for about 1 hour, the electric furnace was turned off, and while hydrogen gas was still being introduced, it was left to cool to 200 ° C., the introduced scum was switched to nitrogen, and after curing to the temperature of the furnace or room temperature, The product was taken out of the furnace. The target product obtained was reduced titanium oxide with a black color.

実施例3 実施例1において、導入ガスを水素ガスから窒素ガスに
変更し、該ガスを120 m17分の割合で導入しなが
ら、750’Oで約1時間保持した以外は全て実施例1
と同様に操作した。かくして、黒色に帯色した還元酸化
チタンが得られた。
Example 3 Everything was the same as in Example 1 except that the gas introduced in Example 1 was changed from hydrogen gas to nitrogen gas, and the gas was introduced at a rate of 120 ml/17 minutes while being held at 750'O for about 1 hour.
operated in the same way. In this way, reduced titanium oxide with a black color was obtained.

実」U江A 乾燥水酸化チタンC大塚化学■製15gと硼素[上掲会
社製]0.3gを充分混合した上、30m1容の白金製
坩堝に満たしてシリコニット製管状電気炉内に移し、室
温で窒素ガスを150 m17分の流量割合で約1時間
流して雰囲気を調整した後、該ガスの導入を続けたまま
5000Cまで昇温させた。次いで導入ガスを水素ガス
に切り換え、同ガスを流lH120ml/分の割合で導
入しlながら900°Cで50分間保持後、電気炉の電
源を切り、水素ガスを導入したまま200℃まで冷却し
た。次いで、導入ガスを窒素ガスに切り換え、炉温か室
温まで降下した後、坩堝内容物を炉外に取り出した。得
られた還元酸化チタンは、黒色に帯色していた。
15 g of dried titanium hydroxide C manufactured by Otsuka Chemical ■ and 0.3 g of boron [manufactured by the above company] were thoroughly mixed, and the mixture was filled into a 30 m1 platinum crucible and transferred to a siliconite tubular electric furnace. After adjusting the atmosphere by flowing nitrogen gas at a flow rate of 150 ml/min for about 1 hour at room temperature, the temperature was raised to 5000 C while continuing to introduce the gas. Next, the introduced gas was switched to hydrogen gas, and the same gas was introduced at a flow rate of 120 ml/min while being held at 900°C for 50 minutes.The electric furnace was then turned off and cooled to 200°C while hydrogen gas was introduced. . Next, the introduced gas was switched to nitrogen gas, and after the temperature of the furnace was lowered to room temperature, the contents of the crucible were taken out of the furnace. The obtained reduced titanium oxide was black in color.

実施例5 乾燥水酸化チタン(上掲会社製)5gと無水硼砂05g
とに水を加えてスラリー化した後、スプレードライし混
合体を作成した。この混合ハ 体を、黒鉛坩堝内に満たしててシリコニット製管状電気
炉内に移し、窒素カスを導入して炉内を雰囲気調整した
後、150 m17分の割合で該カスを導入しながら昇
温させた。炉温が500’Oに達したとき被導入ガスを
水素ガスに切り換え、炉温を850℃に保って約1時間
同温度に保持した。次いで電源を切り、水素ガスを流し
たまま放冷し、炉温か200℃まで降下したとき被導入
ガスを窒素カスに切り換え、炉温か室温lまで降下した
後、坩堝を炉外に取り田した。かくして、黒色に帯色し
た還元酸化チタンが得られた。
Example 5 Dry titanium hydroxide (manufactured by the above company) 5g and anhydrous borax 05g
Water was added to form a slurry, and then spray-dried to create a mixture. This mixed body was filled in a graphite crucible and transferred to a siliconite tubular electric furnace, and after introducing nitrogen scum to adjust the atmosphere in the furnace, the temperature was raised while introducing the scum at a rate of 150 m 17 minutes. I let it happen. When the furnace temperature reached 500'O, the introduced gas was switched to hydrogen gas, and the furnace temperature was maintained at 850°C for about 1 hour. Next, the power was turned off, and the crucible was allowed to cool while flowing hydrogen gas. When the furnace temperature decreased to 200° C., the introduced gas was changed to nitrogen gas, and after the furnace temperature decreased to room temperature 1, the crucible was taken out of the furnace. In this way, reduced titanium oxide with a black color was obtained.

入笠夕 実施例1〜5によって得られた各々の5元酸化チタン9
0重量部、流動パラフィン10重敏部を乳鉢で良く混合
後、内径10mm、長さ20111!+の金型にて50
Kg/c+w2の加圧下に、10分間、加圧成形して得
られた成形体の両面に銀ペーストを塗布後、デジタルマ
ルチメーター[タヶダ理研製]を用いて導電性を測定し
、体積抵抗率を下式に従って換算算出した。結果は次表
−1の通りであった。
Each of the five-element titanium oxides 9 obtained in Examples 1 to 5 of Nyukasa Yu
After thoroughly mixing 0 parts by weight and 10 parts by weight of liquid paraffin in a mortar, the inner diameter is 10 mm and the length is 20111! 50 with + mold
After applying silver paste to both sides of the molded product obtained by pressure molding for 10 minutes under a pressure of Kg/c + w2, the conductivity was measured using a digital multimeter [manufactured by Tagada Riken], and the volume resistivity was determined. was calculated according to the formula below. The results are shown in Table 1 below.

(Ω・cIll)     電極間孔121(cm)表
−1 (発明の効果)
(Ω・cIll) Interelectrode hole 121 (cm) Table 1 (Effects of the invention)

Claims (5)

【特許請求の範囲】[Claims] (1)酸化チタン又は焙焼により酸化チタンとなる物質
に硼素又は硼素化合物の1種以上を添加し、不活性ガス
雰囲気又は還元性雰囲気下で500〜1100℃の温度
で焼成することを特徴とする還元酸化チタンの製法。
(1) One or more types of boron or boron compounds are added to titanium oxide or a substance that becomes titanium oxide by roasting, and the mixture is fired at a temperature of 500 to 1100°C in an inert gas atmosphere or a reducing atmosphere. A method for producing reduced titanium oxide.
(2)硼素が、結晶性硼素又はアモルファス硼素である
特許請求の範囲第1項記載の製法。
(2) The manufacturing method according to claim 1, wherein the boron is crystalline boron or amorphous boron.
(3)硼素化合物が、硼酸、硼砂、硼素系有機金属化合
物である特許請求の範囲第1項記載の製法。
(3) The method according to claim 1, wherein the boron compound is boric acid, borax, or a boron-based organometallic compound.
(4)不活性ガス雰囲気が、窒素又はアルゴン雰囲気で
ある特許請求の範囲第1項記載の製法。
(4) The manufacturing method according to claim 1, wherein the inert gas atmosphere is a nitrogen or argon atmosphere.
(5)還元性雰囲気が、水素ガス雰囲気又はカーボン充
填雰囲気である特許請求の範囲第1項記載の製法。
(5) The manufacturing method according to claim 1, wherein the reducing atmosphere is a hydrogen gas atmosphere or a carbon-filled atmosphere.
JP15449485A 1985-07-12 1985-07-12 Production of reduced titanium oxide Granted JPS6217021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15449485A JPS6217021A (en) 1985-07-12 1985-07-12 Production of reduced titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15449485A JPS6217021A (en) 1985-07-12 1985-07-12 Production of reduced titanium oxide

Publications (2)

Publication Number Publication Date
JPS6217021A true JPS6217021A (en) 1987-01-26
JPH0575698B2 JPH0575698B2 (en) 1993-10-21

Family

ID=15585470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15449485A Granted JPS6217021A (en) 1985-07-12 1985-07-12 Production of reduced titanium oxide

Country Status (1)

Country Link
JP (1) JPS6217021A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096514A (en) * 1990-01-31 1992-03-17 Hitachi Metals, Ltd. Heat-resistant ferritic cast steel having excellent thermal fatigue resistance
WO1995004700A1 (en) * 1993-08-11 1995-02-16 Sumitomo Chemical Company, Limited Metal oxide powder and process for producing the same
WO2002040601A1 (en) * 2000-11-15 2002-05-23 Kayoko Sora Titanium oxide based heat radiating coating material
JP2010040724A (en) * 2008-08-04 2010-02-18 Shimane Univ Thermoelectric conversion material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096514A (en) * 1990-01-31 1992-03-17 Hitachi Metals, Ltd. Heat-resistant ferritic cast steel having excellent thermal fatigue resistance
WO1995004700A1 (en) * 1993-08-11 1995-02-16 Sumitomo Chemical Company, Limited Metal oxide powder and process for producing the same
CN1040314C (en) * 1993-08-11 1998-10-21 住友化学工业株式会社 Metal oxide powder and process for producing the same
US6303091B1 (en) * 1993-08-11 2001-10-16 Sumitomo Chemical Company, Limited Metal oxide powder and method for the production of the same
WO2002040601A1 (en) * 2000-11-15 2002-05-23 Kayoko Sora Titanium oxide based heat radiating coating material
JP2010040724A (en) * 2008-08-04 2010-02-18 Shimane Univ Thermoelectric conversion material

Also Published As

Publication number Publication date
JPH0575698B2 (en) 1993-10-21

Similar Documents

Publication Publication Date Title
CN105418071B (en) The synthetic method of high pure and ultra-fine ZrC SiC composite granules
CN106564875A (en) Preparation method of monodisperse cobalt-nitrogen co-doped hollow carbon nano-particles
CN102225761B (en) TiC material with Ti-Si-Fe alloy as raw material and preparation method thereof
KR100444142B1 (en) ITO fine powder and method for producing the same
Heydari et al. Electroless nickel-boron coating on B4C-Nano TiB2 composite powders
JPS6217021A (en) Production of reduced titanium oxide
CN103755958B (en) A kind of preparation method of polyimides/CaCu 3 Ti 4 O coated with silver nano particle composite material
CN101891193B (en) Sol-gel Method for preparing nano vanadium carbide
KR20200038742A (en) Silver powder manufacturing method
WO2001056927A1 (en) Hexagonal lamellar compound based on indium-zinc oxide and process for producing the same
CN107311177A (en) A kind of carborundum graphite alkene composite granule and preparation method thereof
Li et al. Effect of nitriding atmosphere on the morphology of AlN nanofibers from solution blow spinning
CN113428898B (en) Potassium sodium niobate nanotubes synthesized by liquid salt and preparation method thereof
EP3816133A1 (en) Method for preparing alumina-based solid solution ceramic powder by using aluminum oxygen combustion synthesis water mist process
CN110304907A (en) A kind of preparation method of Zinc oxide-base composite conductive ceramic
JPH0353501A (en) Varistor material and manufacture thereof
KR102302205B1 (en) Silver powder manufacturing method
JPH0522649B2 (en)
CN106495194A (en) A kind of method of low temperature preparation alpha-type aluminum oxide superfine powder
CN106432989B (en) A kind of high dielectric titanium dioxide/carbon/polymer composites and preparation method thereof
JPH044975B2 (en)
JPH0433732B2 (en)
JPS6131316A (en) Production of reduced alkali metallic salt of titanic acid
JPH05178603A (en) Production of carbonaceous powder
JPH0352412B2 (en)