CN106564875A - Preparation method of monodisperse cobalt-nitrogen co-doped hollow carbon nano-particles - Google Patents
Preparation method of monodisperse cobalt-nitrogen co-doped hollow carbon nano-particles Download PDFInfo
- Publication number
- CN106564875A CN106564875A CN201610984116.2A CN201610984116A CN106564875A CN 106564875 A CN106564875 A CN 106564875A CN 201610984116 A CN201610984116 A CN 201610984116A CN 106564875 A CN106564875 A CN 106564875A
- Authority
- CN
- China
- Prior art keywords
- nitrogen
- zno
- hollow carbon
- preparation
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011852 carbon nanoparticle Substances 0.000 title claims abstract description 36
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- YDVGDXLABZAVCP-UHFFFAOYSA-N azanylidynecobalt Chemical compound [N].[Co] YDVGDXLABZAVCP-UHFFFAOYSA-N 0.000 title abstract description 21
- 238000003763 carbonization Methods 0.000 claims abstract description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 33
- 239000002245 particle Substances 0.000 claims description 18
- 229910052757 nitrogen Inorganic materials 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 239000007864 aqueous solution Substances 0.000 claims description 14
- 239000010941 cobalt Substances 0.000 claims description 14
- 229910017052 cobalt Inorganic materials 0.000 claims description 14
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 9
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 claims description 7
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 7
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 claims description 7
- 239000004246 zinc acetate Substances 0.000 claims description 7
- 150000001868 cobalt Chemical class 0.000 claims description 6
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 5
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- 239000012298 atmosphere Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 2
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims description 2
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 239000011807 nanoball Substances 0.000 claims 4
- 229910052756 noble gas Inorganic materials 0.000 claims 3
- 150000002835 noble gases Chemical class 0.000 claims 3
- 238000010438 heat treatment Methods 0.000 claims 2
- 238000002604 ultrasonography Methods 0.000 claims 2
- 238000005255 carburizing Methods 0.000 claims 1
- 229940097267 cobaltous chloride Drugs 0.000 claims 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- 239000002243 precursor Substances 0.000 abstract description 18
- 239000002077 nanosphere Substances 0.000 abstract description 15
- 229910001429 cobalt ion Inorganic materials 0.000 abstract description 2
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 abstract description 2
- 239000012792 core layer Substances 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 238000005554 pickling Methods 0.000 abstract description 2
- 238000001308 synthesis method Methods 0.000 abstract description 2
- -1 imidazolate skeleton compound Chemical class 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 28
- 229910052799 carbon Inorganic materials 0.000 description 23
- 238000000034 method Methods 0.000 description 22
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 13
- 239000003575 carbonaceous material Substances 0.000 description 12
- 239000011261 inert gas Substances 0.000 description 7
- 239000011701 zinc Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 239000011258 core-shell material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000002525 ultrasonication Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 238000001241 arc-discharge method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- JBFYUZGYRGXSFL-UHFFFAOYSA-N imidazolide Chemical compound C1=C[N-]C=N1 JBFYUZGYRGXSFL-UHFFFAOYSA-N 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000013246 bimetallic metal–organic framework Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229940011182 cobalt acetate Drugs 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000012621 metal-organic framework Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000013105 nano metal-organic framework Substances 0.000 description 1
- 239000013289 nano-metal-organic framework Substances 0.000 description 1
- 239000013384 organic framework Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及了一种单分散钴氮共掺杂中空碳纳米颗粒的制备方法,以ZnO纳米球模板和Zn源,加入钴离子以形成双金属杂化类沸石咪唑酯骨架化合物壳,即ZnO@Zn/Co‑ZIF前驱体;接着将ZnO@Zn/Co‑ZIF前驱体进行高温碳化,直接得到比表面积为400‑600m2g‑1的钴氮共掺杂中空碳纳米颗粒。本发明合成方法简单,不需用酸洗除去核层模板,可实现环境友好的制备工艺。The invention relates to a preparation method of monodisperse cobalt-nitrogen co-doped hollow carbon nanoparticles, using ZnO nanosphere template and Zn source, adding cobalt ions to form a double metal hybrid zeolite-like imidazolate skeleton compound shell, that is, ZnO@ Zn/Co-ZIF precursor; followed by high-temperature carbonization of the ZnO@Zn/Co-ZIF precursor to directly obtain cobalt-nitrogen co-doped hollow carbon nanoparticles with a specific surface area of 400-600m 2 g ‑1 . The synthesis method of the invention is simple, does not need to use pickling to remove the core layer template, and can realize an environment-friendly preparation process.
Description
技术领域technical field
本发明属于纳米材料技术领域,特别涉及一种单分散钴氮共掺杂中空碳纳米颗粒的制备方法。The invention belongs to the technical field of nanometer materials, in particular to a preparation method of monodisperse cobalt nitrogen co-doped hollow carbon nanoparticles.
背景技术Background technique
近年来,杂原子(如氮、硼、磷、硫、钴等)掺杂的多孔碳纳米材料,特别是具有特殊孔结构的中空结构碳纳米材料,因其具有较大的比表面积和孔体积,较低的密度,以及良好的物理和化学稳定性等优点,在催化,吸附剂,电极材料和电池等领域具有广泛的应用。一方面,杂原子被引入碳结构后,因其与碳原子键长、价电子和原子尺寸不同,相邻碳原子附近位点出现缺陷,电荷分布不均匀,碳材料的电中性受破坏,更有利于构筑碳材料的催化活性中心。另一方面,中空结构的碳材料具有独特的大孔空芯和多孔碳壳,能够大大改善电子的迁移和扩散,从而提高碳材料的催化活性。因此,制备杂原子掺杂的中空碳材料具有重要的研究意义。In recent years, porous carbon nanomaterials doped with heteroatoms (such as nitrogen, boron, phosphorus, sulfur, cobalt, etc.), especially hollow-structured carbon nanomaterials with special pore structures, have been , low density, and good physical and chemical stability, it has a wide range of applications in the fields of catalysis, adsorbents, electrode materials, and batteries. On the one hand, after heteroatoms are introduced into the carbon structure, due to the difference in bond length, valence electrons, and atomic size with carbon atoms, defects appear in sites near adjacent carbon atoms, the charge distribution is uneven, and the electrical neutrality of carbon materials is destroyed. It is more conducive to constructing the catalytic active center of carbon materials. On the other hand, carbon materials with hollow structures have unique macroporous hollow cores and porous carbon shells, which can greatly improve the migration and diffusion of electrons, thereby enhancing the catalytic activity of carbon materials. Therefore, the preparation of heteroatom-doped hollow carbon materials is of great research significance.
目前,制备中空碳纳米颗粒的制备方法有:模板法、气相沉积法、电弧放电法、激光蒸发法等。其中模板法是采用最广泛的一种制备中空碳颗粒的方法。模板法可分为硬模板法和软模板法。硬模板法大多以单分散的硅球、聚合物球等为模板,然后在其表面生长碳源化合物,得到核壳结构复合材料,碳化之后选择合适的方法去除模板得到中空碳颗粒。尽管硬模板法制备的中空碳颗粒尺寸均一,且具有较高的单分散性,但是在去模板过程中,模板去除不彻底会致使其纯度不高,甚至容易造成碳颗粒的破碎或塌陷。At present, the preparation methods of hollow carbon nanoparticles include: template method, vapor deposition method, arc discharge method, laser evaporation method and so on. Among them, the template method is the most widely used method for preparing hollow carbon particles. Template method can be divided into hard template method and soft template method. Most of the hard template methods use monodisperse silicon spheres, polymer spheres, etc. as templates, and then grow carbon source compounds on their surfaces to obtain core-shell structure composites. After carbonization, choose an appropriate method to remove the templates to obtain hollow carbon particles. Although the hollow carbon particles prepared by the hard template method are uniform in size and have high monodispersity, incomplete removal of the template during the template removal process will result in low purity, and even easily cause the carbon particles to break or collapse.
气相沉积法是合成中空碳颗粒常用方法之一。其原理是在流动气氛下,有机气体作为碳源,在高温条件下热解,使催化剂表面沉积生长固态碳的过程。由于气相沉积法一般用金属氧化物作催化剂,但对催化剂的作用机制研究甚少,因此在合成过程中有副产物生成。因此,该方法制得的中空碳颗粒纯度也不高。Vapor deposition is one of the commonly used methods for the synthesis of hollow carbon particles. The principle is that in a flowing atmosphere, organic gas is used as a carbon source, pyrolyzed under high temperature conditions, and the process of depositing and growing solid carbon on the surface of the catalyst. Since metal oxides are generally used as catalysts in the vapor phase deposition method, but there is little research on the mechanism of the catalysts, so by-products are generated during the synthesis process. Therefore, the purity of hollow carbon particles prepared by this method is not high.
电弧放电法也是制备中空碳颗粒的一种方法,根据中国专利CN1454839,其具体实施方式是在含有石墨阳极和阴极的电弧反应室中通惰性气体,以脉冲电流施加电压于两极之间,从而产生电弧放电反应,收集沉积于阴极的产物即为中空碳颗粒,该碳颗粒纯度较高,但成本也很高。The arc discharge method is also a method for preparing hollow carbon particles. According to the Chinese patent CN1454839, the specific implementation method is to pass an inert gas in an arc reaction chamber containing a graphite anode and a cathode, and apply a voltage between the two electrodes with a pulse current, thereby generating Arc discharge reaction, the product collected and deposited on the cathode is hollow carbon particles, the carbon particles have high purity, but the cost is also high.
近年来,以金属-有机骨架材料,特别是类沸石咪唑酯骨架材料ZIF-67作为前驱体,高温碳化可以直接得到钴氮共掺杂的多孔碳材料。在文献“Well-definedcarbonpolyhedrons prepared from nano metal-organic frameworks for oxygenreduction.J.Mater.Chem.A,2(2014)11606–11613”中,Ruqiang Zou等报道了粒径可控的钴氮共掺杂多孔碳纳米颗粒,其缺点在于制得的碳材料比表面积(100-400m2g-1)相对较小。在文献“FromBimetallic Metal-Organic Framework to Porous Carbon:High SurfaceArea and Multicomponent Active Dopants for ExcellentElectrocatalysis.Adv.Mater.,27(2015)5010–5016”中,Hai-Long Jiang等报道了基于双金属杂化金属-有机骨架(Zn/Co-ZIF)前驱体的多孔碳纳米材料。通过调控反应物中Zn/Co不同的摩尔比(0、0.2、5、10、20、40、100),可以大大改善碳材料的比表面积(270、362、550、1090、1225、1480、2184m2g-1),并且在碳材料中引入丰富的CoNx活性催化位点。其中当Zn/Co摩尔比为20时,得到的碳材料表现出最佳的电催化性能。以上文献报道得到的碳材料都是单分散的实心多孔碳纳米颗粒,不具有中空结构。In recent years, using metal-organic framework materials, especially the zeolite imidazolate framework material ZIF-67, as a precursor, high-temperature carbonization can directly obtain cobalt-nitrogen co-doped porous carbon materials. In the document "Well-definedcarbonpolyhedrons prepared from nano metal-organic frameworks for oxygenreduction.J.Mater.Chem.A, 2(2014) 11606–11613", Ruqiang Zou et al. reported cobalt-nitrogen co-doped porous with controllable particle size The disadvantage of carbon nanoparticles is that the specific surface area (100-400m 2 g -1 ) of the prepared carbon material is relatively small. In the literature "From Bimetallic Metal-Organic Framework to Porous Carbon: High SurfaceArea and Multicomponent Active Dopants for Excellent Electrocatalysis. Adv. Mater., 27 (2015) 5010–5016", Hai-Long Jiang et al. reported that based on bimetallic hybrid metal- Porous carbon nanomaterials from organic framework (Zn/Co-ZIF) precursors. By adjusting the different molar ratios of Zn/Co in the reactant (0, 0.2, 5, 10, 20, 40, 100), the specific surface area of the carbon material can be greatly improved (270, 362, 550, 1090, 1225, 1480, 2184m 2 g -1 ), and introduce abundant CoN x active catalytic sites in carbon materials. Among them, when the Zn/Co molar ratio is 20, the obtained carbon material exhibits the best electrocatalytic performance. The carbon materials reported in the literature above are all monodisperse solid porous carbon nanoparticles without a hollow structure.
为克服现有技术的不足,探究一种操作简单,成本低的制备杂原子掺杂中空碳颗粒方法,以发挥其性能优势具有重要的意义。In order to overcome the shortcomings of the existing technology, it is of great significance to explore a simple and low-cost method for preparing heteroatom-doped hollow carbon particles to take advantage of its performance.
发明内容Contents of the invention
本发明的目的在于提供一种单分散钴氮共掺杂中空碳纳米颗粒的制备方法,克服现有技术中制备的多孔碳纳米颗粒不具有中空结构、比表面积低的缺点。The purpose of the present invention is to provide a method for preparing monodisperse cobalt-nitrogen co-doped hollow carbon nanoparticles, which overcomes the shortcomings of the porous carbon nanoparticles prepared in the prior art that do not have a hollow structure and have a low specific surface area.
本发明以ZnO纳米球模板和Zn源,加入钴离子以形成双金属杂化类沸石咪唑酯骨架化合物(Zn/Co-ZIF)壳,即ZnO@Zn/Co-ZIF前驱体;接着将ZnO@Zn/Co-ZIF前驱体进行高温碳化,直接得到钴氮共掺杂中空碳纳米颗粒,无去模板步骤。In the present invention, ZnO nanosphere template and Zn source are used to add cobalt ions to form a double metal hybrid zeolite imidazolate framework compound (Zn/Co-ZIF) shell, that is, ZnO@Zn/Co-ZIF precursor; then ZnO@ The Zn/Co-ZIF precursor is subjected to high-temperature carbonization to directly obtain cobalt-nitrogen co-doped hollow carbon nanoparticles without a template removal step.
本发明提供了一种单分散钴氮共掺杂中空碳纳米颗粒的制备方法,包括如下步骤:The invention provides a method for preparing monodisperse cobalt-nitrogen co-doped hollow carbon nanoparticles, comprising the following steps:
1)ZnO纳米球的制备:1) Preparation of ZnO nanospheres:
将0.1mol/L的醋酸锌水溶液与0.1mol/L三乙醇胺水溶液搅拌混匀后,水浴中超声反应;然后静置10h;离心、洗涤、干燥得到粒径范围为150-250nm的ZnO纳米球;Stir and mix 0.1 mol/L zinc acetate aqueous solution and 0.1 mol/L triethanolamine aqueous solution, then ultrasonically react in a water bath; then stand still for 10 hours; centrifuge, wash, and dry to obtain ZnO nanospheres with a particle size range of 150-250 nm;
2)ZnO@Zn/Co-ZIF前驱体的制备:2) Preparation of ZnO@Zn/Co-ZIF precursor:
将钴盐和步骤1)中所得ZnO纳米球加入到N,N-二甲基甲酰胺(DMF)/水组成的混合溶液中,在室温下超声充分扩散;然后加入2-甲基咪唑混合均匀,混匀后将溶液转移至水热釜中,将水热釜置于50-70℃烘箱中反应3-5h,反应结束后,经离心分离、洗涤、干燥,得到ZnO@Zn/Co-ZIF前驱体;Add the cobalt salt and the ZnO nanospheres obtained in step 1) to a mixed solution composed of N,N-dimethylformamide (DMF)/water, and ultrasonically diffuse fully at room temperature; then add 2-methylimidazole and mix well , after mixing, transfer the solution to a hydrothermal kettle, place the hydrothermal kettle in an oven at 50-70°C for 3-5 hours, after the reaction, centrifuge, wash and dry to obtain ZnO@Zn/Co-ZIF Precursor;
3)碳化步骤:3) Carbonization step:
将步骤2)中所得ZnO@Zn/Co-ZIF前驱体置于管式炉中,在惰性气体的氛围中升温碳化,然后自然冷却至室温,得单分散钴氮共掺杂中空碳纳米颗粒;The ZnO@Zn/Co-ZIF precursor obtained in step 2) is placed in a tube furnace, heated and carbonized in an inert gas atmosphere, and then naturally cooled to room temperature to obtain monodisperse cobalt-nitrogen co-doped hollow carbon nanoparticles;
上述步骤1)中醋酸锌水溶液与三乙醇胺水溶液体积比为1:5,水浴温度为20-50℃,超声反应时间为20-40min;The volume ratio of zinc acetate aqueous solution to triethanolamine aqueous solution in the above step 1) is 1:5, the water bath temperature is 20-50°C, and the ultrasonic reaction time is 20-40min;
上述步骤2)中2-甲基咪唑与ZnO纳米球的摩尔比为4-32:1;The molar ratio of 2-methylimidazole and ZnO nanospheres in the above step 2) is 4-32:1;
上述步骤2)中ZnO与钴盐的摩尔比为14-35:1;The mol ratio of ZnO and cobalt salt in above-mentioned step 2) is 14-35:1;
上述步骤2)中所述钴盐为硝酸钴、醋酸钴或氯化钴;The cobalt salt described in the above step 2) is cobalt nitrate, cobalt acetate or cobalt chloride;
上述步骤2)中DMF与水的体积比为1-3:1;The volume ratio of DMF and water in the above step 2) is 1-3:1;
上述步骤3)中惰性气体的流量为50-150mL/min,碳化温度为800-900℃,碳化时间为1-3h;The flow rate of the inert gas in the above step 3) is 50-150mL/min, the carbonization temperature is 800-900°C, and the carbonization time is 1-3h;
上述步骤3)中惰性气体为氮气或氩气;The inert gas in the above step 3) is nitrogen or argon;
与现有技术相比,本发明具有如下优点:Compared with prior art, the present invention has following advantage:
1)本发明通过调节ZnO和Co盐的摩尔比,制备不同Co含量的核壳结构ZnO@Zn/Co-ZIF纳米多面体复合材料;1) The present invention prepares core-shell structure ZnO@Zn/Co-ZIF nanopolyhedron composites with different Co contents by adjusting the molar ratio of ZnO and Co salt;
2)本发明以ZnO@Zn/Co-ZIF为前驱体,通过控制ZnO的粒径(150-250nm)来控制碳化过程中ZnO对碳的消耗,将ZnO完全反应后得到大孔空芯碳纳米颗粒;2) The present invention uses ZnO@Zn/Co-ZIF as a precursor, controls the carbon consumption of ZnO in the carbonization process by controlling the particle size (150-250nm) of ZnO, and obtains macroporous hollow carbon nanometer after complete reaction of ZnO particles;
3)本发明制备的中空碳纳米颗粒可实现壳层碳材料均匀的钴氮共掺杂,并保持多面体形貌;3) The hollow carbon nanoparticles prepared by the present invention can realize uniform co-doping of cobalt and nitrogen in the shell carbon material, and maintain the polyhedral morphology;
4)本发明制备的中空碳纳米颗粒具有良好的单分散性和较高的比表面积(400-600m2g-1)4) The hollow carbon nanoparticles prepared by the present invention have good monodispersity and high specific surface area (400-600m 2 g -1 )
5)本发明合成方法简单,不需用酸洗除去核层模板,可实现环境友好的制备工艺。5) The synthesis method of the present invention is simple, does not need to use pickling to remove the core layer template, and can realize an environmentally friendly preparation process.
附图说明Description of drawings
图1为实施例1中制备的ZnO纳米球的扫描电镜(SEM)照片(500nm标尺下)。Fig. 1 is the scanning electron microscope (SEM) picture (under 500nm scale) of the ZnO nanosphere prepared in embodiment 1.
图2为实施例1中制备的ZnO@Zn/Co-ZIF前驱体的透射电镜(TEM)照片(100nm标尺下)。FIG. 2 is a transmission electron microscope (TEM) photo (under 100 nm scale) of the ZnO@Zn/Co-ZIF precursor prepared in Example 1.
图3为实施例1中制备的钴氮共掺杂中空碳纳米颗粒的透射电镜(TEM)照片(100nm标尺下)。3 is a transmission electron microscope (TEM) photo (under 100 nm scale) of the cobalt-nitrogen co-doped hollow carbon nanoparticles prepared in Example 1.
图4为实施例1中制备的钴氮共掺杂中空碳纳米颗粒的X射线衍射(XRD)谱图。4 is an X-ray diffraction (XRD) spectrum of the cobalt-nitrogen co-doped hollow carbon nanoparticles prepared in Example 1.
图5为实施例1中制备的钴氮共掺杂中空碳纳米颗粒的氮气吸附曲线图(77K)。5 is a nitrogen adsorption curve (77K) of cobalt-nitrogen co-doped hollow carbon nanoparticles prepared in Example 1.
具体实施方式detailed description
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with specific embodiments. It should be understood that these descriptions are exemplary only, and are not intended to limit the scope of the present invention.
实施例1Example 1
(1)在一锥形瓶中加入40mL浓度为0.1mol/L醋酸锌水溶液,200mL浓度为0.1mol/L三乙醇胺水溶液,室温下搅拌30min,接着将其在30℃的水浴中超声辐照20min后,静置10h。经离心、洗涤、干燥,得到ZnO纳米球。(1) Add 40 mL of 0.1 mol/L zinc acetate aqueous solution and 200 mL of 0.1 mol/L triethanolamine aqueous solution into an Erlenmeyer flask, stir at room temperature for 30 min, and then irradiate it ultrasonically in a water bath at 30°C for 20 min After that, let it stand for 10h. After centrifugation, washing and drying, ZnO nanospheres are obtained.
(2)将步骤1)得到80.0mg ZnO纳米球和20.0mg硝酸钴加入到盛有DMF和水混合溶剂(64mL,体积比3:1)的锥形瓶中,室温下超声20min使其充分扩散,接着加入0.660g 2-甲基咪唑,超声5min后,将其转移至水热水热釜中,置于50℃烘箱中反应5h,反应结束后,经离心、洗涤、干燥,得到ZnO@Zn/Co-ZIF前驱体。(2) Add 80.0 mg of ZnO nanospheres and 20.0 mg of cobalt nitrate obtained in step 1 to an Erlenmeyer flask containing a mixed solvent of DMF and water (64 mL, volume ratio 3:1), and ultrasonically 20 min at room temperature to fully diffuse , then add 0.660g of 2-methylimidazole, after ultrasonication for 5min, transfer it to a hot water kettle, place it in a 50°C oven for 5h, after the reaction, centrifuge, wash and dry to obtain ZnO@Zn /Co-ZIF precursor.
(3)将步骤2)得到的ZnO@Zn/Co-ZIF前驱体置于高温炉中,在氮气气氛中以5℃/min的速率升温至800℃,惰性气体流速为50mL/min。在800℃下碳化3h后,自然冷却至室温,得到本发明所述的单分散钴氮共掺杂中空碳纳米颗粒。(3) The ZnO@Zn/Co-ZIF precursor obtained in step 2) was placed in a high-temperature furnace, and the temperature was raised to 800 °C at a rate of 5 °C/min in a nitrogen atmosphere with an inert gas flow rate of 50 mL/min. After carbonizing at 800° C. for 3 hours, it was naturally cooled to room temperature to obtain the monodisperse cobalt-nitrogen co-doped hollow carbon nanoparticles described in the present invention.
图1为ZnO纳米球的扫描电镜(SEM)照片(500nm标尺下);图2为核壳结构ZnO@Zn/Co-ZIF前驱体的透射电镜(TEM)照片(100nm标尺下);图3为钴氮共掺杂中空碳纳米颗粒的透射电镜(TEM)照片(100nm标尺下);图4为所得钴氮共掺杂中空碳纳米颗粒的XRD谱图;图4为所得钴氮共掺杂中空碳纳米颗粒的氮气吸附曲线图(77K)。Fig. 1 is a scanning electron microscope (SEM) photograph (under 500nm scale) of ZnO nanosphere; Fig. 2 is a transmission electron microscope (TEM) photograph (under 100nm scale) of core-shell structure ZnO@Zn/Co-ZIF precursor; Fig. 3 is The transmission electron microscope (TEM) picture (under 100nm scale) of cobalt-nitrogen co-doped hollow carbon nanoparticles; Fig. 4 is the XRD spectrogram of gained cobalt-nitrogen co-doped hollow carbon nanoparticles; Fig. 4 is gained cobalt-nitrogen co-doped hollow carbon nanoparticles Nitrogen adsorption curve (77K) of carbon nanoparticles.
从图1可以看出,步骤(1)制备的ZnO纳米球具有均匀的粒径(200±20nm)。从图2可以清楚地看到核壳结构ZnO@Zn/Co-ZIF纳米颗粒,其形貌为多面体,ZnO核的粒径为150±20nm,壳层ZIF-8厚度为70±10nm。如图3所示,碳化后得到的中空碳保持了原有的多面体形貌,中空芯直径为150±20nm,碳壁厚度为15±5nm,图中白色圆圈内黑色颗粒为被石墨碳包裹的钴纳米粒子。图4为所得钴氮共掺杂中空碳纳米颗粒的XRD谱图,衍射峰位置大约在2θ=26°对应石墨结构的(002)晶面,在2θ=44°和51°对应面心立方钴晶体的(111)和(200)晶面。图5为所得钴氮共掺杂中空碳纳米颗粒的氮气吸附曲线图(77K),计算得到其比表面积(BET surface area)为420m2g-1。It can be seen from Figure 1 that the ZnO nanospheres prepared in step (1) have a uniform particle size (200±20nm). From Figure 2, it can be clearly seen that the core-shell structure ZnO@Zn/Co-ZIF nanoparticles are polyhedral in shape, the particle size of the ZnO core is 150±20nm, and the thickness of the shell ZnO-8 is 70±10nm. As shown in Figure 3, the hollow carbon obtained after carbonization maintains the original polyhedron shape, the hollow core diameter is 150±20nm, and the carbon wall thickness is 15±5nm. The black particles in the white circles in the figure are wrapped by graphite carbon. Cobalt nanoparticles. Figure 4 is the XRD spectrum of the obtained cobalt-nitrogen co-doped hollow carbon nanoparticles. The diffraction peak position is approximately at 2θ=26° corresponding to the (002) crystal plane of the graphite structure, and at 2θ=44° and 51° corresponding to face-centered cubic cobalt The (111) and (200) crystal planes of the crystal. Fig. 5 is the nitrogen adsorption curve (77K) of the obtained cobalt-nitrogen co-doped hollow carbon nanoparticles, and the calculated specific surface area (BET surface area) is 420 m 2 g -1 .
实施例2Example 2
(1)在一锥形瓶中加入40mL浓度为0.1mol/L醋酸锌水溶液,200mL浓度为0.1mol/L三乙醇胺水溶液,室温下搅拌30min,接着将其在30℃的水浴中超声辐照20min后,静置10h。经离心、洗涤、干燥,得到ZnO纳米球。(1) Add 40 mL of 0.1 mol/L zinc acetate aqueous solution and 200 mL of 0.1 mol/L triethanolamine aqueous solution into an Erlenmeyer flask, stir at room temperature for 30 min, and then irradiate it ultrasonically in a water bath at 30°C for 20 min After that, let it stand for 10h. After centrifugation, washing and drying, ZnO nanospheres are obtained.
(2)将步骤1)得到80.0mg ZnO纳米球和12.0mg硝酸钴加入到盛有DMF和水混合溶剂(64mL,体积比2:1)的锥形瓶中,室温下超声20min使其充分扩散,接着加入0.660g 2-甲基咪唑,超声5min后,将其转移至水热水热釜中,置于60℃烘箱中反应4h,反应结束后,经离心、洗涤、干燥,得到ZnO@Zn/Co-ZIF前驱体。(2) Add 80.0 mg of ZnO nanospheres and 12.0 mg of cobalt nitrate obtained in step 1 to an Erlenmeyer flask containing a mixed solvent of DMF and water (64 mL, volume ratio 2:1), and ultrasonicate for 20 min at room temperature to fully diffuse , then add 0.660g of 2-methylimidazole, after ultrasonication for 5min, transfer it to a hot water kettle, put it in a 60°C oven for 4h, after the reaction, centrifuge, wash and dry to get ZnO@Zn /Co-ZIF precursor.
(3)将步骤2)得到的ZnO@Zn/Co-ZIF前驱体置于高温炉中,在氮气气氛中以5℃/min的速率升温至900℃,惰性气体流速为50mL/min。在900℃下碳化3h后,自然冷却至室温,得到本发明所述的单分散钴氮共掺杂中空碳纳米颗粒。(3) The ZnO@Zn/Co-ZIF precursor obtained in step 2) was placed in a high-temperature furnace, and the temperature was raised to 900 °C at a rate of 5 °C/min in a nitrogen atmosphere, and the flow rate of the inert gas was 50 mL/min. After carbonization at 900° C. for 3 hours, it was naturally cooled to room temperature to obtain the monodisperse cobalt-nitrogen co-doped hollow carbon nanoparticles described in the present invention.
实施例3Example 3
(1)在一锥形瓶中加入40mL浓度为0.1mol/L醋酸锌水溶液,200mL浓度为0.1mol/L三乙醇胺水溶液,室温下搅拌30min,接着将其在30℃的水浴中超声辐照20min后,静置10h。经离心、洗涤、干燥,得到ZnO纳米球。(1) Add 40 mL of 0.1 mol/L zinc acetate aqueous solution and 200 mL of 0.1 mol/L triethanolamine aqueous solution into an Erlenmeyer flask, stir at room temperature for 30 min, and then irradiate it ultrasonically in a water bath at 30°C for 20 min After that, let it stand for 10h. After centrifugation, washing and drying, ZnO nanospheres are obtained.
(2)将步骤1)得到80.0mg ZnO纳米球和8.0mg硝酸钴加入到盛有DMF和水混合溶剂(64mL,体积比1:1)的锥形瓶中,室温下超声20min使其充分扩散,接着加入1.32g 2-甲基咪唑,超声5min后,将锥形瓶中的溶液倒入水热釜中,置于70℃烘箱中反应3h,反应结束后,经离心、洗涤、干燥,得到ZnO@Zn/Co-ZIF前驱体。(2) Add 80.0 mg of ZnO nanospheres and 8.0 mg of cobalt nitrate obtained in step 1 to an Erlenmeyer flask filled with DMF and water mixed solvent (64 mL, volume ratio 1:1), and ultrasonically 20 min at room temperature to make it fully diffuse , followed by adding 1.32g of 2-methylimidazole, after ultrasonication for 5 minutes, pour the solution in the conical flask into a hydrothermal kettle, place it in a 70°C oven for 3 hours, after the reaction, centrifuge, wash and dry to obtain ZnO@Zn/Co-ZIF precursor.
(3)将步骤2)得到的ZnO@Zn/Co-ZIF前驱体置于高温炉中,在氮气气氛中以5℃/min的速率升温至900℃,惰性气体流速为50mL/min。在900℃下碳化3h后,自然冷却至室温,得到本发明所述的单分散钴氮共掺杂中空碳纳米颗粒。(3) The ZnO@Zn/Co-ZIF precursor obtained in step 2) was placed in a high-temperature furnace, and the temperature was raised to 900 °C at a rate of 5 °C/min in a nitrogen atmosphere, and the flow rate of the inert gas was 50 mL/min. After carbonization at 900° C. for 3 hours, it was naturally cooled to room temperature to obtain the monodisperse cobalt-nitrogen co-doped hollow carbon nanoparticles described in the present invention.
尽管已经详细描述了本发明的实施方式,但是应该理解的是,在不偏离本发明的精神和范围的情况下,可以对本发明的实施方式做出各种改变、替换和变更。Although the embodiments of the present invention have been described in detail, it should be understood that the various changes, substitutions and alterations could be made hereto without departing from the spirit and scope of the invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610984116.2A CN106564875B (en) | 2016-11-09 | 2016-11-09 | A kind of preparation method of the nitrogen co-doped hollow carbon nano-particle of monodisperse cobalt |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610984116.2A CN106564875B (en) | 2016-11-09 | 2016-11-09 | A kind of preparation method of the nitrogen co-doped hollow carbon nano-particle of monodisperse cobalt |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106564875A true CN106564875A (en) | 2017-04-19 |
CN106564875B CN106564875B (en) | 2019-07-23 |
Family
ID=58540608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610984116.2A Active CN106564875B (en) | 2016-11-09 | 2016-11-09 | A kind of preparation method of the nitrogen co-doped hollow carbon nano-particle of monodisperse cobalt |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106564875B (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107188164A (en) * | 2017-07-11 | 2017-09-22 | 济南大学 | A kind of preparation method of rGO/ZnO tiny balloons |
CN108043405A (en) * | 2017-11-17 | 2018-05-18 | 山西师范大学 | A kind of preparation method of different valence state cobalt-carbon serial nano composite material |
CN108682872A (en) * | 2018-05-22 | 2018-10-19 | 江苏理工学院 | A kind of preparation method of the nitrogen co-doped grading-hole carbon nanosheet oxygen reduction catalyst of iron cobalt |
CN109174155A (en) * | 2018-09-19 | 2019-01-11 | 安徽师范大学 | A kind of preparation method and applications of loose porous coated with silica Co-N-C hollow Nano tube material |
CN109261154A (en) * | 2018-08-30 | 2019-01-25 | 武汉理工大学 | Monatomic structural material of class graphene frame load and its preparation method and application |
CN109485102A (en) * | 2018-12-19 | 2019-03-19 | 大连理工大学 | A kind of preparation method of special construction metallic compound/carbon composite |
CN110336032A (en) * | 2019-07-10 | 2019-10-15 | 中国人民解放军国防科技大学 | Preparation method of nano-cobalt-loaded nitrogen-doped three-dimensional porous carbon and application of nano-cobalt-loaded nitrogen-doped three-dimensional porous carbon in lithium-sulfur battery |
CN110828785A (en) * | 2019-09-25 | 2020-02-21 | 肇庆市华师大光电产业研究院 | Preparation method of sodium ion battery cathode material of zinc-cobalt bimetallic sulfide |
CN110853937A (en) * | 2019-11-29 | 2020-02-28 | 江苏理工学院 | A kind of preparation method of nickel-cobalt bimetallic selenide/carbon composite for supercapacitor |
CN112374488A (en) * | 2020-11-17 | 2021-02-19 | 山东大学 | Preparation method of hollow boron-nitrogen co-doped carbon nanospheres with high boron content |
CN112509823A (en) * | 2020-12-22 | 2021-03-16 | 上海第二工业大学 | Hollow carbon microsphere supercapacitor electrode material and solvent-free preparation method thereof |
CN112678802A (en) * | 2020-08-13 | 2021-04-20 | 北京化工大学 | Preparation method of cobalt-nitrogen co-doped carbon nanocage |
CN112993287A (en) * | 2019-12-12 | 2021-06-18 | 中国科学院大连化学物理研究所 | Nonmetal catalyst and preparation and application thereof |
CN114220971A (en) * | 2021-12-16 | 2022-03-22 | 西南大学 | Three-dimensional ordered cobalt-nitrogen microporous carbon material with strong catalytic action and preparation method and application thereof |
CN115007176A (en) * | 2022-05-13 | 2022-09-06 | 江苏亚泰化工有限公司 | A double-shell ZnS@ZnxCo1-xS catalyst and its synthesis method and application |
CN115321496A (en) * | 2022-07-18 | 2022-11-11 | 深圳大学 | Preparation method of cobalt carbonitride material, cobalt carbonitride material and electrocatalyst |
RU2791238C1 (en) * | 2021-12-01 | 2023-03-06 | Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН) | Porous carbon material and method for its production |
CN115744876A (en) * | 2022-06-22 | 2023-03-07 | 江苏理工学院 | Synthetic method and application of two-dimensional layered hollow carbon nanoparticle array superstructure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105413748A (en) * | 2015-10-27 | 2016-03-23 | 辽宁大学 | A kind of ZnO@ZIF-8 core-shell structure complex and its preparation method and application |
-
2016
- 2016-11-09 CN CN201610984116.2A patent/CN106564875B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105413748A (en) * | 2015-10-27 | 2016-03-23 | 辽宁大学 | A kind of ZnO@ZIF-8 core-shell structure complex and its preparation method and application |
Non-Patent Citations (1)
Title |
---|
BO YU ET AL.: "Self-template synthesis of core–shell ZnO@ZIF-8 nanospheres and the photocatalysis under UV irradiation", 《MATERIALS LETTERS》 * |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107188164A (en) * | 2017-07-11 | 2017-09-22 | 济南大学 | A kind of preparation method of rGO/ZnO tiny balloons |
CN108043405B (en) * | 2017-11-17 | 2021-02-02 | 山西师范大学 | Preparation method of cobalt-carbon series nano composite materials with different valence states |
CN108043405A (en) * | 2017-11-17 | 2018-05-18 | 山西师范大学 | A kind of preparation method of different valence state cobalt-carbon serial nano composite material |
CN108682872A (en) * | 2018-05-22 | 2018-10-19 | 江苏理工学院 | A kind of preparation method of the nitrogen co-doped grading-hole carbon nanosheet oxygen reduction catalyst of iron cobalt |
CN109261154A (en) * | 2018-08-30 | 2019-01-25 | 武汉理工大学 | Monatomic structural material of class graphene frame load and its preparation method and application |
CN109261154B (en) * | 2018-08-30 | 2021-07-06 | 武汉理工大学 | Graphene-like framework-supported single-atom structure material, preparation method and application thereof |
CN109174155A (en) * | 2018-09-19 | 2019-01-11 | 安徽师范大学 | A kind of preparation method and applications of loose porous coated with silica Co-N-C hollow Nano tube material |
CN109174155B (en) * | 2018-09-19 | 2021-05-14 | 安徽师范大学 | Preparation method and application of a loose and porous silica-coated Co-N-C hollow nanotube material |
CN109485102A (en) * | 2018-12-19 | 2019-03-19 | 大连理工大学 | A kind of preparation method of special construction metallic compound/carbon composite |
CN110336032A (en) * | 2019-07-10 | 2019-10-15 | 中国人民解放军国防科技大学 | Preparation method of nano-cobalt-loaded nitrogen-doped three-dimensional porous carbon and application of nano-cobalt-loaded nitrogen-doped three-dimensional porous carbon in lithium-sulfur battery |
CN110828785A (en) * | 2019-09-25 | 2020-02-21 | 肇庆市华师大光电产业研究院 | Preparation method of sodium ion battery cathode material of zinc-cobalt bimetallic sulfide |
CN110828785B (en) * | 2019-09-25 | 2022-03-08 | 肇庆市华师大光电产业研究院 | Preparation method of sodium ion battery cathode material of zinc-cobalt bimetallic sulfide |
CN110853937A (en) * | 2019-11-29 | 2020-02-28 | 江苏理工学院 | A kind of preparation method of nickel-cobalt bimetallic selenide/carbon composite for supercapacitor |
CN112993287A (en) * | 2019-12-12 | 2021-06-18 | 中国科学院大连化学物理研究所 | Nonmetal catalyst and preparation and application thereof |
CN112678802B (en) * | 2020-08-13 | 2023-01-24 | 北京化工大学 | Preparation method of cobalt-nitrogen co-doped carbon nanocage |
CN112678802A (en) * | 2020-08-13 | 2021-04-20 | 北京化工大学 | Preparation method of cobalt-nitrogen co-doped carbon nanocage |
CN112374488A (en) * | 2020-11-17 | 2021-02-19 | 山东大学 | Preparation method of hollow boron-nitrogen co-doped carbon nanospheres with high boron content |
CN112374488B (en) * | 2020-11-17 | 2022-07-19 | 山东大学 | A kind of preparation method of hollow boron-nitrogen co-doped carbon nanospheres with high boron content |
CN112509823A (en) * | 2020-12-22 | 2021-03-16 | 上海第二工业大学 | Hollow carbon microsphere supercapacitor electrode material and solvent-free preparation method thereof |
CN112509823B (en) * | 2020-12-22 | 2022-02-15 | 上海第二工业大学 | Hollow carbon microsphere supercapacitor electrode material and solvent-free preparation method thereof |
RU2791238C1 (en) * | 2021-12-01 | 2023-03-06 | Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН) | Porous carbon material and method for its production |
CN114220971A (en) * | 2021-12-16 | 2022-03-22 | 西南大学 | Three-dimensional ordered cobalt-nitrogen microporous carbon material with strong catalytic action and preparation method and application thereof |
CN115007176A (en) * | 2022-05-13 | 2022-09-06 | 江苏亚泰化工有限公司 | A double-shell ZnS@ZnxCo1-xS catalyst and its synthesis method and application |
CN115007176B (en) * | 2022-05-13 | 2024-03-08 | 江苏亚泰化工有限公司 | Double-shell ZnS@Zn x Co 1-x S catalyst and synthesis method and application thereof |
CN115744876A (en) * | 2022-06-22 | 2023-03-07 | 江苏理工学院 | Synthetic method and application of two-dimensional layered hollow carbon nanoparticle array superstructure |
CN115744876B (en) * | 2022-06-22 | 2023-12-22 | 江苏理工学院 | Synthesis method and application of two-dimensional layered hollow carbon nanoparticle array superstructure |
CN115321496A (en) * | 2022-07-18 | 2022-11-11 | 深圳大学 | Preparation method of cobalt carbonitride material, cobalt carbonitride material and electrocatalyst |
CN115321496B (en) * | 2022-07-18 | 2024-04-02 | 深圳大学 | Preparation method of cobalt carbon-nitrogen material, cobalt carbon-nitrogen material and electrocatalyst |
Also Published As
Publication number | Publication date |
---|---|
CN106564875B (en) | 2019-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106564875B (en) | A kind of preparation method of the nitrogen co-doped hollow carbon nano-particle of monodisperse cobalt | |
CN109956463B (en) | A kind of carbon nanotube and preparation method thereof | |
CN110336032A (en) | Preparation method of nano-cobalt-loaded nitrogen-doped three-dimensional porous carbon and application of nano-cobalt-loaded nitrogen-doped three-dimensional porous carbon in lithium-sulfur battery | |
CN106495128A (en) | A kind of single dispersing N doping hollow carbon nanometer polyhedral and preparation method thereof | |
CN110148760B (en) | Porous carbon-carbon nanotube composite material and preparation method and application thereof | |
CN108689398B (en) | Preparation method of controllable nitrogen-doped carbon nanotube | |
CN103000906B (en) | Preparation method of foamy copper/carbon nanophase composite negative electrode material for lithium ion battery | |
CN106549163A (en) | A preparation method and application of cobalt and nitrogen co-doped ultra-thin nano-carbon sheets | |
CN108682872A (en) | A kind of preparation method of the nitrogen co-doped grading-hole carbon nanosheet oxygen reduction catalyst of iron cobalt | |
CN106410145A (en) | Method for preparing metallic compound/porous carbon nanorod of hierarchy structure | |
CN101759178B (en) | A kind of preparation method of hollow carbon hemisphere | |
CN106829924A (en) | A kind of preparation method of one-dimensional porous CNT | |
Peng et al. | Mesoporous spindle-like hollow CuO/C fabricated from a Cu-based metal-organic framework as anodes for high-performance lithium storage | |
CN109473651B (en) | Synthesis of bimetallic sulfide Co by ZIF-67 derivatization8FeS8Method for preparing/N-C polyhedral nano material | |
CN111056545A (en) | Preparation method of MOFs-derived hollow porous carbon microspheres | |
CN107099880A (en) | A kind of cobalt oxide nickel/tin ash composite nano tube and its production and use | |
CN107413365A (en) | A kind of preparation method of N doping super large tube chamber carbon nano tube compound material | |
CN114100648A (en) | Synthetic method of ZnMo-MOF-derived carbon-coated molybdenum carbide | |
CN107572509A (en) | A kind of hollow carbon graphite ball nano material of N doping and preparation method thereof | |
Yang et al. | Recent progress in the synthesis of metal-organic-framework-derived carbon materials | |
Lu et al. | Fe 3 C doped modified nano-Si/C composites as high-coulombic-efficiency anodes for lithium-ion batteries | |
CN114904558A (en) | A kind of preparation method of hollow nitrogen-doped carbon-wrapped titanium dioxide photocatalyst | |
CN108598377A (en) | The preparation method of sulphur-silicon carbide doped carbon nano-tube material | |
CN108950597A (en) | A kind of composite construction nano-particle material and its preparation method and application | |
CN112897483A (en) | TiN(B)@TiO2Core-shell particle powder material and method of preparation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |