【発明の詳細な説明】[Detailed description of the invention]
〔産業上の利用分野〕
本発明は、高層ビルあるいは大面積開口部等の
建築用窓ガラスに最適な熱処理ガラスを得るため
に改良されたガラス組成物に関するものであり、
通常の板厚のものでもよいが、6mm以上、特に8
mm以上の厚板ガラス板に対して有効なガラス組成
物である。さらに詳細には通常の強化ガラスの強
度までにはいたらなく細粒的破砕とはならない程
度に破壊強度をアツプし、種々の耐圧あるいは耐
熱性を向上して割れにくく、仮令割れたとしても
落下等が発生しにくいようになり安全性も向上す
るガラス物品を得やすくなるので、建築用窓ガラ
ス以外にも種々内装材、家具調度品、調理用品、
ガラス食器、ガラス壜等にも広く採用し得るもの
である。
〔従来の技術〕
ガラスは透光性、耐候性等がよく、さらに他の
材料に比して安価であるので建築用窓ガラスをは
じめ広く採用されており、住宅用建築物でも大面
積の窓ガラスを用いることもあるが、とくに年ご
とに高層ビル化の一途をたどつているため、その
安全性をより高めることが急務となつてきてい
る。すなわち、高層および大面積の窓ガラスの破
壊強度アツプ、例えば耐風圧強度や耐熱性等の向
上の確保が必要となつてきている。さらには、割
れた際にも高所から破片の落下が発生しにくいよ
うに窓枠からはみ出しにくいものが望まれてい
る。
しかしながら、通常の熱硬化ガラスにしたので
は破壊強度は上がるが、破砕時細かく割れるので
問題であり、化学強化ガラスにしたのでは、破壊
強度も大きく、割れた際も生板ガラスと似たよう
な破砕パターンを示すが、化学強化処理に多くの
時間が必要であつて生産コストが高くなり、圧縮
応力層の厚みが薄いので何らかの理由で加傷され
た際、その加傷されたところは生板と同程度の強
度しか有さないという問題等があるものであつ
た。
しかして、従来の風冷法を用い、その冷却度を
下げた所定の強化度を有するガラスが知られてい
る。すなわち、従来の熱強化ガラスよりもその表
面圧縮応力の値を小さくするかわりに、内部の引
張応力も小さくなるようにして、破砕したときに
も、従来の熱強化ガラスのように細かく割れない
ようにしたものが提案されている。例えば特公昭
59−25734号公報には、板厚10〜15mmのガラス板
を600〜660℃に加熱した後、ガラス板表面に50〜
300℃の熱風を吹き付けてガラス板の冷却速度を
大気中に自然放冷より遅くしてガラス板の歪点温
度以下まで冷却して、この処理されたガラス板の
中央引張応力σtが85〜200Kg/cm2となり、かつそ
の表面圧縮応力σcと中央引張応力σtとの比σt/σc
が1.5〜2.0の範囲となるように制御するという方
法が開始され、また特公昭61−40608号公報には
ガラスシート強化方法およびこの方法により作つ
た強化ガラスシートが記載され、急冷ガス流を少
なくとも1つの局部ガス流とし、該局部ガス流は
ガラスシートを急冷ステーシヨンに進行させる速
度に関係する繰返し頻度で脈動させて強化された
ガラスの区域で散在したより高く強化されたガラ
スの区域の分布をガラスシートに生じさせるよう
にすることが開示されている等が知られている。
また、シートガラスおよびフロートガラスは
SiO2、Al2O3、CaO、MgO、Na2O、K2Oを主
要成分としてなるソーダライムガラスであり、さ
らに軟化点温度付近まで昇温し、その後、表面か
らエアーで急冷することによる熱強化法によつて
強化ガラスがつくられている。
例えば、特公昭57−7574号公報にはシートガラ
スおよびフロートガラスの製造方法が開示され、
その組成範囲として重量パーセントでSiO270〜
73.3、Na2O15.5〜19.0、CaO5.5〜7.7、MgO3.5〜
4.9、Al2O30.1〜1.5、Fe2O30.03〜0.7、K2O0〜
0.5、SO30.2〜0.5であり、SiO2、Na2O、CaO、
MgO、Al2O3、Fe2O3およびSO3の割合で組成物
全体の少なくとも98重量%であり、CaO/MgO
の重量比は1.3〜1.9の範囲であり、Na2O/CaO
の重量比は2.0〜3.2であるフラツトガラスシート
が記載されている。また、特開昭46−1185号公報
には、改良された熱強化処理法が開示され、板ガ
ラスの強化法において、板ガラスを冷却流体との
接触によつて変形点以上の温度から低温に冷却す
ることと、最終的には室温まで冷却することと、
SiO2を重量で最低60%、アルカリ土類金属酸化
物を重量で最低5%、K2O+Na2Oを計5〜25
%含有し、ガラスの軟化点と変形点との温度差を
役177℃以内にすることと、あるいは、急冷した
ガラスを変形点と軟化点との間で加熱した場合の
比容積の変化は従来のフロートガラスを変形点か
ら軟化点まで加熱した場合に起る変化より大きく
すること等が記載され、知られている。
〔発明が解決しようとする問題点〕
前述したように従来例えば6mm以上の板厚のガ
ラス板ではガラス内部に生ずる一時歪みが大きく
なりすぎて強化度が大きくなりすぎるとか、ある
いは、割れが発生することが多くなり、これを防
ぐために徐冷条件を種々限定しなければならず結
果的には生産に要する時間も長くなり、生産性も
悪いものとなりコスト高になるという問題を有し
た。例えば前記した特公昭59−25734号公報に開
示された熱処理方法等で解決しようとするもの
の、その処理温度が600〜660℃と高く、しかも比
較的大面積のガラス板であるので変形や表面性に
問題を生じやすいものであり、加えて冷却エアを
50〜300℃と加熱する装置が必要であるという問
題もあるのであつた。さらに前記特開昭61−
40608号公報の方法では、冷却中にパルス状のエ
アを、例えば0.2secごとに1つの脈動を通し、各
脈動の保持時間を0.1secにする極めて短時間の処
理でシヤープエツジの発生のない強化をめざして
いるが、強化ガラス内の特定の部分の応力分布は
変えられたとしても、所定の強化度を有するガラ
スシートを得るにはなお問題があつた。
また前述した特公昭57−7574号公報に記載され
ているガラス成分組成では成形性は良くなるもの
の、その原料価格も高いものとなるものであり、
特開昭46−1185号公報に記載されているように、
通常のフロートガラス成分組成では、軟化点と変
形点の温度差が177℃以内にすることは難しく、
B2O3あるいは/およびTiO2を選択添加すること
が不可欠であるものであり、原料価格も高くな
り、どちらも破壊時にも細かな断片とならず、か
つ生板ガラスの1.5〜2.5倍程度の強度をもつため
のガラス組成物としては採用しにくいものであつ
た。
〔問題点を解決するための手段〕
本発明は、従来のかかる欠点に鑑みてなしたも
のであり、ソーダライムガラスの成分構成であつ
て、熱膨張係数、ヤング率およびポアソン比を原
則として小さい方にかつ熱伝導率を大きい方にな
るよう、かつ粘性も考慮し特異な成分組成とし、
特に耐候性については充分有し、破壊時に細かな
断片とならず、かつ生板ガラスの1.5〜2.5倍程度
の強度が得られやすいガラス組成物を提供するも
のである。
すなわち、本発明は重量百分率で、SiO272.7〜
74.2%、Al2O31.6〜3.0%、CaO6.5〜8.5%、
MgO2.0〜4.0%、Na2O10.5〜13.0%、K2O0.5〜
3.0%の酸化物成分からなり、これら成分の総和
が97%以上であつて、かつSiO2+Al2O374.7〜
76.7%、CaO+MgO9.0〜12.0%、Na2O+K2
O12.0〜14.5%の組成成分範囲からなるとともに
1010ポイズになる粘性温度が635〜665℃ならびに
1013ポイズになる粘性温度が545〜565℃であり、
かつ両者の温度差が95〜103℃となることを特徴
とする改良されたガラス組成物を提供するもので
ある。
ここで、SiO2成分を重量百分率で72.7〜74.2%
としたのは、72.7%未満では破壊時に細かな断片
となりやすく、かつ生板ガラスの1.5〜2.5倍程度
の強度となる所定の強化度を得ることが難しく、
74.2%を越えると溶融も難しくなるものであり、
Al2O3成分を重量百分率で1.6〜3.0%としたのは、
1.6未満では耐候性が下がり表面にやけ等が発生
しやすく実用上の問題が生じてくるものであり、
3%を超えると失透が生じやすくなり製造が難し
くなるものであり、CaO成分を重量百分率で6.5
〜8.5%としたのは、6.5%未満では融剤として不
足気味となり溶融温度も高くなりまた流動温度を
低くしないので製造しにくくなり、8.5%を超え
ると失透しやすくなり、かつ所定の強化度が得ら
れにくくなるものであり、MgO成分を重量百分
率で2.0〜4.0%としたのは2.0%未満では溶融温度
が上がり操作範囲をせばめるので製造がしにくく
なり、4.0%を超えると所定の硬化度が得られに
くくなるものであり、Na2O成分を重量百分率で
10.5〜13.0%としたのは、10.5%未満では失透も
生じやすくなるので操作範囲がせばまり製造しに
くくなり、13.0%を超えると耐候性が下がり、表
面にやけ等が発生しやすくなり実用上の問題が生
じてくる上、所定の強化度が得られにくくなるも
のであり、ソストアツプにもつながるものであ
り、K2O成分を重量百分率で0.5〜3.0%としたの
は、0.5%未満では溶融しにくくなり、3.0%を超
えると耐候性が下がりかつコストも高くなるもの
である。
また、SiO2、Al2O3、CaO、MgO、Na2O、
K2Oの成分の総和を重量百分率で97.0%以上とし
たのは、例えばFeO2O3、TiO2、SO3などの微量
成分としては3%を超えない量に制御するためで
あり、FeO2O3については例えば透明ガラスでは
重量百分率で0.1%前後が好ましく、多すぎても
少なすぎても色あいがかわつたり、原料の精製等
からも影響をうけるものである。さらに、SiO2
+Al2O3を重量百分率で74.7〜76.7%としたのは、
74.7%未満では耐候性が下がり、また所定の強化
度を得ることが難しく、76.7%を超えると溶融し
にくくなるという問題が生じるものであり、CaO
+MgOを重量百分率で9.0〜12.0%としたのは、
CaOおよびMgO成分は溶融温度を下げるために
用いられるとともに、9.0%未満では溶融しにく
くなり、12.0%を超えると失透しやすくなり製造
上難しくなるものであり、Na2O+K2Oを重量
百分率で12.0〜14.5%としたのは、12.0%未満で
は溶融が難しくなる上、失透も生じやすくなつて
作業温度範囲が狭くなり、製造が難しくなり、
14.5%を超えると耐候性が下がり実用上の問題を
生じるものであるとともにコスト的にも高くなる
ものである。
さらに加えて、粘性温度について1010ポイズと
1013ポイズを取り上げたのは、1010ポイズは熱処
理ガラスにおいて冷却開始の一般的な目安となる
ものであり、1013ポイズは熱処理ガラスの事実上
粘性流動が小さくなり強化度に影響を与えなくな
る温度であると考えてよいものであるためであ
り、さらに1010ポイズになる粘性温度が635〜665
℃および1013ポイズになる粘性温度が545〜565℃
であり、かつ両者の温度差が95〜103℃になるこ
とが重要であり、この温度範囲をはずれると所定
の強化度を得るのが難しくなり、しかも耐候性、
失透性ならびにコスト等のうち少なくとも1つ以
上のいずれかに問題が生ずるものである。
〔作用〕
前述したとおり、本発明の改良されたガラス組
成物すなわち各酸化物成分の特定組成範囲を組み
合せること、さらにまた特定の粘性温度をも考慮
した組成物とすることによつて、耐候性、失透
性、コストおよび溶融性等を考慮し、製造条件等
をほとんど変化させず、例えば従来のフロートガ
ラスのもつ性質に加えて所定の強化度を容易に得
ることができるようにしたものである。
〔実施例〕
以下本発明の実施例について説明する。
実施例 1〜8
ガラスは、特選珪砂(共立窯業製)と1級試薬
であるAl2O3、Fe2O3、CaCO3、MgCO3、Na2
CO3、KNO3を所期の目標組成になるよう秤量調
合し、該調合原料をルツボに入れ、約1480℃に保
持した電気炉中で約3時間溶融しガラス化して、
さらに均質化および済澄のため、1440〜1450℃で
2時間保持した後、型に流し出しガラスブロツク
とし、大きさ150mm×150mmで厚み8.0mmのガラス
板に切出し、研削研磨し、各試料とした。
この作製した試料について、JISR−3101に基
づく湿式分析を行い、表1の各実施例に示す数値
を得た。粘性温度についてベンデイングアーム法
により粘性曲線を測定し、1010ポイズおよび1013
ポイズの温度を求め、表2の各実施例に示す数値
を得た。なお確認の意味で歪点をリリー法で、ま
た軟化点をリトルトン法を用いて測定し、ガラス
の軟化点と歪点との温度差は大体220〜60℃の範
囲にあるものであつた。失透性については、所定
の温度で2時間保持してから後急冷し、結晶の有
無を顕微鏡で調べ、失透温度が1040℃以下であ
り、問題ないものであつた。
前記大きさと厚みのガラス板を630℃に加熱し
た後、熱伝達係数60Kcal/m2.hr.℃のエアで2
秒間吹き付け、2秒間吹き付けを中止する周期で
断続的に冷却することによつて破壊強度調査用試
料とした。
この得られた5試料について、生板ガラスと破
壊強度を対比したところ破壊強度比の平均値が
1.6〜2.2倍となつた。この結果を示すとそれぞれ
表2に示すとおりである。
比較例 1〜6
ガラス板およびその粘性温度、失透性、耐候性
等については実施例と同様に実施し、その結果は
実施例と同様に表1および表2に示すとおりであ
る。
[Industrial Field of Application] The present invention relates to a glass composition that has been improved in order to obtain heat-treated glass that is optimal for architectural window glass such as high-rise buildings or large-area openings.
It may be of normal thickness, but it should be 6 mm or more, especially 8 mm.
This is a glass composition that is effective for glass plates thicker than mm. More specifically, the breaking strength has been increased to a level that does not reach the strength of ordinary tempered glass, but does not result in fine-grained shattering, and has improved various pressure and heat resistance, making it difficult to break, and even if it does break, it will not break easily if dropped. This makes it easier to obtain glass products that are less likely to occur and improve safety, so they can be used in a variety of interior materials, furniture, cooking utensils, etc., in addition to architectural window glass.
It can also be widely used for glass tableware, glass bottles, etc. [Conventional technology] Glass has good transparency, weather resistance, etc., and is also cheaper than other materials, so it is widely used in architectural window glass and other applications. Glass is sometimes used, but as the number of high-rise buildings continues to increase year by year, there is an urgent need to further improve its safety. That is, it has become necessary to increase the breaking strength of high-rise and large-area window glasses, such as improving wind pressure resistance and heat resistance. Furthermore, it is desired that the window be difficult to protrude from the window frame so that even if it breaks, the pieces will not fall from a high place. However, using regular thermoset glass increases the breaking strength, but it breaks into small pieces when shattered, which is a problem. Chemically strengthened glass has a high breaking strength, and when it breaks, it breaks into pieces similar to raw glass. However, the chemical strengthening process requires a lot of time, which increases the production cost, and the compressive stress layer is thin, so if it is damaged for some reason, the damaged area will be destroyed by the raw board. There was a problem that the strength was only about the same as that of the conventional one. Therefore, there is known a glass having a predetermined degree of reinforcement obtained by lowering the degree of cooling using the conventional air cooling method. In other words, in addition to making the surface compressive stress smaller than that of conventional heat-strengthened glass, we have also made the internal tensile stress smaller, so that even when it is shattered, it will not break into small pieces like conventional heat-strengthened glass. It has been proposed that For example, Tokkosho
Publication No. 59-25734 discloses that after heating a glass plate with a thickness of 10 to 15 mm to 600 to 660°C, the surface of the glass plate is
By blowing hot air at 300℃, the cooling rate of the glass plate is slower than that of natural cooling in the atmosphere, and the glass plate is cooled to below the strain point temperature of the glass plate, and the central tensile stress σt of this treated glass plate is 85 to 200 kg. / cm2 , and the ratio of the surface compressive stress σc to the central tensile stress σt is σt/σc
A method of controlling the quenching gas flow to be in the range of 1.5 to 2.0 was started, and Japanese Patent Publication No. 61-40608 describes a glass sheet strengthening method and a strengthened glass sheet made by this method. One localized gas stream is pulsed at a repetition rate related to the rate at which the glass sheet is advanced to the quenching station to create a distribution of areas of higher tempered glass interspersed with areas of toughened glass. It is known that it is disclosed that a glass sheet is caused to have such an effect. Also, sheet glass and float glass
It is a soda lime glass whose main components are SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 O, and K 2 O. It is heated to near its softening point and then rapidly cooled with air from the surface. Tempered glass is made using a thermal strengthening method. For example, Japanese Patent Publication No. 57-7574 discloses a method for manufacturing sheet glass and float glass.
SiO2 in weight percent as its composition ranges from 70 to
73.3, Na2O15.5 ~19.0, CaO5.5~7.7, MgO3.5~
4.9, Al2O3 0.1 ~1.5, Fe2O3 0.03 ~0.7, K2O0 ~
0.5, SO3 0.2-0.5, SiO2 , Na2O , CaO,
The proportion of MgO, Al 2 O 3 , Fe 2 O 3 and SO 3 is at least 98% by weight of the total composition, and CaO/MgO
The weight ratio of Na2O /CaO ranges from 1.3 to 1.9.
A flat glass sheet with a weight ratio of 2.0 to 3.2 is described. Furthermore, JP-A-46-1185 discloses an improved thermal strengthening treatment method, in which the sheet glass is cooled from a temperature above its deformation point to a low temperature by contact with a cooling fluid. and finally cooling it to room temperature.
SiO 2 at least 60% by weight, alkaline earth metal oxide at least 5% by weight, K 2 O + Na 2 O total 5-25
% content, and the temperature difference between the softening point and deformation point of the glass is within 177℃, or the change in specific volume when rapidly cooled glass is heated between the deformation point and the softening point is as follows. It has been described and known that the change is greater than that which occurs when a float glass is heated from its deformation point to its softening point. [Problems to be Solved by the Invention] As mentioned above, conventional glass plates with a thickness of 6 mm or more, for example, suffer from excessive temporary strain occurring inside the glass, resulting in an excessively high degree of reinforcement or cracking. In order to prevent this, the slow cooling conditions have to be variously limited, resulting in longer production times, poor productivity, and high costs. For example, although the above-mentioned heat treatment method disclosed in Japanese Patent Publication No. 59-25734 is attempted to solve the problem, the treatment temperature is as high as 600 to 660°C, and the glass plate has a relatively large area, resulting in deformation and surface roughness. In addition, the cooling air
There was also the problem that a heating device was required to heat the process to 50-300°C. Furthermore, the above-mentioned Unexamined Patent Publication No. 61-
In the method of Publication No. 40608, during cooling, pulsed air is passed through, for example, one pulsation every 0.2 seconds, and the retention time of each pulsation is 0.1 sec, which is an extremely short process to achieve reinforcement without generating sharp edges. However, even if the stress distribution in specific parts of the tempered glass could be changed, there were still problems in obtaining a glass sheet with a predetermined degree of reinforcement. Furthermore, although the glass component composition described in the above-mentioned Japanese Patent Publication No. 57-7574 provides good moldability, the cost of its raw materials is also high.
As described in Japanese Patent Application Laid-Open No. 1185-1985,
With normal float glass component composition, it is difficult to keep the temperature difference between the softening point and the deformation point within 177℃.
It is essential to selectively add B 2 O 3 and/or TiO 2 , which increases the cost of raw materials. It was difficult to use it as a glass composition for its strength. [Means for Solving the Problems] The present invention has been made in view of the above-mentioned drawbacks of the conventional glass. In order to have a high thermal conductivity and also take into account viscosity, we have created a unique composition of ingredients.
In particular, the objective is to provide a glass composition that has sufficient weather resistance, does not break into small pieces when broken, and is likely to have a strength approximately 1.5 to 2.5 times that of raw plate glass. That is, the present invention has a weight percentage of SiO 2 72.7~
74.2%, Al2O3 1.6 ~3.0%, CaO6.5~8.5%,
MgO2.0~4.0%, Na2O10.5 ~13.0%, K2O0.5 ~
Consists of 3.0% oxide component, the sum of these components is 97% or more, and SiO 2 + Al 2 O 3 74.7 ~
76.7%, CaO+MgO9.0~12.0%, Na2O + K2
Consists of a composition range of O12.0-14.5% and
10 The viscosity temperature at 10 poise is 635-665℃ and
The viscosity temperature at 10 13 poise is 545-565℃,
The present invention also provides an improved glass composition characterized in that the temperature difference between the two is 95 to 103°C. Here, the SiO2 component is 72.7-74.2% in weight percentage
The reason for this is that if it is less than 72.7%, it will easily break into small pieces when broken, and it will be difficult to obtain the specified degree of reinforcement, which is about 1.5 to 2.5 times as strong as raw glass.
If it exceeds 74.2%, it becomes difficult to melt.
The reason why the Al 2 O 3 component was set at 1.6 to 3.0% in weight percentage was
If it is less than 1.6, the weather resistance will decrease and the surface will easily become stained, causing practical problems.
If it exceeds 3%, devitrification tends to occur and production becomes difficult.
The reason for setting it at ~8.5% is that if it is less than 6.5%, it will be insufficient as a flux and the melting temperature will rise, and the flow temperature will not be lowered, making it difficult to manufacture.If it exceeds 8.5%, devitrification will occur easily, and Therefore, the MgO component is set at 2.0 to 4.0% by weight.If it is less than 2.0%, the melting temperature will increase and the operating range will be narrowed, making it difficult to manufacture.If it exceeds 4.0%, the specified It becomes difficult to obtain a degree of hardening of
The reason why it is set at 10.5 to 13.0% is that if it is less than 10.5%, devitrification tends to occur, which narrows the operating range and makes it difficult to manufacture.If it exceeds 13.0%, weather resistance decreases and surface stains are likely to occur. In addition to causing practical problems, it becomes difficult to obtain a specified degree of reinforcement, and it also leads to soaring.The K 2 O component of 0.5 to 3.0% by weight is 0.5%. If it is less than 3.0%, it becomes difficult to melt, and if it exceeds 3.0%, weather resistance decreases and costs increase. Also, SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 O,
The reason why the total amount of K 2 O components is set to 97.0% or more by weight is to control the amount of trace components such as FeO 2 O 3 , TiO 2 , SO 3 to not exceed 3%, and FeO Regarding 2 O 3 , for example, in transparent glass, it is preferable to have a weight percentage of around 0.1%; if it is too much or too little, the color tone will change, and it will also be affected by the refining of the raw material. Additionally, SiO2
+Al 2 O 3 was set to 74.7 to 76.7% by weight because
If it is less than 74.7%, weather resistance decreases and it is difficult to obtain the specified degree of reinforcement, and if it exceeds 76.7%, it becomes difficult to melt.
+MgO was set to 9.0 to 12.0% by weight because
CaO and MgO components are used to lower the melting temperature, and if it is less than 9.0%, it becomes difficult to melt, and if it exceeds 12.0%, it tends to devitrify, making it difficult to manufacture . The reason for setting it at 12.0 to 14.5% is that if it is less than 12.0%, it will be difficult to melt, devitrification will occur easily, the working temperature range will be narrow, and manufacturing will be difficult.
If it exceeds 14.5%, the weather resistance decreases, causing practical problems, and the cost also increases. In addition, 10 10 poise and viscosity temperature
The reason I picked up 10-13 poise is that 10-10 poise is a general guideline for the start of cooling in heat-treated glass, and 10-13 poise effectively reduces the viscous flow of heat-treated glass and has no effect on the degree of strengthening. This is because the viscosity temperature, which is 10 to 10 poise, is 635 to 665.
℃ and 10 13 poise viscosity temperature is 545-565℃
It is important that the temperature difference between the two be between 95 and 103 degrees Celsius.If the temperature is outside this temperature range, it will be difficult to obtain the desired degree of reinforcement, and the weather resistance will also deteriorate.
Problems arise in at least one of devitrification, cost, and the like. [Function] As mentioned above, the improved glass composition of the present invention, that is, by combining specific composition ranges of each oxide component, and by creating a composition that also takes into account a specific viscosity temperature, weather resistance can be improved. A glass that takes into account properties such as properties, devitrification, cost, and meltability, and makes it possible to easily obtain a predetermined degree of reinforcement in addition to the properties of conventional float glass, without changing the manufacturing conditions. It is. [Examples] Examples of the present invention will be described below. Examples 1 to 8 Glasses are made of specially selected silica sand (manufactured by Kyoritsu Ceramics) and primary reagents Al 2 O 3 , Fe 2 O 3 , CaCO 3 , MgCO 3 , Na 2
CO 3 and KNO 3 are weighed and mixed to have the desired target composition, and the mixed raw materials are placed in a crucible and melted and vitrified in an electric furnace maintained at about 1480°C for about 3 hours.
Further, for homogenization and clearing, the glass was kept at 1440-1450℃ for 2 hours, poured into a mold, cut into glass plates with a size of 150 mm x 150 mm and a thickness of 8.0 mm, and ground and polished. did. A wet analysis based on JISR-3101 was performed on the prepared sample, and the values shown in each example in Table 1 were obtained. The viscosity curve was measured by the bending arm method regarding the viscosity temperature, and 10 10 poise and 10 13 poise were measured.
The temperature of the poise was determined, and the values shown in each example in Table 2 were obtained. For confirmation, the strain point was measured using the Lilly method and the softening point was measured using the Littleton method, and the temperature difference between the softening point and the strain point of the glass was approximately in the range of 220 to 60°C. Regarding devitrification, the sample was held at a predetermined temperature for 2 hours, then rapidly cooled, and examined under a microscope for the presence of crystals. After heating a glass plate of the above size and thickness to 630°C, the heat transfer coefficient was 60Kcal/m 2 . hr.℃ air 2
A sample for fracture strength investigation was prepared by cooling intermittently with a cycle of spraying for 2 seconds and stopping spraying for 2 seconds. When the fracture strength of these five samples was compared with that of raw glass, the average value of the fracture strength ratio was
The increase was 1.6 to 2.2 times. The results are shown in Table 2. Comparative Examples 1 to 6 Glass plates and their viscosity temperature, devitrification property, weather resistance, etc. were carried out in the same manner as in the examples, and the results are shown in Tables 1 and 2 as in the examples.
【表】【table】
【表】【table】
〔発明の効果〕〔Effect of the invention〕
前述した本発明の実施例と比較例からも明らか
なように、本発明によれば、特殊な成分を添加す
ることなくSiO2、Al2O3、CaO、MgO、Na2O、
K2Oを大部分の成分としたガラス成分組成物と
して所定の強化度を得ることができるとともに、
従来の製造条件をほとんど変更することなく、し
かも得られたガラスの耐候性も優れたものとなる
ものである。
以上のように、本発明はこれまで難しいとされ
ていた生板ガラスの破壊強度を1.5〜2.5倍程度に
高めるのに適したガラス組成物を提供することが
でき、しかして通常の強化ガラスのように細粒破
片となる破砕の仕方をするようなことがない所定
の強化度をもつたガラスをより安全性の高い建築
用窓ガラス等として提供できるものであり、熱線
吸収あるいは反射ガラス板をはじめ種々のガラス
板物品のほか、他のガラス物品等にも適用できる
ものである。
As is clear from the above-mentioned Examples and Comparative Examples of the present invention, according to the present invention, SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 O,
A predetermined degree of reinforcement can be obtained as a glass component composition containing K 2 O as a major component, and
This method requires almost no changes to conventional manufacturing conditions, and the resulting glass has excellent weather resistance. As described above, the present invention can provide a glass composition suitable for increasing the breaking strength of raw plate glass by about 1.5 to 2.5 times, which has been thought to be difficult up to now. Glass with a certain degree of reinforcement that will not shatter into fine fragments can be provided as safer architectural window glass, etc., and can be used as heat ray absorbing or reflective glass sheets. It is applicable not only to various glass plate articles but also to other glass articles.