JPH0460059B2 - - Google Patents

Info

Publication number
JPH0460059B2
JPH0460059B2 JP61087196A JP8719686A JPH0460059B2 JP H0460059 B2 JPH0460059 B2 JP H0460059B2 JP 61087196 A JP61087196 A JP 61087196A JP 8719686 A JP8719686 A JP 8719686A JP H0460059 B2 JPH0460059 B2 JP H0460059B2
Authority
JP
Japan
Prior art keywords
glass
temperature
strengthening
composition
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61087196A
Other languages
Japanese (ja)
Other versions
JPS62246839A (en
Inventor
Shinichi Araya
Tadashi Muramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP8719686A priority Critical patent/JPS62246839A/en
Publication of JPS62246839A publication Critical patent/JPS62246839A/en
Publication of JPH0460059B2 publication Critical patent/JPH0460059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、強化しやすいガラス組成物、特にフ
ロート方式で製造され、熱強化することによつて
強化ガラスを得る際の最適なガラス組成物に関す
る。 本発明は、自動車・鉄道車輌等の窓ガラスを初
め、建築用窓ガラスおよびドアガラス、家具、調
理用機器、電子電気機器等の広い分野で採用され
得るものである。 〔従来の技術〕 シートガラスおよびフロートガラスが強化用素
板として利用されていたが、最近ではフロートガ
ラスの比重が増しつつあり、板厚においても薄板
化が進みつつある。しかもフロートガラス特有の
表面平滑性、平面性、板厚の均一性等があるので
種々分野に使用され、なかでも自動車用窓ガラス
等に広く採用され、より強化性のあるガラスが望
まれ、種々の強化方法、ガラス組成等が提案され
ている。 また、シートガラスおよびフロートガラスは
SiO2,Al2O3,CaO,MgO,Na2O,K2Oを主要
成分としてなるソーダライムガラスであり、さら
に軟化点温度付近まで昇温し、その後、表面から
エアーで急冷することによる熱強化法によつて強
化ガラスがつくられている。 例えば、特公昭57−7574号公報にはシートガラ
スおよびフロートガラスの製造方法が開示され、
その組成範囲として重量パーセントでSiO2 70〜
73.3,Na2O 15.5〜19.0,CaO 5.5〜7.7,MgO
3.5〜4.9,Al2O3 0.1〜1.5,Fe2O3 0.03〜0.7,
K2O 0〜0.5,SO3 0.2〜0.5であり、SiO2
Na2O,CaO,MgO,Al2O3,Fe2O3およびSO3
の割合は組成物全体の少なくとも98重量%であ
り、CaO/MgOの重量比は1.3〜1.9の範囲であ
り、Na2O/CaOの重量比は2.0〜3.2であるフラ
ツトガラスシートが記載されている。また、特開
昭46−1185号公報には、改良された熱強化処理法
が開示され、板ガラスの強化法において、板ガラ
スを冷却流体との接触によつて変形点以上の温度
から低温に冷却することと、最終的には室温まで
冷却することと、SiO2を重量で最低60%、アル
カリ土類金属酸化物を重量で最低5%,K2O+
Na2Oを計5〜25%含有し、ガラスの軟化点と変
形点との温度差を約177℃以内にすること、ある
いは、急冷したガラスを変形点と軟化点との間で
加熱した場合の比容積と変化を在来のフロートガ
ラスを変形点から軟化点まで加熱した場合に起る
変化より大きくすること等が記載され、知られて
いる。 〔発明が解決しようとする問題点〕 前述した特公昭57−7574号公報に記載されてい
るガラス成分組成では成形性は良くなるものの熱
強化法による易強化性は良好とはならず、その原
料価格も高いものとなるものであり、特開昭46−
1185号公報に記載されているように、通常のフロ
ートガラス成分組成では、軟化点と変形点の温度
差が177℃以内にすることは難しく、B2O3あるい
は/およびTiO2を選択添加することが不可欠で
あるものであり、原料価格も高くなり、通常の建
築用ガラス板、自動車用窓ガラス等の使用には採
用しにくいものとなるものである。 〔問題点を解決するための手段〕 本発明は、従来のかかる欠点に鑑みてなしたも
のであり、ソーダライムガラスの成分構成であつ
て、熱膨張係数、ヤング率およびポアソン比を大
きい方にかつ熱伝導率を小さい方になるよう特異
な成分組成とし、易強化性が上がり、耐候性、成
形性も充分に有する易強化ガラス組成物を提供す
るものである。 すなわち、本発明は重量百分率で、SiO2 68.0
〜71.0%,Al2O3 1.6〜3.0%,CaO 8.5〜11.0%,
MgO 2.0〜4.0%,Na2O12.5〜16.0%,K2O 0.9
〜3.0%の酸化物成分からなり、これら成分の総
和が97%以上であつて、かつSiO2+Al2O2 70.0〜
73.0%,CaO+MgO 12.0〜15.0%,Na2O+K2O
13.5〜17.0%の組成成分範囲からなり、しかも109
ポイズになる粘性温度が650〜685℃ならびに1012
ポイズになる粘性温度が555〜585℃であり、かつ
両者の温度差が96〜103℃となることを特徴とす
る易強化ガラス組成物を提供するものである。 ここで、SiO2成分を重量百分率で68.0〜71.0%
としたのは、68.0%未満では表面にやけ等が発生
しやすく耐候性が下がり実用上の問題が生じてく
るものであり、71.0%を超えるとその易強化性が
下がり、溶融も難しくなるものであり、Al2O3
分を重量百分率で1.6〜3.0%としたのは、1.6未満
では耐候性が下がり表面にやけ等が発生しやすく
実用上の問題が生じてくるものであり、3%を超
えると失透が生じやすくなり成形温度範囲がせま
くなり製造が難しくなるものであり、CaO成分を
重量百分率で8.5〜11.0%としたのは、8.5%未満
では易強化性が下がり、また融剤として不足気味
となり溶融温度も高くなりまた流動温度を低くし
ないので製造しにくくなり、11%を超えると失透
しやすくなり、成形作業範囲が狭くなり製造が難
しくなるものであり、MgO成分を重量百分率で
2.0〜4.0%としたのは2.0%未満では溶融温度が上
がり操作範囲をせばめるので製造がしにくくな
り、4.0%を超えると易強化性が下がるものであ
り、Na2O成分を重量百分率で12.5〜16.0%とし
たのは、12.5%未満では易強化性が下がり、成形
性が難しくなり、失透も生じやすくなるので操作
範囲がせばまり製造しにくくなり、16.0%を超え
ると耐候性が下がり、表面にやけ等が発生しやす
くなり実用上の問題が生じてくるものであり、コ
ストアツプにもつながるものであり、K2O成分を
重量百分率で0.9〜3.0%としたのは、0.9%未満で
は易強化性が下がり、3.0%を超えると耐候性が
下がりかつコストも高くなるものである。 また、SiO2,Al2O3,CaO,MgO,Na2O,
K2Oの成分の総和を重量百分率で97.0%以上とし
たのは、例えばFe2O3,SO3などの微量成分とし
ては3%を超えない量に制御するためであり、
Fe2O3については例えば透明ガラスでは重量百分
率で0.1%前後が好ましく、多すぎても少なすぎ
ても色あいがかわつたり、原料の精製等からも影
響をうけるものであり、SO3については例えば重
量百分率で0.1〜0.4%程度である。なお、TiO2
分については、不純物として超微量、例えば5〜
10ppm程度であれば許容することができ、この程
度であれば組成上無視できるものである。さら
に、SiO+Al2O3を重量百分率で70.0〜73.0%とし
たのは、70%未満では耐候性が下がり、73.0%を
超えると易強化性が下がり問題が生じるものであ
り、CaO+MgOを重量百分率で12.0〜15.0%とし
たのは、CaOおよびMgO成分は溶融温度を下げ
るために用いられるとともに、12%未満では易強
化性が下がり、15%を超えると失透しやすくなり
製造上難しくなるものであり、Na2O+K2Oを重
量百分率で13.5〜17.0%としたのは、13.5%未満
では易強化性が下がり、失透も生じやすくなつて
成形において作業温度範囲が狭くなり、製造が難
しくなり、17.0%を超えると耐候性が下がり実用
上の問題を生じるものであるとともにコスト的に
も高くなるものである。 さらに加えて、粘性温度について109ポイズと
1012ポイズを取り上げたのは、109ポイズは実用
上強化開始温度であり、1012ポイズは事実上粘性
流動が小くなり強化の終了する温度であると考え
てよいものであるためであり、109ポイズになる
粘性温度が650〜685℃および1012ポイズになる粘
性温度が555〜585℃であり、かつ両者の温度差が
96〜103℃になるものであり、96℃未満では易強
化性は上がるが耐候性、失透性、成形性ならびに
コスト等のうち少なくとも1つ以上のいずれかに
問題が生じ、103℃を超えると易強化性が小さく
なり、所望の易強化ガラスを得ることができない
ものである。 〔作用〕 前述したとおり、本発明の易強化ガラス組成物
すなわち酸化物成分の特定組成範囲を組み合せ、
特定の粘度温度をも考慮した組成物とすることに
よつて、成形性、耐候性、失透性、コストおよび
溶融性等を考慮し、製造条件等をほとんど変化さ
せず、例えば従来のフロートガラスのもつ性質に
加えて易強化性を向上さすことができるものであ
り、さらに、従来熱強化方法では充分な強化度が
得られなかつた薄板ガラス等でも、充分な強化度
が得られるようになる等、熱強化度が向上したガ
ラス板が得られるので従来採用しにくいとされた
電子電気機器、調理用機器等の分野にもより採用
され易いものとなり、自動車、鉄道車輌等の窓ガ
ラス、建築用窓ガラスおよびドアガラスおよび家
具用ガラス等にもより確実で安定した高強度の強
化ガラスを提供できるものとなり、さらに本発明
は、製造上の生産性等をほぼ不変にして、強化処
理の生産性の向上をもたらし、充分耐候性のある
ものとなるものである。 〔実施例〕 以下本発明の実施例について説明する。 実施例1〜11 ガラスは、特選珪砂(共立窯業製)と1級試薬
であるAl2O3,Fe2O3,CaCO3,MgCO2
Na2SO3,KNO3を所期の目標組成になるよう秤
量調合し、該調合原料をルツボに入れ、約1450℃
に保持した電気炉中で約3時間溶融しガラス化し
て、さらに均質化および清澄のため、1420℃〜
1430℃で2時間保持した後、型に流し出しガラス
ブロツクとし、大きさ100mm×100mmで厚み3.5mm
のガラス板に切出し、研削研磨し、各試料とし
た。 この作製した試料について、JISR−3101に基
づく湿式分析を行い、表1の各実施例に示す数値
を得た。粘性温度についてはベンデイングアーム
法により粘度曲線を測定し、109ポイズおよび
1012ポイズの温度を求め、表2の各実施例に示す
数値を得た。なお確認の意味で歪点をリリー法
で、また軟化点をリトルトン法を用いて測定し、
ガラスの軟化点と歪点との温度差は大体200〜240
℃の範囲にあるものであつた。失透性について
は、所定の温度で2時間保持してから後急冷し、
結晶の有無を顕微鏡で調べ、失透温度が1040℃以
下であり、問題ないものであつた。成形性につい
ては、ガラスを約700℃でプレスし、その成形精
度および離型性等を加味して総合的に判断し、問
題がないものであつた。耐候性については、99%
RHで50℃の雰囲気温度下に約2ケ月間さらし、
その表面状態を観察したが、問題はないものであ
つた。 易強化性については、前記の試料を雰囲気温度
約730℃の炉内で約3〜5分間加熱した後、エア
圧1300Aqで通常の風冷強化し、大きさ100mm×
100mmで板厚3.5mmの強化ガラス板を得、この板の
コーナー部の角端面から30mmの位置で衝撃を与え
て破砕し、全面に破砕されたガラス板の中央領域
で50mm×50mmの面積当りの破砕数を数えたとこ
ろ、JISで決められている60〜400個内にあり、充
分満足できるものであつた。それぞれ表2に示す
とおりである。 比較例 1〜9 ガラス板およびその粘性温度、易強化性、失透
性、成形性、耐候性等については実施例と同様に
実施し、その結果は実施例と同様に表1および表
2に示すとおりである。 なお、失透については、結晶の初晶はすべてβ
−ウオラストナイトであつた。
[Industrial Application Field] The present invention relates to a glass composition that is easy to strengthen, particularly to a glass composition that is produced by a float method and is optimal for obtaining tempered glass by thermal strengthening. The present invention can be employed in a wide range of fields including window glasses for automobiles, railway vehicles, etc., architectural window glasses and door glasses, furniture, cooking equipment, and electronic and electrical equipment. [Prior Art] Sheet glass and float glass have been used as base plates for reinforcement, but recently the specific gravity of float glass has been increasing, and the plate thickness has also been becoming thinner. Furthermore, due to the surface smoothness, flatness, and uniformity of plate thickness unique to float glass, it is used in a variety of fields, among which it is widely used in automobile window glass. Strengthening methods and glass compositions have been proposed. Also, sheet glass and float glass
It is a soda lime glass whose main components are SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 O, and K 2 O. It is heated to near its softening point and then rapidly cooled with air from the surface. Tempered glass is made using a thermal strengthening method. For example, Japanese Patent Publication No. 57-7574 discloses a method for manufacturing sheet glass and float glass.
SiO2 in weight percent as its composition ranges from 70 to
73.3, Na2O 15.5~19.0, CaO 5.5~7.7, MgO
3.5~4.9, Al2O3 0.1 ~1.5, Fe2O3 0.03 ~0.7,
K 2 O 0-0.5, SO 3 0.2-0.5, SiO 2 ,
Na2O , CaO, MgO , Al2O3 , Fe2O3 and SO3
is at least 98% by weight of the total composition, the CaO/MgO weight ratio ranges from 1.3 to 1.9, and the Na2O /CaO weight ratio ranges from 2.0 to 3.2. ing. Furthermore, JP-A-46-1185 discloses an improved thermal strengthening treatment method, in which the sheet glass is cooled from a temperature above its deformation point to a low temperature by contact with a cooling fluid. and finally cooling to room temperature, SiO 2 at least 60% by weight, alkaline earth metal oxide at least 5% by weight, K 2 O +
Contains a total of 5 to 25% Na 2 O, and the temperature difference between the softening point and deformation point of the glass is within approximately 177℃, or when rapidly cooled glass is heated between the deformation point and the softening point. It has been described and known that the change in specific volume of the glass is greater than the change that occurs when conventional float glass is heated from its deformation point to its softening point. [Problems to be Solved by the Invention] Although the glass component composition described in the above-mentioned Japanese Patent Publication No. 57-7574 has good formability, it does not have good temperability by the thermal strengthening method, and its raw material The price is also high, and the
As described in Publication No. 1185, it is difficult to keep the temperature difference between the softening point and the deformation point within 177°C with a normal float glass component composition, so B 2 O 3 and/or TiO 2 are selectively added. This is indispensable, and the raw material costs are high, making it difficult to adopt it for use in ordinary architectural glass sheets, automobile window glasses, etc. [Means for Solving the Problems] The present invention has been made in view of the above-mentioned drawbacks of the conventional glass. Moreover, the present invention provides an easily tempered glass composition which has a unique component composition so as to have a small thermal conductivity, and which has enhanced easily strengthened properties and has sufficient weather resistance and moldability. That is, the present invention has a weight percentage of SiO 2 68.0
~71.0%, Al2O3 1.6 ~3.0%, CaO 8.5~11.0%,
MgO 2.0~4.0%, Na2O12.5 ~16.0%, K2O 0.9
It consists of ~3.0% oxide component, the sum of these components is 97% or more, and SiO 2 + Al 2 O 2 70.0 ~
73.0%, CaO + MgO 12.0-15.0%, Na 2 O + K 2 O
The composition ranges from 13.5 to 17.0%, and 10 9
The viscosity temperature that becomes poise is 650 to 685℃ and 10 12
The present invention provides an easily temperable glass composition characterized in that the viscosity temperature at which the glass becomes poise is 555 to 585°C, and the temperature difference between the two is 96 to 103°C. Here, the SiO 2 component is 68.0 to 71.0% by weight percentage.
The reason for this is that if it is less than 68.0%, it tends to cause surface burns, etc., and its weather resistance decreases, causing practical problems. The reason why the Al 2 O 3 component is set at 1.6 to 3.0% by weight is that if it is less than 1.6, the weather resistance will decrease and the surface will easily become stained, causing practical problems. If it exceeds 8.5%, devitrification tends to occur, which narrows the molding temperature range and makes manufacturing difficult.The reason why the CaO component is set at 8.5% to 11.0% by weight is that if it is less than 8.5%, easy strengthening properties will decrease and melting will be difficult. If it exceeds 11%, it tends to devitrify, narrowing the molding work range and making manufacturing difficult. in weight percentage
The reason why the Na 2 O component is set at 2.0 to 4.0% is because if it is less than 2.0%, the melting temperature will increase and the operating range will be narrowed, making it difficult to manufacture, and if it exceeds 4.0%, the ease of strengthening will decrease. The reason why it is set at 12.5 to 16.0% is that if it is less than 12.5%, easy reinforcement will be reduced, moldability will be difficult, and devitrification will easily occur, so the operating range will be narrowed and manufacturing will be difficult, and if it exceeds 16.0%, weather resistance This causes problems in practical use as the surface becomes more susceptible to surface discoloration, and it also leads to increased costs. If it is less than 3.0%, the easy reinforcing properties will decrease, and if it exceeds 3.0%, the weather resistance will decrease and the cost will increase. Also, SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 O,
The reason why the total amount of K 2 O components is set to 97.0% or more by weight is to control the amount of trace components such as Fe 2 O 3 and SO 3 to not exceed 3%.
Regarding Fe 2 O 3 , for example, for transparent glass, a weight percentage of around 0.1% is preferable; too much or too little will change the color tone, and it will also be affected by the refining of the raw material, etc., and for SO 3 , For example, the weight percentage is about 0.1 to 0.4%. In addition, regarding the TiO2 component, there is an ultra-trace amount of impurities, e.g.
If it is about 10 ppm, it is acceptable, and if it is about this level, it can be ignored from the viewpoint of composition. Furthermore, the reason why SiO + Al 2 O 3 is set at 70.0 to 73.0% by weight is that if it is less than 70%, weather resistance will decrease, and if it exceeds 73.0%, easy reinforcement will decrease, causing problems. The reason why the CaO and MgO components are set at 12.0 to 15.0% is because they are used to lower the melting temperature, and if they are less than 12%, the easy strengthening properties will decrease, and if they exceed 15%, they will tend to devitrify, making it difficult to manufacture. The reason why the weight percentage of Na 2 O + K 2 O is set at 13.5 to 17.0% is because if it is less than 13.5%, easy strengthening properties will decrease, devitrification will easily occur, the working temperature range will be narrow in molding, and manufacturing will be difficult. If the content exceeds 17.0%, the weather resistance will decrease, causing practical problems, and the cost will also increase. In addition, 10 9 poise and viscosity temperature
The reason we picked up 10 12 poise is that 10 9 poise is practically the temperature at which strengthening starts, and 10 12 poise can be considered to be the temperature at which the viscous flow decreases and strengthening ends. , the viscosity temperature at which 10 9 poise occurs is 650 to 685℃, and the viscosity temperature at which 10 12 poise occurs is 555 to 585℃, and the temperature difference between the two is 650 to 685℃.
96 to 103℃, and if it is less than 96℃, it will be easier to strengthen, but problems will occur in at least one of weather resistance, devitrification, moldability, cost, etc., and if it exceeds 103℃. Therefore, the easily tempered glass becomes difficult to obtain. [Function] As mentioned above, the easy-to-strengthen glass composition of the present invention, that is, by combining a specific composition range of oxide components,
By creating a composition that also takes into account a specific viscosity temperature, we take into consideration moldability, weather resistance, devitrification, cost, meltability, etc., and make it possible to create a composition with almost no change in manufacturing conditions, such as conventional float glass. In addition to the properties of steel, it can improve the ease of strengthening.Furthermore, it is now possible to obtain a sufficient degree of strengthening even for thin glass, etc., for which it was not possible to obtain a sufficient degree of strengthening with conventional thermal strengthening methods. etc., it is possible to obtain a glass plate with an improved degree of thermal strengthening, making it easier to be adopted in fields such as electronic and electrical equipment, cooking equipment, etc., which were previously considered difficult to adopt. This makes it possible to provide more reliable, stable, and high-strength tempered glass for window glass, door glass, furniture glass, etc., and furthermore, the present invention makes it possible to improve the production efficiency of tempering treatment while keeping manufacturing productivity almost unchanged. It brings about improvement in properties and becomes sufficiently weather resistant. [Examples] Examples of the present invention will be described below. Examples 1 to 11 Glasses were made of specially selected silica sand (manufactured by Kyoritsu Ceramics) and first-class reagents Al 2 O 3 , Fe 2 O 3 , CaCO 3 , MgCO 2 ,
Weigh and mix Na 2 SO 3 and KNO 3 to the desired target composition, put the mixed raw materials into a crucible, and heat at approximately 1450°C.
Melt and vitrify for about 3 hours in an electric furnace maintained at 1420℃~
After keeping it at 1430℃ for 2 hours, pour it into a mold to make a glass block with a size of 100mm x 100mm and a thickness of 3.5mm.
Each sample was cut out into a glass plate, ground and polished. A wet analysis based on JISR-3101 was performed on the prepared sample, and the values shown in each example in Table 1 were obtained. Regarding the viscosity temperature, the viscosity curve was measured using the bending arm method, and 10 9 poise and
The temperature of 10 to 12 poise was determined, and the numerical values shown in each example in Table 2 were obtained. For confirmation, the strain point was measured using the Lilly method and the softening point was measured using the Littleton method.
The temperature difference between the softening point and strain point of glass is approximately 200 to 240
It was in the range of ℃. For devitrification, hold at a predetermined temperature for 2 hours, then rapidly cool.
The presence or absence of crystals was examined using a microscope, and the devitrification temperature was found to be 1040°C or less, which was not a problem. Regarding the moldability, the glass was pressed at about 700° C., and the moldability was judged comprehensively by taking into consideration the molding accuracy, mold release properties, etc., and no problems were found. Regarding weather resistance, 99%
Exposure to an ambient temperature of 50℃ at RH for about 2 months,
The surface condition was observed and there were no problems. Regarding easy strengthening, the above sample was heated in a furnace at an ambient temperature of about 730°C for about 3 to 5 minutes, and then strengthened by normal air cooling with an air pressure of 1300 Aq.
A tempered glass plate of 100 mm and a thickness of 3.5 mm is obtained, and the plate is crushed by impact at a position 30 mm from the corner end face of the plate, and the entire area of the glass plate is 50 mm x 50 mm in the central area of the glass plate. When the number of fractures was counted, it was within the range of 60 to 400 determined by JIS, which was sufficiently satisfactory. Each is as shown in Table 2. Comparative Examples 1 to 9 Glass plates and their viscosity temperature, easy strengthening properties, devitrification properties, moldability, weather resistance, etc. were conducted in the same manner as in the examples, and the results are shown in Tables 1 and 2 as in the examples. It is shown. Regarding devitrification, all primary crystals are β
-It was wollastonite.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

前述した本発明の実施例と比較例からも明らか
なように、本発明によつて、特殊な成分を添加す
ることなくSiO2,Al2O3,CaO,MgO,Na2O,
K2Oの成分を大部分の成分としたガラス成分組成
物として易強化性をもたらすとともに、製造条件
をほとんど変更することなく、特にフロートガラ
スを製造上問題を生じるようなことがなく製造し
得て、しかも、製造したガラスの耐候性も優れた
ものとなるものである。 以上のように、本発明は薄板ガラスの熱強化を
可能にし、熱強化法による強化ガラスの採用され
る範囲を拡大することができるという顕著な効果
をもたらすものである。
As is clear from the above-mentioned examples and comparative examples of the present invention, the present invention allows SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 O,
As a glass component composition containing K 2 O as a major component, it is easy to strengthen, and can be manufactured without changing the manufacturing conditions, especially float glass, without causing problems in manufacturing. Moreover, the weather resistance of the produced glass is also excellent. As described above, the present invention makes it possible to thermally strengthen thin glass sheets, and brings about the remarkable effect of expanding the range in which glass tempered by the thermal strengthening method can be adopted.

Claims (1)

【特許請求の範囲】 1 重量百分率で、下記酸化物であり、 SiO2 68.0〜71.0% Al2O3 1.6〜3.0% CaO 8.5〜11.0% MgO 2.0〜4.0% Na2O 12.5〜16.0% K2O 0.9〜3.0% これら成分の総和が97%以上であつて、かつ SiO2+Al2O3 70.0%〜73.0% CaO+MgO 12.0〜15.0% Na2O+K2O 13.5〜17.0% の組成成分範囲からなり、しかも109ポイズに
なる粘性温度が650〜685℃ならびに1012ポイズに
なる粘性温度が555〜585℃であり、かつ両者の温
度差が96〜103℃になることを特徴とする易強化
ガラス組成物。
[Scope of Claims] 1 The following oxides in weight percentage: SiO 2 68.0-71.0% Al 2 O 3 1.6-3.0% CaO 8.5-11.0% MgO 2.0-4.0% Na 2 O 12.5-16.0% K 2 O 0.9-3.0% The sum of these components is 97% or more, and the composition range is SiO 2 + Al 2 O 3 70.0-73.0% CaO + MgO 12.0-15.0% Na 2 O + K 2 O 13.5-17.0%, Moreover, the easily tempered glass composition is characterized in that the viscosity temperature at which the temperature becomes 10 9 poise is 650 to 685°C, the viscosity temperature at which the viscosity becomes 10 12 poise is 555 to 585°C, and the temperature difference between the two is 96 to 103°C. thing.
JP8719686A 1986-04-17 1986-04-17 Easily tempering glass composition Granted JPS62246839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8719686A JPS62246839A (en) 1986-04-17 1986-04-17 Easily tempering glass composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8719686A JPS62246839A (en) 1986-04-17 1986-04-17 Easily tempering glass composition

Publications (2)

Publication Number Publication Date
JPS62246839A JPS62246839A (en) 1987-10-28
JPH0460059B2 true JPH0460059B2 (en) 1992-09-25

Family

ID=13908226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8719686A Granted JPS62246839A (en) 1986-04-17 1986-04-17 Easily tempering glass composition

Country Status (1)

Country Link
JP (1) JPS62246839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208246A (en) * 1995-10-16 1997-08-12 Central Glass Co Ltd Fireproof glass

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071796A (en) * 1989-08-14 1991-12-10 Ppg Industries, Inc. Flat glass composition with improved melting and tempering properties
WO2001034531A1 (en) * 1999-11-11 2001-05-17 Nippon Sheet Glass Co., Ltd. Flat glass to be tempered
US6858553B2 (en) * 2000-10-03 2005-02-22 Nippon Sheet Glass Co., Ltd. Glass composition
JP2010202413A (en) * 2007-06-27 2010-09-16 Asahi Glass Co Ltd Method for producing glass, method for producing glass raw material, and glass raw material
EP2634150B1 (en) * 2010-10-27 2021-11-24 AGC Inc. Glass plate and process for production thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197444A (en) * 1985-02-21 1986-09-01 Asahi Glass Co Ltd Production of tempered glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197444A (en) * 1985-02-21 1986-09-01 Asahi Glass Co Ltd Production of tempered glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208246A (en) * 1995-10-16 1997-08-12 Central Glass Co Ltd Fireproof glass

Also Published As

Publication number Publication date
JPS62246839A (en) 1987-10-28

Similar Documents

Publication Publication Date Title
US9096460B2 (en) Lithium aluminosilicate glass with high modulus of elasticity, and method for producing same
JP2022550970A (en) Lithium zirconium aluminosilicate glass, tempered glass, manufacturing method thereof and display parts
CN101508524B (en) Glass suitable for chemically tempering and chemical tempered glass
US5599754A (en) Glass composition for a substrate, and substrate for plasma display made thereof
KR101838197B1 (en) Thin li-al-si glass used for three dimension precise molding and suitable for strengthening
US7341968B2 (en) Glass plate and method for tempering a glass plate
JP3187321B2 (en) Chemically strengthened glass composition and chemically strengthened glass article
US5908794A (en) Glass composition for a substrate
CN108503213B (en) Aluminosilicate glass and tempered glass
JP2001236634A (en) Magnetic disk substrate comprising glass composition for chemical strengthening and magnetic disk medium
JP2001229526A (en) Magnetic disk substrate consisting of glass composition for chemical strengthening and magnetic disk medium
JP2001180969A (en) Manufacturing method of lithium-containing glass with high young's modulus and its glass product
JP3669022B2 (en) Substrate glass composition and plasma display substrate using the same
JP2006062929A (en) Crystallized glass article and method for manufacturing the same
MXPA02002222A (en) Improvements in or relating to tempered glazings, and glass for use therein.
WO2009081906A1 (en) Glass composition
JPH0433743B2 (en)
JPH0460059B2 (en)
JP2001180967A (en) Manufacturing method of glass composition
JP2001226137A (en) Method for manufacturing glass base plate for chemical reinforcement and chemically reinforced glass article obtained by using the same
JP2730138B2 (en) Easy-forming glass composition
JPH0446908B2 (en)
KR20000068187A (en) Soda-Lime Glass Composition
JPH0449495B2 (en)
WO2023090177A1 (en) Crystallised glass

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term