JPH0449360B2 - - Google Patents

Info

Publication number
JPH0449360B2
JPH0449360B2 JP17304683A JP17304683A JPH0449360B2 JP H0449360 B2 JPH0449360 B2 JP H0449360B2 JP 17304683 A JP17304683 A JP 17304683A JP 17304683 A JP17304683 A JP 17304683A JP H0449360 B2 JPH0449360 B2 JP H0449360B2
Authority
JP
Japan
Prior art keywords
field
armature
switch
power supply
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17304683A
Other languages
Japanese (ja)
Other versions
JPS6066700A (en
Inventor
Kazuyoshi Kotake
Kyoteru Kuwabara
Yukio Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17304683A priority Critical patent/JPS6066700A/en
Publication of JPS6066700A publication Critical patent/JPS6066700A/en
Publication of JPH0449360B2 publication Critical patent/JPH0449360B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor And Converter Starters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、電動発電機の制御方法に係り、特
に、電機子の残留電圧による感電を防止するのに
好適な制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a control method for a motor generator, and particularly to a control method suitable for preventing electric shock due to residual voltage in an armature.

〔発明の背景〕[Background of the invention]

電車などの補助電源装置として電動発電機(以
下MAと略す)がよく用いられている。MA回
路、特に、大容量のものは第1図に示すような構
成をしている。図において、1は電源、2はパン
タグラフ、3は断路器、4は遮断器、5及び6は
電機子、7は補償巻線、8は補極、9は直巻界
磁、10は界磁抵抗、11は分巻界磁、12は逆
流阻止ダイオード、13は発電機である。
Motor generators (hereinafter abbreviated as MA) are often used as auxiliary power supplies for trains and other vehicles. MA circuits, especially those with large capacity, have a configuration as shown in Figure 1. In the figure, 1 is a power supply, 2 is a pantograph, 3 is a disconnector, 4 is a circuit breaker, 5 and 6 are armatures, 7 is a compensation winding, 8 is a commutator pole, 9 is a series winding field, and 10 is a field 11 is a shunt field, 12 is a backflow blocking diode, and 13 is a generator.

いま、パンタグラフ2が上に運転手によりMA
運転開始の指令が出されると、遮断器4が閉じ電
源1より、パンタグラフ2、断路器3を通して電
機子5,6、直巻界磁9、分巻界磁11に電流が
流れると、電機子5,6は回転を始める。電機子
5,6が回転すると、それに直結されている発電
機も回転し、必要な電力を発生することができ
る。この時、電機子5,6は負荷を回転させるに
必要である以上の電流が電機子に流入しないよう
逆起電力EM1,EM2を生じるよう回転する。この
逆起電力EM1,EM2は定常運転状態では、合せて
電源電圧とほぼ等しい値まで発生している。
Now, pantograph 2 is on MA by the driver.
When a command to start operation is issued, the circuit breaker 4 closes and current flows from the power supply 1 through the pantograph 2 and the disconnector 3 to the armatures 5 and 6, the series field 9, and the shunt field 11. 5 and 6 start rotating. When the armatures 5 and 6 rotate, the generator directly connected to them also rotates, and the necessary power can be generated. At this time, the armatures 5 and 6 rotate so as to generate back electromotive forces E M1 and E M2 so that no more current than necessary to rotate the load flows into the armature. In a steady operating state, the back electromotive forces E M1 and E M2 together reach a value almost equal to the power supply voltage.

次に、MA運転停止指令が出されたとする。遮
断器2が開極し、電動機には電源電圧が印加され
なくなる。しかし、電動機の慣性により停止指令
後、十数分間は回転しているのが普通である。回
転していることにより、逆起電力EM2を電源とし
て界磁電流ifが流れ、これにより逆起電力は減衰
しながらも発生を続けている。
Next, assume that an MA operation stop command is issued. The circuit breaker 2 is opened, and power supply voltage is no longer applied to the motor. However, due to the inertia of the electric motor, it usually continues to rotate for more than ten minutes after receiving a stop command. Due to the rotation, a field current i f flows using the back electromotive force E M2 as a power source, and as a result, the back electromotive force continues to be generated even though it is attenuated.

ここで、保守要員による断路器操作でのMA開
放扱いを考えてみる。MAに故障が発生しMAを
開放するため断路器を開極する。
Now, let's consider how the MA is handled as being opened by maintenance personnel operating a disconnector. When a failure occurs in the MA, the disconnector is opened to release the MA.

この時、電動機が慣性により回転を続けていた
とすると、断路器を開いても上述のように十数分
間は逆起電力を発生している。誤つて回路に手を
ふれると感電し死亡に至ることが考えられる。特
に、電源電圧が3000Vの高圧であれば逆起電力も
それとほぼ同等のため、その危険性は大きい。
At this time, if the electric motor continues to rotate due to inertia, even if the disconnector is opened, a counter electromotive force will be generated for more than ten minutes as described above. If you accidentally touch the circuit, you may get an electric shock and die. In particular, if the power supply voltage is as high as 3000V, the back electromotive force is almost the same, so the danger is great.

この解決法として次の二つが考えられる。 There are two possible solutions to this problem:

まず、一つは、第2図に示すように、分巻界磁
短絡用スイツチ14を設ける方法である。分巻界
磁のアンペアターンは直巻界磁に比べ十分に大き
いため、分巻界磁分を殺そうという考えである。
逆起電力EM2による界磁電流if1は分巻界磁をバイ
パスするが、分巻界磁回路には、例えば、時定数
0.3秒ほどあるため、初期界磁電流if0の減衰に時
間がかかること、たとえ分巻界磁電流がOAにな
つたとしても、電動機の無負荷飽和特性上残留電
圧として逆起電力が残る。例えば、電流電圧
3000V、110KVAのMAの場合、残留電圧は500V
にもなる。これでは、まだ感電の危険性が十分に
あると言つて良い。
First, as shown in FIG. 2, there is a method of providing a shunt field shorting switch 14. Since the ampere-turn of a shunt field is sufficiently larger than that of a series winding field, the idea is to eliminate the shunt field.
The field current i f1 due to the back electromotive force E M2 bypasses the shunt field, but the shunt field circuit has a time constant, e.g.
Since it takes about 0.3 seconds, it takes time for the initial field current i f0 to decay, and even if the shunt field current reaches OA, a back electromotive force remains as a residual voltage due to the no-load saturation characteristics of the motor. For example, current voltage
For 3000V, 110KVA MA, residual voltage is 500V
It also becomes. It can be said that there is still a sufficient risk of electric shock.

二つめは、第3図に示すように、電機子短絡ス
イツチ16を設ける方法である。逆起電力を発生
している電機子5,6を制限抵抗15を介して電
機子短絡スイツチ16により短絡し、発生電圧を
なくす方法である。この方法では、発生電圧を完
全になくすことはできるが、電機子短絡スイツチ
の容量、及び絶縁が必要になる。つまり、電源電
圧と等しい電圧発生源を抵抗短絡するからであ
る。この場合、逆起電力EM2により分巻界磁電流
ifも漏れるから、その減衰に時間がかかることに
なる。従つて、実用上良い方法とは言えない。
The second method is to provide an armature shorting switch 16, as shown in FIG. This is a method in which the armatures 5 and 6 generating back electromotive force are short-circuited by an armature shorting switch 16 via a limiting resistor 15 to eliminate the generated voltage. Although this method can completely eliminate the generated voltage, it requires the capacity and insulation of the armature shorting switch. In other words, this is because a voltage generation source equal to the power supply voltage is short-circuited with a resistor. In this case, the shunt field current is
Since i f also leaks, it will take time for it to decay. Therefore, it cannot be said that this is a practically good method.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、慣性により回転していること
で発生している電動機の逆起電力をすみやかに減
衰させる制御方法を提供するにある。
An object of the present invention is to provide a control method that quickly attenuates the back electromotive force generated by a motor rotating due to inertia.

〔発明の概要〕[Summary of the invention]

本発明の要点は、慣性により回転することで発
生している電動機の逆起電力を電源とし、自己の
分巻界磁に逆励磁をかけることで界磁磁束を消滅
させ、逆起電力をすみやかに滅衰させることにあ
る。
The key point of the present invention is to use the back electromotive force generated by the motor as it rotates due to inertia as a power source, and apply reverse excitation to its own shunt field to eliminate the field magnetic flux and quickly eliminate the back electromotive force. The goal is to cause it to decay.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を図面にもとづいて説明す
る。
An embodiment of the present invention will be described based on the drawings.

第4図は本発明の一実施例を示すMA回路図で
ある。
FIG. 4 is an MA circuit diagram showing an embodiment of the present invention.

第1図と比較すると、界磁抵抗10が15A及び
15Bに二分割され、さらに、断路器3と連動し
て動作する界磁切替スイツチ17,18が設けら
れている。
Compared to FIG. 1, the field resistor 10 is divided into two parts 15A and 15B, and field changeover switches 17 and 18 that operate in conjunction with the disconnector 3 are provided.

定常運転状態では、分巻界磁11には、if0で示
される向きの界磁電流が流れる。今、断路器3を
接地側に切替える、つまり、MA開放操作すると
それに連動して界磁切替スイツチ17,18が投
入される。こうすると逆起電力を電源とし、分巻
界磁11に界磁電流if1で示す向きの電流が流され
る。
In the steady operating state, a field current in the direction indicated by i f0 flows through the shunt field 11. Now, when the disconnector 3 is switched to the ground side, that is, when the MA is opened, the field changeover switches 17 and 18 are turned on in conjunction with this. In this case, the back electromotive force is used as a power source, and a current in the direction indicated by the field current i f1 is caused to flow through the shunt field 11.

第5図にこの時の等価回路を示す。ここで電源
電圧3000V、容量110KVAのMAを考えてみる
と、逆起電力は1つの電機子で1500V、つまり、
EM2となる。分巻界磁11のインピーダンスは
200H、内部抵抗609Ω、界磁抵抗15A,15Bのイ
ンピーダンスは200Ωとなる。又、初期界磁電流
if0は1.5Aとなる。
FIG. 5 shows an equivalent circuit at this time. If we consider an MA with a power supply voltage of 3000V and a capacity of 110KVA, the back electromotive force is 1500V in one armature, that is,
E becomes M2 . The impedance of the shunt field 11 is
200H, internal resistance 609Ω, field resistance 15A, 15B impedance is 200Ω. Also, the initial field current
i f0 becomes 1.5A.

この回路定数によりEM2及びifの時間推移をシ
ユミレーシヨンした結果を第6図に示す。界磁電
流ifが0Aの状態でも、一つの電機子には、残留電
圧として500V、電動機としては倍の1000Vを残
つている。更に、逆励磁により界磁電流if0は逆極
性となる。こうして、逆起電力EM2は界磁切替ス
イツチ投入後2〜3秒で完全に滅衰しきることが
わかる。
FIG . 6 shows the results of simulating the time course of E M2 and if using these circuit constants. Even when the field current i f is 0A, a residual voltage of 500V remains in one armature, and twice as much as 1000V remains in the motor. Furthermore, due to reverse excitation, the field current i f0 has a reverse polarity. Thus, it can be seen that the back electromotive force E M2 completely decays in 2 to 3 seconds after the field changeover switch is turned on.

このようにして、従来逆起電力の滅衰までに十
数分間を要していたものが数秒ですむことにな
る。
In this way, the counter electromotive force, which conventionally required more than ten minutes to decay, now takes only a few seconds.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、慣性により発生している逆起
電力をすみやかに滅衰させることができるため、
保守要員等の感電を防止することができる。
According to the present invention, since the back electromotive force generated due to inertia can be quickly dissipated,
It is possible to prevent electric shock to maintenance personnel, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMA回路図、第2図、第3図は
その改善案としてのMA回路図、第4図は本発明
の一実施例のMA回路図、第5図は分巻界磁を逆
励磁した時の等価回路図、第6図はそのシユミレ
ーシヨン結果の特性図である。 11…分巻界磁、5,6…電機子、15A,1
5B…界磁抵抗、17,18…界磁切替スイツ
チ。
Figure 1 is a conventional MA circuit diagram, Figures 2 and 3 are MA circuit diagrams as an improvement plan, Figure 4 is an MA circuit diagram of an embodiment of the present invention, and Figure 5 is a shunt field circuit diagram. FIG. 6 is a characteristic diagram of the simulation result. 11...Shunt field, 5,6...Armature, 15A, 1
5B... Field resistance, 17, 18... Field switching switch.

Claims (1)

【特許請求の範囲】 1 電源と主回路とを開閉する電源開閉器、その
電源開閉器と直列に接続される電機子、その電機
子と直列に接続される直巻界磁及び前記電機子か
ら並列に接続される分巻回磁からなる電動発電機
の制御方法において、 前記電源開閉器を開極した時、前記電機子の残
留電圧を電源とし、前記分巻界磁にそれまで流れ
ていた界磁電流と逆極性の電流が流れるようつな
ぎかえ用開閉器により、前記分巻界磁をつなぎか
えることを特徴とする電動発電機の制御方法。 2 特許請求の範囲第1項において、前記電源開
閉器と前記つなぎかえ用開閉器を連動させたこと
を特徴とする電動発電機の制御方法。
[Scope of Claims] 1. A power switch that opens and closes a power supply and a main circuit, an armature connected in series with the power switch, a series field connected in series with the armature, and a power supply switch connected to the armature in series. In a method of controlling a motor generator consisting of shunt winding magnets connected in parallel, when the power supply switch is opened, the residual voltage of the armature is used as a power source, and the residual voltage that had been flowing in the shunt winding field up to that point is used as a power source. A method for controlling a motor generator, characterized in that the shunt field is reconnected using a reconnection switch so that a current of opposite polarity to the field current flows. 2. A method for controlling a motor generator according to claim 1, characterized in that the power supply switch and the switching switch are linked.
JP17304683A 1983-09-21 1983-09-21 Controlling method of motor generator Granted JPS6066700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17304683A JPS6066700A (en) 1983-09-21 1983-09-21 Controlling method of motor generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17304683A JPS6066700A (en) 1983-09-21 1983-09-21 Controlling method of motor generator

Publications (2)

Publication Number Publication Date
JPS6066700A JPS6066700A (en) 1985-04-16
JPH0449360B2 true JPH0449360B2 (en) 1992-08-11

Family

ID=15953202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17304683A Granted JPS6066700A (en) 1983-09-21 1983-09-21 Controlling method of motor generator

Country Status (1)

Country Link
JP (1) JPS6066700A (en)

Also Published As

Publication number Publication date
JPS6066700A (en) 1985-04-16

Similar Documents

Publication Publication Date Title
CA2174096A1 (en) Automatic overvoltage protection for an alternator in a locomotive propulsion system
JPH0947055A (en) Electric system for electric automobile
US5892342A (en) Self-test circuit for a shorted diode protection panel in a diesel electric locomotive
JPH0449360B2 (en)
JP3594100B2 (en) Electric vehicle electric system
US2501360A (en) Control system for diesel-electric locomotives
US3435325A (en) Electric generator and speed control system therefor
JPH1070897A (en) Control circuit for direct-current motor
RU2691735C1 (en) Short-circuit protection device for magnetoelectric generator
JP2000125579A (en) Prime mover starting device
JP2597036Y2 (en) Composite resistor
CN112713826B (en) Start/power generation system for aircraft
SU888426A1 (en) Vehicle electric drive
US2055304A (en) Control of direct current electric motors
US2282822A (en) Power system including rotary transformer
SU874406A1 (en) Apparatus for controlling traction electric drive
JPS6248278A (en) Controller for dc motor
JPH0218715Y2 (en)
JPS6211123Y2 (en)
JPS60213277A (en) Electric brake device of synchronous machine
JPH0213557B2 (en)
SU866651A1 (en) Device for automatic redundancy of power supply source of three-phase induction motor
SU1129694A1 (en) Device for protecting diesel-electric propulsion plant when loss of torque of diesel engine occurs
SU773749A1 (en) Device for boosting dc electromagnet of ac contactor
JPS6213400Y2 (en)