JPS6211123Y2 - - Google Patents

Info

Publication number
JPS6211123Y2
JPS6211123Y2 JP1980034808U JP3480880U JPS6211123Y2 JP S6211123 Y2 JPS6211123 Y2 JP S6211123Y2 JP 1980034808 U JP1980034808 U JP 1980034808U JP 3480880 U JP3480880 U JP 3480880U JP S6211123 Y2 JPS6211123 Y2 JP S6211123Y2
Authority
JP
Japan
Prior art keywords
motor
circuit
diode
braking
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980034808U
Other languages
Japanese (ja)
Other versions
JPS56136403U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980034808U priority Critical patent/JPS6211123Y2/ja
Publication of JPS56136403U publication Critical patent/JPS56136403U/ja
Application granted granted Critical
Publication of JPS6211123Y2 publication Critical patent/JPS6211123Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

【考案の詳細な説明】 本考案はバツテリフオークリフト等の電気車に
使用する電動機の制御装置に関し、特に電気車用
直流電動機の小形かつ簡単な制動制御装置に関す
る。
[Detailed Description of the Invention] The present invention relates to a control device for a motor used in an electric vehicle such as a battery forklift, and more particularly to a small and simple braking control device for a DC motor for an electric vehicle.

従来周知のバツテリーフオークリフト等電気車
の走行用電動機の制御装置は、その電気制動法は
ほとんどがプラツギング制動方式とよばれるもの
であり、制動時には走行用電動機を発電機に切替
えて車両の持つ運動エネルギを発電エネルギに変
換しその発電エネルギをすべて電機子を含む制動
回路の中で消費させるものであつた。また一部抵
抗の切替により走行速度を制御する抵抗制御方式
と呼ばれるものにおいては、走行制御用抵抗に発
電エネルギのほとんどを消費させていた。さらに
電気車の走行用電動機において特別の制動用抵抗
器を備えて該抵抗で発電エネルギを消費させた
り、あるいは数多くの切替スイツチを用いて電源
にエネルギを返還する回生制動方式が用いられて
いた。
Conventionally known control devices for the driving motors of electric vehicles such as battery forklifts use mostly electric braking methods called plugging braking, in which the driving electric motor is switched to a generator during braking to generate the vehicle's motion. The energy was converted into generated energy, and all of the generated energy was consumed in the braking circuit including the armature. Furthermore, in a so-called resistance control method in which the running speed is controlled by partially switching the resistance, most of the generated energy is consumed by the running control resistor. Furthermore, a regenerative braking system has been used in which the running motor of an electric vehicle is equipped with a special braking resistor and the generated energy is consumed by the resistor, or the energy is returned to the power source using a large number of changeover switches.

ここで従来のバツテリフオークリフト等の電気
車に用いられていたプラツギング制動方式は、車
両の持つ運動のエネルギをすべて駆動用電動機に
より熱エネルギに変換して消費するために、バツ
テリフオークリフト等のように発進、制動、後退
が頻繁に行なわれる電気車では、電動機の熱容量
を非常に大きくする必要があるという欠点があつ
た。さらには、エネルギの消費方法が電機子の短
絡による方法であり、この場合制動フイーリング
の点から、界磁電流を非常に小さく制限する必要
があるので、電機子の短絡大電流によつて大きな
電機子反作用を受け、それにより整流条件が悪化
するという欠点があつた。また抵抗制御方式にお
いては走行制御に抵抗器を用いており、力行、制
動のいずれの場合にも電力損失が大きく、また速
度制御が段階的になるという欠点があつた。さら
に電車で用いられている発電制動方式並びに回生
制動方式においては、大容量抵抗器を必要とする
かあるいは数多くの切替スイツチが必要であり、
これらの制御が複雑になるという欠点があり、小
形化と低価格とが必要でしかも有限のエネルギ源
により給電されるバツテリフオークリフト等の電
気車に対しては不向であるという問題があつた。
Here, the plugging braking system used in conventional electric vehicles such as battery forklifts uses the driving electric motor to convert all of the kinetic energy of the vehicle into heat energy and consume it. Electric cars, which are frequently started, braked, and reversed, have the disadvantage that the electric motor needs to have a very large heat capacity. Furthermore, energy is consumed by short-circuiting the armature, and in this case, from the viewpoint of braking feeling, it is necessary to limit the field current to a very small value. The drawback was that the rectification conditions deteriorated due to secondary reactions. In addition, the resistance control method uses a resistor for running control, and has the disadvantage that power loss is large during both powering and braking, and speed control is stepwise. Furthermore, the dynamic braking system and regenerative braking system used in trains require large capacity resistors or a large number of changeover switches.
The disadvantage is that these controls are complicated, and it is not suitable for electric vehicles such as battery forklifts, which require compactness and low cost and are powered by a finite energy source. .

本考案は、従来の回生制動装置及びプラツギン
グ制動装置の少なくとも一方を備えた電気車用電
動機制御装置において主スイツチ手段に並列に予
備励磁用の小容量の抵抗器を1個追加しただけの
簡単な構成により省エネルギが可能でしかも電動
機の電機子反作用等の問題を除去した電気車用電
動機制御装置を提供するものである。
The present invention is a simple motor control system for an electric vehicle equipped with at least one of a conventional regenerative braking device and a plugging braking device, by simply adding one small-capacity resistor for pre-excitation in parallel to the main switching means. It is an object of the present invention to provide a motor control device for an electric vehicle that is configured to save energy and eliminate problems such as armature reaction of the motor.

以下添付図面を参照しつつ本考案の実施例につ
いて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

添付図面において、参照番号1は直流電源、2
は直流直巻電動機で電機子21と界磁巻線22と
を備えている。3はサイリスタ又はトランジスタ
等によるチヨツパ装置を示し、4は主スイツチ手
段であり励磁コイル41の励磁により投入される
電磁開閉器である。5及び6はそれぞれ第1及び
第2のダイオード、7は抵抗器、8及び9はそれ
ぞれ励磁コイル81及び91の励磁により接点の
接触方向が切替わる電磁開閉器であり、界磁巻線
22の接続方向を切替えて界磁巻線の励磁方向を
切替える前後進励磁電流切替回路を構成するため
の電磁開閉器である。同電磁開閉器8及び9は可
動接触子は常時は常閉接点である図示の下方の固
定接点と接触している。10はキースイツチある
いはアクセル操作スイツチ等で構成される始動ス
イツチである。11は、中立端子12、前進端子
82及び後退端子92を有する前後進切替スイツ
チであり、13及び16はトランジスタ、14及
び17はバリスタ等のサージ吸収装置、15は駆
動回路、83及び93はダイオードである。
In the accompanying drawings, reference number 1 indicates a DC power supply, 2
The motor is a DC series-wound motor and includes an armature 21 and a field winding 22. Reference numeral 3 indicates a chopper device such as a thyristor or a transistor, and 4 is an electromagnetic switch which is main switching means and is turned on by excitation of an excitation coil 41. 5 and 6 are first and second diodes, respectively, 7 is a resistor, 8 and 9 are electromagnetic switches whose contact directions are switched by excitation of excitation coils 81 and 91, respectively; This is an electromagnetic switch for configuring a forward/reverse excitation current switching circuit that switches the connection direction and switches the excitation direction of the field winding. In the electromagnetic switches 8 and 9, the movable contacts are normally in contact with the lower fixed contacts shown in the figure, which are normally closed contacts. Reference numeral 10 denotes a starting switch comprised of a key switch, an accelerator operation switch, or the like. 11 is a forward/reverse changeover switch having a neutral terminal 12, a forward terminal 82, and a backward terminal 92; 13 and 16 are transistors; 14 and 17 are surge absorbers such as varistors; 15 is a drive circuit; and 83 and 93 are diodes. It is.

次に図示の実施例について本考案による電気車
用電動機制御装置の動作を説明する。
Next, the operation of the electric vehicle motor control device according to the present invention will be explained with reference to the illustrated embodiment.

まず、トランジスタ13は、始動時にチヨツパ
装置3が短絡等の異常状態にある時、又はチヨツ
パ装置3が動作中に遮断不能等の異常状態になつ
た時に非導通となり電動機2を主回路から切り離
して停止させるための保安装置である。駆動回路
15はトランジスタ16を駆動するためのもので
あつて、始動スイツチ10及び前後進切替スイツ
チ11が閉じられた時通常はトランジスタ16を
導通させるように作動する。ただし、始動スイツ
チ10及び前後進切替スイツチ11が閉じられて
いる時であつて、電機子21に図示とは逆極性の
電圧が誘起されしかも電動機2に流れる電流が規
定値以上になつたことが検知された時にトランジ
スタ16を非導通にするように作動する。またチ
ヨツパ装置3は。図示しないアクセルペダル等の
出力指示装置の動きに応じた信号に応答して発生
された制御信号を受けて断続動作し、電動機2に
電源電圧の数パーセントから100%に至る大きさ
の平均電圧を印加することにより(時には前記チ
ヨツパ装置3を短絡するように配設されたバイパ
スコンタクタを備えることもある)速度制御を行
なう。また図示しない前記の制御信号の発生装置
には、アクセルペダル等による急加速時には、公
知のソフトスタートと呼ばれる装置であつてチヨ
ツパ装置による電動機印加電圧を徐々に増加させ
る装置を付属させることがある。
First, the transistor 13 becomes non-conductive and disconnects the motor 2 from the main circuit when the chopper device 3 is in an abnormal state such as a short circuit during startup, or when the chopper device 3 is in an abnormal state such as being unable to shut off during operation. This is a safety device to stop the vehicle. The drive circuit 15 is for driving the transistor 16, and normally operates to make the transistor 16 conductive when the start switch 10 and the forward/reverse selector switch 11 are closed. However, when the starting switch 10 and the forward/reverse selector switch 11 are closed, a voltage with a polarity opposite to that shown in the diagram is induced in the armature 21, and the current flowing through the motor 2 exceeds the specified value. It operates to render transistor 16 non-conductive when detected. Also, the chiyotsupa device 3 is. It operates intermittently in response to a control signal generated in response to a signal corresponding to the movement of an output instruction device such as an accelerator pedal (not shown), and applies an average voltage ranging from several percent to 100% of the power supply voltage to the electric motor 2. The speed is controlled by applying a voltage (sometimes with a bypass contactor arranged to short-circuit the chopper device 3). In addition, the aforementioned control signal generating device (not shown) may be attached with a device that gradually increases the voltage applied to the motor using a chopper device, which is a device called a known soft start device when the vehicle is suddenly accelerated by an accelerator pedal or the like.

始動スイツチ10を閉じ前後進切替スイツチ1
1を前進側82(または後退側92)に閉じる
と、前記のチヨツパ装置3の始動時チエツクの結
果が正常であればトランジスタ13は導通にされ
る。そして励磁コイル81(又は91)の励磁に
より開閉器8(又は9)の可動接触子は図の上方
の固定接点の側に閉じる。次に前述の図示しない
制御装置よりの制御信号によりチヨツパ装置3は
徐々にチヨツピング動作を開始する。そしてこの
時から駆動回路15は電機子21の両端子間電圧
の極性と電動機2の電流の大きさとのチエツクを
行なう。力行時には電機子21の両端子間には図
示した極性の電圧が誘起されるので、トランジス
タ16は導通にされ励磁コイル41は付勢されて
主スイツチ手段4が閉じる。それにより電動機2
の一方の側は電源1に直接に接続され、チヨツパ
装置3のチヨツピング動作により電動機2の力行
時の速度制御が行なわれる。この時同時に第2の
ダイオード6は電動機2の回路に対して逆並列に
接続されフライホイールダイオードとして作動す
る。また図示しない前述のバイパスコンタクタの
投入によりチヨツパ3を短絡して直流電源1の全
電圧を電動機2に印加する場合もある。このよう
にしてバツテリフオークリフト等の電気車の力行
時における低速走行から高速走行までの速度制御
が行なわれる。今例えば、前述の過程を経て車両
が前進方向に力行走行している場合に、ある時点
で制動を行う目的で前後進切替スイツチ11を、
82の側から92の側に、すなわち前進側から後
退側に切替えると、トランジスタ13及び16は
共に一旦非導通となり、主スイツチ手段4は開か
れたままの状態で電磁開閉器8及び9の可動接触
子は共に下方の固定接点と接触するが、トランジ
スタ13はチヨツパ3に異常がないことが確認さ
れた後導通にされる。そして励磁がコイル81か
ら91に切替えられることにより電磁開閉器8の
可動接触子は下方の固定接点の側に閉じ9の可動
接触子は上方の固定接点の側に閉じた状態とな
り、チヨツパ3は再びチヨツピングを始める。こ
の時チヨツパ3は、図示しない制御装置よりの制
御信号により制御され、アクセル等により指示さ
れた出力より小さい出力からチヨツピングを始め
出力を徐々に指示量まで増加させてゆく。この時
電動機2では界磁巻線22の接続方向が切替えら
れ、しかもチヨツパ3はチヨツピングしているの
で、電源1から抵抗器7を通る電流により界磁磁
束の方向が切替えられ、車両が慣性により前進中
の間は電機子21に図示とは逆方向の起電力が発
生し、電動機2は発電機として作動する。チヨツ
パ3のチヨツピングによりチヨツパ3が導通して
いる期間中は電機子21の発電電圧はチヨツパ3
と第2のダイオード5とを介して短絡されて発電
制動が行われ、その閉回路を流れる電流が増大す
る。次に、チヨツパ3が非導通になつたときは、
電機子21に生じる図示とは逆極性の発電電圧が
電源1の全電圧より大きいときは、発電機回路の
電磁エネルギによる電流は電機子21→第2のダ
イオード6→電源1→第1のダイオード5→界磁
巻線22の閉回路を流れて回生制動が行われる。
この場合においても、更にまた、電機子21の発
電電圧が電源1の全電圧より低くなつた場合にお
いても、同時に発電機2の電磁エネルギの一部
は、電機子21→ダイオード6→抵抗器7→界磁
巻線22の閉回路を分流する電流を生じ、その電
磁エネルギが抵抗器7の中で消費されることによ
り発電制動作用を行う。この間界磁巻線22を流
れる上記の電流が発生する界磁磁束により前進回
転中の電機子21に誘起される起電力の方向を検
出することにより、駆動回路15はトランジスタ
16を制動期間中非導通にし主スイツチ手段4を
開放状態に保つ。前述の第2のダイオード5を介
する短絡による発電制動中、チヨツパ3が導通し
ている期間中は、チヨツパ3に流れる電流を規定
の値に制御することにより制動トルクを制御す
る。なお、一旦前記の第2のダイオード5を介す
る短絡による発電制動が行われた後は、上記のよ
うに発電制動より回生制動へ、更にその逆方向へ
の移行は、チヨツパ3の非導通化又は導通化の制
御により行なうことができる。その後車両の速度
が低下し発電機2の発電電圧が減少し規定の電流
を流し得なくなると、駆動回路15によりトラン
ジスタ16を導通させ主スイツチ手段4を閉じ抵
抗器7を短絡する。それにより車両は、完全に停
止した後後退を始める。それより以後は電機子2
1には図示方向の電圧が誘起されるので、トラン
ジスタ16は導通状態を続け主スイツチ手段4を
投入状態に保つ。既に述べた通り力行時には第2
のダイオード6は電動機2に対するフライホイー
ルダイオードとして作動する。以上の説明からわ
かるように、主スイツチ手段4が開かれている発
電及び回生制動期間中、制動電流を生じるように
電機子21に逆極性の起電力を発生させるための
界磁磁束は抵抗器7を経て電源1より界磁巻線2
2に供給される励磁電流により得られるので、別
に外部から励磁するための他励巻線並びに同関連
回路及び付属素子を設ける必要はなくなる。なお
図示のサージ吸収装置14及び17はそれぞれト
ランジスタ13及び16が非導通にされる瞬間に
励磁コイル81,91及び41あるいは配線のイ
ンダクタンス等により生じるサージ電圧を吸収し
てトランジスタ13及び16を保護するためのも
のである。また図示の回路においては、チヨツパ
装置3を電源1の負側に接続し主スイツチ手段4
と抵抗器7との並列回路を電源1の正側に接続し
たが、これを逆の位置に入れ替えても、また、前
後進励磁電流切替回路と電機子21との相互の配
置を上下入れ替えても、同一の作用及び効果が得
られることは明らかである。
Close the start switch 10 and turn the forward/reverse switch 1
When the switch 1 is closed to the forward side 82 (or reverse side 92), if the result of the start-up check of the chopper device 3 is normal, the transistor 13 is made conductive. Then, the exciting coil 81 (or 91) is excited, and the movable contact of the switch 8 (or 9) is closed to the fixed contact side at the top of the figure. Next, the chopper device 3 gradually starts chopping operation in response to a control signal from the control device (not shown). From this point on, the drive circuit 15 checks the polarity of the voltage between both terminals of the armature 21 and the magnitude of the current in the motor 2. During power running, a voltage of the polarity shown in the figure is induced between both terminals of the armature 21, so the transistor 16 is made conductive, the exciting coil 41 is energized, and the main switch means 4 is closed. As a result, the motor 2
One side of the diode 6 is directly connected to the power source 1, and the chopping action of the chopper device 3 controls the speed of the motor 2 when it is powered. At the same time, the second diode 6 is connected in inverse parallel to the circuit of the motor 2 and operates as a flywheel diode. There are also cases where the chopper 3 is short-circuited by closing the aforementioned bypass contactor (not shown) to apply the full voltage of the DC power source 1 to the motor 2. In this way, speed control is performed from low to high speeds when an electric vehicle such as a battery-operated crimp is powered. Now, for example, when the vehicle is powered forward through the above-mentioned process, the forward/reverse switch 11 is turned on in order to brake at a certain point in time.
When switching from side 82 to side 92, i.e., from forward to reverse, both transistors 13 and 16 become non-conductive once, and the main switch means 4 remains open, with the movable contacts of the electromagnetic switches 8 and 9 both contacting the lower fixed contacts, but the transistor 13 is made conductive after it is confirmed that there is no abnormality in the chopper 3. Then, as the excitation is switched from coil 81 to 91, the movable contact of the electromagnetic switch 8 closes to the lower fixed contact side and the movable contact of 9 closes to the upper fixed contact side, and the chopper 3 starts chopping again. At this time, the chopper 3 is controlled by a control signal from a control device (not shown), and starts chopping from an output smaller than the output commanded by the accelerator, etc., and gradually increases the output to the commanded amount. At this time, the connection direction of the field winding 22 in the motor 2 is switched, and since the chopper 3 is chopped, the direction of the field magnetic flux is switched by the current passing through the resistor 7 from the power source 1, and while the vehicle is moving forward due to inertia, an electromotive force in the direction opposite to that shown in the figure is generated in the armature 21, and the motor 2 operates as a generator.
The first diode 5 is short-circuited through the second diode 5, and dynamic braking is performed, and the current flowing through the closed circuit increases. Next, when the chopper 3 becomes non-conductive,
When the generated voltage of opposite polarity to that shown in the figure generated in the armature 21 is greater than the total voltage of the power source 1, the current generated by the electromagnetic energy of the generator circuit flows through a closed circuit of the armature 21 → the second diode 6 → the power source 1 → the first diode 5 → the field winding 22, thereby performing regenerative braking.
In this case, and also when the generated voltage of the armature 21 becomes lower than the total voltage of the power source 1, at the same time, a part of the electromagnetic energy of the generator 2 generates a current that shunts through the closed circuit of the armature 21 → diode 6 → resistor 7 → field winding 22, and this electromagnetic energy is consumed in the resistor 7, thereby performing a dynamic braking operation. During this time, the drive circuit 15 detects the direction of the electromotive force induced in the armature 21 during forward rotation by the field flux generated by the current flowing through the field winding 22, thereby making the transistor 16 non-conductive during the braking period and maintaining the main switch means 4 in an open state. During the dynamic braking by the above-mentioned short circuit via the second diode 5, while the chopper 3 is conductive, the braking torque is controlled by controlling the current flowing through the chopper 3 to a specified value. Once dynamic braking has been performed by short-circuiting through the second diode 5, transition from dynamic braking to regenerative braking and further in the reverse direction can be achieved by controlling the conduction or non-conduction of the chopper 3. When the vehicle speed subsequently decreases and the generated voltage of the generator 2 decreases to the point where it is no longer possible to flow the specified current, the drive circuit 15 causes the transistor 16 to conduct, closing the main switch means 4 and shorting out the resistor 7. As a result, the vehicle comes to a complete halt and starts to move backwards. From then on, the armature 2
Since a voltage in the illustrated direction is induced in the second switching means 1, the transistor 16 continues to be conductive and the main switching means 4 is kept in the on state.
The diode 6 functions as a flywheel diode for the motor 2. As can be seen from the above explanation, during the power generation and regenerative braking period when the main switch means 4 is open, the field magnetic flux for generating an electromotive force of a reverse polarity in the armature 21 so as to generate a braking current is supplied from the power source 1 to the field winding 2 through the resistor 7.
Since the excitation current is obtained from the excitation current supplied to the power supply 2, there is no need to provide a separate excitation winding for external excitation and associated circuits and auxiliary elements. The surge absorbing devices 14 and 17 shown in the figure are for absorbing surge voltages generated by the exciting coils 81, 91 and 41 or wiring inductances, etc., at the moment when the transistors 13 and 16 are made non-conductive, thereby protecting the transistors 13 and 16. In the circuit shown in the figure, the chopper device 3 is connected to the negative side of the power supply 1, and the main switch means 4 is connected to the negative side of the power supply 1.
and resistor 7 are connected to the positive side of power supply 1, but it is clear that the same action and effect can be obtained even if the positions are reversed, or if the forward/reverse excitation current switching circuit and armature 21 are swapped up and down.

以上説明した通り、本考案によれば、電動機2
の回路に直列に主スイツチ手段4と抵抗器7との
並列回路を設けて、力行時には主スイツチ手段4
により抵抗器7を短絡し電源1に電動機2とチヨ
ツパ装置3とを直列に接続して、チヨツパ装置3
により力行制御を行ない、この時第2のダイオー
ド6は電動機2の回路に対し逆並列に接続されフ
ライホイールダイオードとして作用する。次に制
動時には主スイツチ手段4が遮断され抵抗器7に
よつて初期励磁が行なわれるので、比較的低速回
転からでも電動機2を発電機として充分働かせる
ことができる。なお、制動時には発電機2の電磁
エネルギの一部は制動電流として界磁巻線22と
抵抗器7との中を分流する。ただし、この抵抗器
7は車両が力行に移ればすぐに短絡されてしまう
ので力行時には電力損失を生じることはない。ま
た第1ダイオード5は通常発電制動の場合におけ
る発電機回路の短絡用ダイオードとして作動する
ものであつて特に回生制動用として追加したもの
ではない。むしろ制動電流がプラツギング制動に
よる短絡電流ではなく、回生制動電流になるので
第1のダイオード5の容量は小さくてすむ。また
電機子電流と界磁電流とは常に等しいので発電機
としての整流も良く電動機2の体格の小形化が可
能となる。結局本願考案によれば、主スイツチ手
段4に対し並列に小容量の抵抗器7を追加するこ
とのみで省エネルギが可能になり、電動機の小形
化が可能な改良された電動機制御装置が得られる
という優れた効果がある。
As explained above, according to the present invention, the electric motor 2
A parallel circuit of main switch means 4 and resistor 7 is provided in series with the circuit of
By shorting the resistor 7 and connecting the motor 2 and the chopper device 3 in series to the power source 1, the chopper device 3 is connected.
Power running control is carried out by this, and at this time, the second diode 6 is connected in antiparallel to the circuit of the electric motor 2 and acts as a flywheel diode. Next, during braking, the main switch means 4 is cut off and initial excitation is performed by the resistor 7, so that the electric motor 2 can be sufficiently operated as a generator even from relatively low speed rotation. Note that during braking, a part of the electromagnetic energy of the generator 2 is divided into the field winding 22 and the resistor 7 as a braking current. However, this resistor 7 is short-circuited as soon as the vehicle starts powering, so no power loss occurs during powering. Further, the first diode 5 operates as a short-circuiting diode for the generator circuit in the case of normal dynamic braking, and is not added specifically for regenerative braking. Rather, since the braking current is not a short-circuit current due to plugging braking but a regenerative braking current, the capacitance of the first diode 5 can be small. Further, since the armature current and the field current are always equal, rectification as a generator is good and the size of the electric motor 2 can be reduced. After all, according to the invention of the present invention, it is possible to save energy simply by adding a small-capacity resistor 7 in parallel to the main switch means 4, and an improved motor control device that can downsize the motor can be obtained. This has an excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本考案による電動機制御装置の回路
図である。 1は直流電源、2は電動機(制動時は発電
機)、3はチヨツパ装置、4は主スイツチ手段、
5および6はそれぞれ第1及び第2のダイオー
ド、7は抵抗器、8および9は前後進切替主段と
しての電磁開閉器、を示す。
The accompanying drawing is a circuit diagram of a motor control device according to the present invention. 1 is a DC power supply, 2 is an electric motor (generator during braking), 3 is a chopper device, 4 is a main switch means,
5 and 6 are first and second diodes, respectively, 7 is a resistor, and 8 and 9 are electromagnetic switches as main stages for forward/reverse switching.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 直流直巻電動機の前後進励磁電流切替回路と電
機子との直列回路の一端と、主スイツチ手段と抵
抗器との並列回路の一端とを第1の接続点におい
て接続し、前記並列回路の他端を直流電源の一端
に接続し、前記の前後進励磁電流切替回路と電機
子との直列回路の他端と、チヨツパ装置の一方の
主端子とを第2の接続点において接続し、前記チ
ヨツパ装置の他方の主端子を前記の直流電源の他
端に接続し、更に前記の第1の接続点と前記チヨ
ツパ装置の他方の主端子との間に第1のダイオー
ドを接続し、前記の第2の接続点と前記の直流電
源の一端との間に第2のダイオードを接続した電
気車用電動機制御装置であつて、前記主スイツチ
手段が開放された制動期間中は前記抵抗器を経て
前記直流直巻電動機の励磁電流を供給するように
構成した電気車用電動機制御装置。
One end of the series circuit of the forward/reverse excitation current switching circuit of the DC series motor and the armature and one end of the parallel circuit of the main switch means and the resistor are connected at a first connection point, and the other end of the parallel circuit The other end of the series circuit of the forward/reverse excitation current switching circuit and the armature is connected to one main terminal of the chopper device at a second connection point, and the chopper device is connected to one end of the DC power source. The other main terminal of the device is connected to the other end of the DC power supply, and a first diode is connected between the first connection point and the other main terminal of the chopper device, and the first diode is connected to the other end of the DC power supply. A second diode is connected between the second connection point and one end of the DC power supply. A motor control device for an electric vehicle configured to supply excitation current for a DC series motor.
JP1980034808U 1980-03-17 1980-03-17 Expired JPS6211123Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980034808U JPS6211123Y2 (en) 1980-03-17 1980-03-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980034808U JPS6211123Y2 (en) 1980-03-17 1980-03-17

Publications (2)

Publication Number Publication Date
JPS56136403U JPS56136403U (en) 1981-10-16
JPS6211123Y2 true JPS6211123Y2 (en) 1987-03-16

Family

ID=29630446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980034808U Expired JPS6211123Y2 (en) 1980-03-17 1980-03-17

Country Status (1)

Country Link
JP (1) JPS6211123Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56117503A (en) * 1980-02-19 1981-09-16 Hitachi Ltd Control apparatus for electric rolling stock

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56117503A (en) * 1980-02-19 1981-09-16 Hitachi Ltd Control apparatus for electric rolling stock

Also Published As

Publication number Publication date
JPS56136403U (en) 1981-10-16

Similar Documents

Publication Publication Date Title
EP0633844B1 (en) An optimal dc motor/controller configuration
KR101549026B1 (en) Driving apparatus for electric vehicle
RU2146074C1 (en) Electric drive system for lifting carriages
JP5529393B2 (en) Discharge device for power storage device applied to generator motor drive device
JPS6211123Y2 (en)
KR0152301B1 (en) Brake revival control of an industrial car
JP3344011B2 (en) Drive control device for DC motor
JP4413565B2 (en) Power supply system
JP3669049B2 (en) DC motor drive control device
JPH0522804A (en) Electric brake system for vehicle
JP3954075B2 (en) DC motor drive control device
JPH0612932B2 (en) Secondary battery charge control method
JP7259563B2 (en) Rotating electric machine control system
JPH0218715Y2 (en)
JPH06101881B2 (en) Braking controller for electric vehicle
JP2730354B2 (en) Fault diagnosis device in DC motor drive control device
JP2001028802A (en) Controller of motor and its method
JPS5828475Y2 (en) DC motor control device
RU2262456C1 (en) Electric train speed control device
JPH0721117Y2 (en) Dynamic braking control circuit for electric vehicles
Das ACTIVE DISCHARGE OF DC LINK CAPACITOR IN SRM DRIVE FOR ELECTRIC VEHICLE APPLICATION
SU970612A1 (en) Device for regulating rotational speed of traction dc motor
JP2020136005A (en) Drive circuit
JPH08103001A (en) Starter circuit for motor operated vehicle
JPH0767211A (en) Motor-vehicle driving system