JPH0213557B2 - - Google Patents

Info

Publication number
JPH0213557B2
JPH0213557B2 JP51057685A JP5768576A JPH0213557B2 JP H0213557 B2 JPH0213557 B2 JP H0213557B2 JP 51057685 A JP51057685 A JP 51057685A JP 5768576 A JP5768576 A JP 5768576A JP H0213557 B2 JPH0213557 B2 JP H0213557B2
Authority
JP
Japan
Prior art keywords
thyristor
bridge
motor
power
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP51057685A
Other languages
Japanese (ja)
Other versions
JPS52140821A (en
Inventor
Masahiro Minamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5768576A priority Critical patent/JPS52140821A/en
Publication of JPS52140821A publication Critical patent/JPS52140821A/en
Publication of JPH0213557B2 publication Critical patent/JPH0213557B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)
  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】 本発明は、交流電源からサイリスタ純ブリツジ
を介して直流電動機の電機子回路への給電が行わ
れるような静止レオナード装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stationary Leonard device in which the armature circuit of a DC motor is supplied from an AC power supply via a thyristor pure bridge.

この種の静止レオナード装置では、直流電動機
の回生制動時に停電が起ると、サイリスタ純ブリ
ツジは転流失敗して過電流により故障する恐れが
あるため、何らかの保護手段が必要である。特に
交流架線から集電器を介して受電する車両静止レ
オナード装置においては、集電器の離線により停
電がしばしば起り得るので、そのような保護手段
は非常に重要である。
In this type of static Leonard device, if a power outage occurs during regenerative braking of the DC motor, the thyristor pure bridge may fail in commutation and fail due to overcurrent, so some kind of protection is required. In particular, in a vehicle stationary Leonard system which receives power from an AC overhead line through a current collector, such protection measures are very important since power outages can often occur due to disconnection of the current collector.

第1図および第2図は、かゝる保護手段を備え
た従来の静止レオナード装置の互いに異なる実施
例を示す。
Figures 1 and 2 show different embodiments of conventional stationary Leonard devices with such protection means.

第1図の場合には、3相交流架線Nに集電器
A、しや断器Bおよび交流リアクトルACLを介
して2組の3相サイリスタ純ブリツジREC1,
REC2が接続され、両ブリツジは互いに逆並列
結線されている。直流電動機Mの電機子は直流リ
アクトルDCLおよび高速度しや断器HBを介して
両ブリツジの直流出力側に接続されている。直流
電動機の正転時にはブリツジREC1により力行
運転が行なわれ、ブリツジREC2により回生制
御運転が行なわれるのに対して、逆転時にはブリ
ツジREC2により力行運転が行なわれ、ブリツ
ジREC1により回生制動運転が行なわれる。回
生制動運転時にはブリツジREC1もしくはREC
2は逆変換領域で制御され、交流電源電圧を利用
して転流を行なつているので、集電器Aの離線に
より停電が起つた場合に転流失敗する。転流失敗
に対する保護は高速度しや断器HBによつて行な
われる。この高速度しや断器HBは大型、高価で
あるという欠点を有し、また操作がめんどうで動
作回路が多い用途には適していない。
In the case of Fig. 1, two sets of three-phase thyristor pure bridges REC1,
REC2 is connected, and both bridges are connected in antiparallel to each other. The armature of the DC motor M is connected to the DC output sides of both bridges via a DC reactor DCL and a high-speed shield breaker HB. When the DC motor rotates forward, the bridge REC1 performs a power running operation, and the bridge REC2 performs a regenerative control operation, while when the DC motor rotates in the reverse direction, the bridge REC2 performs a power running operation, and the bridge REC1 performs a regenerative braking operation. Bridge REC1 or REC during regenerative braking operation
2 is controlled in the inverse conversion region and performs commutation using the AC power supply voltage, so if a power outage occurs due to disconnection of current collector A, commutation will fail. Protection against commutation failure is provided by a high speed shunt breaker HB. This high-speed shield breaker HB has the drawbacks of being large and expensive, and is difficult to operate and is not suitable for applications with many operating circuits.

第2図の場合には1組だけのサイリスタ純ブリ
ツジRECのみが使用され、その代りに電機子切
換接触器KAおよび界磁切換接触器KFが付加され
ている。電動機の正逆転の切換は界磁切換接触器
KFによる界磁反転によつて行なわれ、電動機の
力行回生制御の切換は電機子切換接触器KAによ
る電機子極性切換によつて行なわれる。回生制動
時における転流失敗に対する保護は同様に高速度
しや断器HBによつて行なわれるので、この場合
も第1図におけると同様の欠点があり、しかも電
機子切換接触器が必要であるという欠点もある。
In the case of FIG. 2, only one set of thyristor pure bridge REC is used, and in its place an armature switching contactor K A and a field switching contactor K F are added. Field switching contactor is used to switch between forward and reverse directions of the motor.
This is done by field reversal by K F , and the switching of the power running regeneration control of the motor is done by switching the armature polarity by armature switching contactor K A. Since protection against commutation failure during regenerative braking is likewise provided by a high-speed shunt breaker HB, this case too has the same drawbacks as in Figure 1, but also requires an armature switching contactor. There is also a drawback.

第1図および第2図における高速度しや断器
HBの代りにヒユーズによつて保護することも可
能であるが、この方法は一回の転流失敗で走行不
能となるので電気車用の静止レオナード装置には
適用できない。
High speed breaker in Figures 1 and 2
It is also possible to protect the vehicle with a fuse instead of the HB, but this method cannot be applied to stationary Leonard devices for electric vehicles because a single commutation failure will make the vehicle unable to run.

本発明の目的は、回生制動時における転流失敗
に対する保護のために高速度しや断器を必要とし
ない静止レオナード装置を提供することにある。
It is an object of the present invention to provide a stationary Leonard device that does not require high speed shunts to protect against commutation failure during regenerative braking.

以下第3図および第4図参照しながら本発明を
詳細に説明する。
The present invention will be described in detail below with reference to FIGS. 3 and 4.

第3図によれば、図示されていない3相交流架
線に集電器A、しや断器Bおよび交流リアクトル
ACLを介して2組の3相サイリスタ純ブリツジ
REC3,REC4が接続され、両ブリツジは直流
出力側で逆並列続線されて直流リアクトルDCL
および過電流リレーOCRを介して直流電動機M
の電機子に接続されている。この場合に、本発明
に従つてブリツジREC3は力行専用として、ブ
リツジREC4は回生制動専用として使用され、
回生制動専用のブリツジREC4には両側に限流
抵抗RBが直列に挿入接続される。電動機の回転
方向切換は界磁接触器KFによつて行なわれる。
According to Fig. 3, a current collector A, a breaker B, and an AC reactor are connected to a three-phase AC overhead line (not shown).
Two sets of three-phase thyristor pure bridge through ACL
REC3 and REC4 are connected, and both bridges are connected in antiparallel on the DC output side and connected to the DC reactor DCL.
and DC motor M via overcurrent relay OCR
is connected to the armature of In this case, according to the present invention, the bridge REC3 is used exclusively for power running, and the bridge REC4 is used exclusively for regenerative braking,
A current limiting resistor R B is inserted and connected in series on both sides of the bridge REC4 dedicated to regenerative braking. The direction of rotation of the motor is switched by a field contactor KF .

正転時および逆転時のいずれの場合にも力行運
転はブリツジREC3によつて回生制動運転はブ
リツジREC4によつて行なわれる。
In both cases of forward rotation and reverse rotation, the power running operation is performed by the bridge REC3, and the regenerative braking operation is performed by the bridge REC4.

本発明による静止レオナード装置では、回生制
動中に停電により転流失敗が起つても、限流抵抗
のおかげで、ブリツジREC4を介して流れる短
絡電流はiB=eM/2RBの値に制限される(但し、eMは 電動機誘起電圧)。従つて、従来のように電機子
回路を高速度しや断器によつて速やかに切り離す
必要はなく、ゆつくりとした動作で電機子電流を
減衰させてよい。つまり、転流失敗時における電
機子回路のしや断のために電機子回路に直列に挿
入した接触器を使用すればよく、高速度しや断器
は不要となる。また、第3図に示す如く、過電流
リレーOCRによつて界磁の切り離しを行なえば
上述の如き特別な接触器が不要となる。第3図に
よれば、界磁接触器KFの正転用接点投入用コイ
ルFCと逆転用接点投入用コイルとの共通な励磁
電流通路に過電流リレーOCRの接点が直列に挿
入されている。界磁巻線Fには放電抵抗RFが並
列接続されている。
In the stationary Leonard device according to the present invention, even if a commutation failure occurs due to a power outage during regenerative braking, the short-circuit current flowing through bridge REC4 is limited to the value i B = e M /2R B thanks to the current limiting resistor. (where e M is the motor induced voltage). Therefore, it is not necessary to quickly disconnect the armature circuit using a high-speed circuit breaker as in the conventional case, and the armature current can be attenuated by slow operation. In other words, a contactor inserted in series with the armature circuit can be used to interrupt the armature circuit when commutation fails, and a high-speed interrupter is not required. Furthermore, as shown in FIG. 3, if the overcurrent relay OCR is used to disconnect the field, the above-mentioned special contactor becomes unnecessary. According to FIG. 3, the contacts of the overcurrent relay OCR are inserted in series in the common excitation current path of the forward rotation contact closing coil FC and the reverse rotation contact closing coil of the field contactor KF . A discharge resistor R F is connected in parallel to the field winding F.

第4図には第3図の装置の転流失敗時における
電動機誘起電圧eM電動機電流iBおよび界磁電流if
の時間経過例が示されている。
Figure 4 shows the motor induced voltage e M motor current i B and field current i f when commutation fails in the device shown in Figure 3.
A time course example is shown.

回転方向切換回路Sによつて、例えばコイル
FCが付勢されていて、サイリスタブリツジREC
4により回生制動が行なわれているものとする。
この場合に公知の如くブリツジREC4は電動機
電流iBが一定値IMに保たれるよう点弧制御され
る。第4図によれば、時点t0で転流失敗が起り、
この結果として電動機電流が増大し始めている。
時点t1で過電流リレーOCRが働らき、その接点が
開かれ今まで通電されていたコイルの電流が零に
される。これによつて界磁接触器の接点が開極さ
れるわけであるが、この開極は時点t1よりも遅れ
た時点t2ではじめて行なわれる。時点t1から時点
t2の間では電動機電流iBは増大してゆくが、値
eM/2RBに達するとそれ以降はこの値にとどま
る。時点t2で界磁接触器の接点が開極されると、
開磁電流ifは放電抵抗Rfを介して流れながら減衰
してゆく。これにともなつて電動機誘起電圧が減
少してゆき、従つて電動機電流iBも零に向かつて
減少してゆく。このように、本発明によれば、開
極が遅れても電動機電流は限流抵抗RBによつて
限流されるので、ブリツジREC4のサイリスタ
素子を保護することができる。
By the rotation direction switching circuit S, for example, the coil
FC is energized and the thyristor bridge REC
4 assumes that regenerative braking is being performed.
In this case, as is known, the bridge REC 4 is ignited in such a way that the motor current i B is kept at a constant value I M . According to FIG. 4, commutation failure occurs at time t 0 ,
As a result of this, the motor current begins to increase.
At time t1 , the overcurrent relay OCR is activated, its contacts are opened, and the current in the coil that has been energized until now is reduced to zero. As a result, the contacts of the field contactor are opened, but this opening is only performed at time t2 , which is later than time t1 . from time t 1 to time
During t 2 , the motor current i B increases, but the value
Once it reaches e M / 2RB , it remains at this value. When the contacts of the field contactor are opened at time t 2 ,
The opening current i f attenuates while flowing through the discharge resistance R f . Along with this, the motor induced voltage decreases, and accordingly, the motor current i B also decreases toward zero. As described above, according to the present invention, even if the opening is delayed, the motor current is limited by the current limiting resistor RB , so that the thyristor element of the bridge REC4 can be protected.

力行専用ブリツジREC3および回生制動専用
ブリツジREC4により通常の逆並列接続レオナ
ードと同様に力行から回生制動への切換時間は充
分短くてすむ。一方、回転方向の切換、即ち車両
の前後進切換は、界磁反転によつて行なわれるた
め、反転時間がやゝ長くなる傾向にあるが、前後
進切換は急ぐ必要はないので実用上問題はない。
With the bridge REC3 dedicated to power running and the bridge REC4 dedicated to regenerative braking, the switching time from power running to regenerative braking is sufficiently short, similar to the normal reverse parallel connection Leonardo. On the other hand, switching the direction of rotation, that is, switching the vehicle forward or backward, is done by field reversal, so the reversal time tends to be a little longer, but there is no need to rush forward or backward switching, so this is not a practical problem. do not have.

限流抵抗RBは、ブリツジREC4の正側と負側
とに等分に分割して挿入するのが、ブリツジ
REC3のサイリスタ素子にかゝる電圧をバラン
スさせる上で望ましいが、サイリスタ素子の耐圧
上問題がなければ片側にまとめてもさしつかえな
い。あるいは、場合によつてはブリツジREC4
の各アームに分割して挿入してもよく、この場合
には限流抵抗は転流電流を抑える働きもする。
The best way to insert the current limiting resistor R B into the bridge is to divide it equally into the positive side and negative side of the bridge REC4.
It is desirable to balance the voltage applied to the thyristor elements of REC3, but if there is no problem with the withstand voltage of the thyristor elements, it is okay to put them together on one side. Or, in some cases, Bridge REC4
The current limiting resistor may also be inserted separately into each arm, and in this case, the current limiting resistor also serves to suppress the commutation current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、従来の静止レオナード
装置の互いに異なる実施例を示す接続図、第3図
は本発明による静止レオナード装置の実施例を示
す接続図、第4図は第3図の実施例についての動
作説明図である。 REC3……力行専用のサイリスタ純ブリツジ、
REC4……回生制動専用のサイリスタ純ブリツ
ジ、RB……限流抵抗、M……直流電動機、F…
…界磁巻線、RF……放電抵抗、KF……界磁接触
器、OCR……過電流リレー。
1 and 2 are connection diagrams showing different embodiments of a conventional stationary Leonard device, FIG. 3 is a connection diagram showing an embodiment of a stationary Leonard device according to the present invention, and FIG. 4 is a connection diagram of a stationary Leonard device according to the present invention. FIG. 3 is an explanatory diagram of the operation of the embodiment. REC3... Thyristor pure bridge exclusively for power running,
REC4...Thyristor pure bridge dedicated to regenerative braking, R B ...Current limiting resistor, M...DC motor, F...
...field winding, R F ...discharge resistance, K F ...field contactor, OCR ...overcurrent relay.

Claims (1)

【特許請求の範囲】[Claims] 1 交流き電線から集電器を介して交流電源を得
て、この交流電源と車両駆動用直流電動機の電機
子回路との間に介在するサイリスタ電力変換装置
によつて力行運転および制動運転を行なうように
した静止レオナード装置において、前記サイリス
タ電力変換装置は互いに逆並列結線された2つの
サイリスタ純ブリツジで構成し、車両の進行方向
に関係なく一方のサイリスタ純ブリツジを力行専
用、他方のサイリスタ純ブリツジを回生制動専用
とすべく車両の進行方向切換のための界磁極性切
換手段を設け、制動専用である他方のサイリスタ
純ブリツジにのみ限流抵抗を直列に挿入接続した
ことを特徴とする静止レオナード装置。
1 AC power is obtained from an AC feeder line through a current collector, and powering operation and braking operation are performed using a thyristor power conversion device interposed between this AC power source and the armature circuit of a DC motor for driving a vehicle. In the stationary Leonard device, the thyristor power conversion device is composed of two thyristor pure bridges connected in antiparallel to each other, one of the thyristor pure bridges is used for power running, and the other thyristor pure bridge is used for power running, regardless of the direction of travel of the vehicle. A stationary Leonard device characterized in that a field polarity switching means is provided for switching the direction of movement of the vehicle so as to be used exclusively for regenerative braking, and a current limiting resistor is inserted and connected in series only to the other thyristor pure bridge that is used exclusively for braking. .
JP5768576A 1976-05-19 1976-05-19 Stationary ward-leonard system Granted JPS52140821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5768576A JPS52140821A (en) 1976-05-19 1976-05-19 Stationary ward-leonard system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5768576A JPS52140821A (en) 1976-05-19 1976-05-19 Stationary ward-leonard system

Publications (2)

Publication Number Publication Date
JPS52140821A JPS52140821A (en) 1977-11-24
JPH0213557B2 true JPH0213557B2 (en) 1990-04-04

Family

ID=13062783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5768576A Granted JPS52140821A (en) 1976-05-19 1976-05-19 Stationary ward-leonard system

Country Status (1)

Country Link
JP (1) JPS52140821A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116418A (en) * 1974-08-01 1976-02-09 Mitsubishi Electric Corp KAISEIHENDENSHOHEN KANKISHISUTEMUNO SEIGYOHOSHIKI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116418A (en) * 1974-08-01 1976-02-09 Mitsubishi Electric Corp KAISEIHENDENSHOHEN KANKISHISUTEMUNO SEIGYOHOSHIKI

Also Published As

Publication number Publication date
JPS52140821A (en) 1977-11-24

Similar Documents

Publication Publication Date Title
CA2166225C (en) Circuit breaker and circuit breaking apparatus
CA2174096A1 (en) Automatic overvoltage protection for an alternator in a locomotive propulsion system
US5245495A (en) Automatic flashover protection for locomotive traction motors
CA2071920C (en) Automatic flashover protection for locomotive traction motors
JPH0917294A (en) Two-way dc circuit breaker
JPH0213557B2 (en)
JPH0946813A (en) Electric system for electric vehicle
JP3477007B2 (en) Electric car control device
JPS59132718A (en) Device for protecting separately-excited dc motor
JP3502236B2 (en) Circuit breaker
JP2922716B2 (en) DC braking method of inverter device
JPS5829716B2 (en) DC electric car drive circuit
US3364406A (en) Protective system for motors of electric cars
JP3423539B2 (en) High speed reclosing device
US2735054A (en) Schaelchlin
JPH05236646A (en) Current limiter
JPS60234403A (en) Controller for electric railcar
JPS6147013B2 (en)
JPH0223041Y2 (en)
SU1279012A1 (en) Device for protection of three-phase electric motor against abnormal operation conditions
JPS6120801Y2 (en)
JPS591041B2 (en) Regeneration control device for DC electric cars
JPH0445363Y2 (en)
JPH0320978B2 (en)
JPH0834665B2 (en) AC / DC converter