JPH0223041Y2 - - Google Patents

Info

Publication number
JPH0223041Y2
JPH0223041Y2 JP1984153500U JP15350084U JPH0223041Y2 JP H0223041 Y2 JPH0223041 Y2 JP H0223041Y2 JP 1984153500 U JP1984153500 U JP 1984153500U JP 15350084 U JP15350084 U JP 15350084U JP H0223041 Y2 JPH0223041 Y2 JP H0223041Y2
Authority
JP
Japan
Prior art keywords
motor
power supply
supply side
pole
closest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984153500U
Other languages
Japanese (ja)
Other versions
JPS6099801U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984153500U priority Critical patent/JPS6099801U/en
Publication of JPS6099801U publication Critical patent/JPS6099801U/en
Application granted granted Critical
Publication of JPH0223041Y2 publication Critical patent/JPH0223041Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Multiple Motors (AREA)

Description

【考案の詳細な説明】 〔考案の利用分野〕 本考案は電気車の直流電動機制御装置に係り、
特に他励界磁巻線を有する直流電動機の閃絡保護
をはかるのに好適な直流電動機制御装置に関する
ものである。
[Detailed description of the invention] [Field of application of the invention] The invention relates to a DC motor control device for an electric vehicle.
In particular, the present invention relates to a DC motor control device suitable for protecting a DC motor having separately excited field windings from flash.

〔考案の背景〕[Background of the idea]

第1図は従来の電気車の直流電動機制御装置の
構成図で、2両の電気車の場合を示してあり、符
号にAがつけてあるのはA号車、Bがつけてある
のはB号車のものである。第1図において、1は
電車線、2はパンタグラフ、3は直流複巻電動機
(以下主電動機と略称する。)の電機子部分、4は
それの直巻界磁巻線、5はそれの他励界磁巻線
で、磁束の方向は力行時に直巻界磁巻線4と和動
になるように接続されている。6は電機子回路に
過大電流が流れたときに自動的に接点が開いて電
機子部分3を保護するための高速度しや断器、7
は主電動機他励界磁回路用しや断器、8は他励界
磁巻線5の他励界磁電流を制御するチヨツパ装
置、9はチヨツパ装置8がオフ状態のときに他励
界磁電流を循環させるためのフライホイールダイ
オード、10は接地である。
Figure 1 is a block diagram of a conventional DC motor control system for an electric car, and shows the case of two electric cars. It belongs to car number. In Fig. 1, 1 is an overhead contact line, 2 is a pantograph, 3 is an armature part of a DC compound motor (hereinafter referred to as the main motor), 4 is its series field winding, and 5 is the other one. The excitation field winding is connected so that the direction of magnetic flux is harmonious with the series field winding 4 during power running. 6 is a high-speed disconnector whose contacts automatically open to protect the armature portion 3 when excessive current flows through the armature circuit; 7
8 is a chopper device for controlling the separately excited field current of the separately excited field winding 5, and 9 is a cutter for the separately excited field circuit of the traction motor, and 9 is a chopper device for controlling the separately excited field current in the separately excited field winding 5. A flywheel diode for circulating current, 10 is ground.

次に、2両の電気車が連結されて走行している
場合の動作について説明する。ただし、チヨツパ
装置8の動作については良く知られているので説
明を省略する。他励界磁巻線5に流れる他励界磁
電流を減少させると、電機子部分3の誘起電圧が
低下して、電機子電流が電車線1から接地10に
向つて流れ、力行制御となる。逆に他励界磁電流
を増加させて、電機子部分3の誘起電圧を電車線
1の電圧より高くすると、電機子電流は接地10
から電車線1に向つて流れ出し、回生ブレーキ作
用を呈する。このように、他励界磁電流を増減さ
せるだけで、簡単に力行と回生ブレーキの作用を
行わせることができ、これが直流複巻電動機を使
用した電気車制御装置の特徴になつている。
Next, the operation when two electric cars are running coupled together will be explained. However, since the operation of the chopper device 8 is well known, the explanation will be omitted. When the separately excited field current flowing through the separately excited field winding 5 is reduced, the induced voltage in the armature portion 3 decreases, and the armature current flows from the contact line 1 to the ground 10, resulting in power running control. . Conversely, if the separately excited field current is increased to make the induced voltage in the armature section 3 higher than the voltage on the contact line 1, the armature current will increase to the ground 10.
It flows out toward the overhead contact line 1 and exhibits a regenerative braking action. In this way, power running and regenerative braking can be performed simply by increasing or decreasing the separately excited field current, and this is a feature of an electric vehicle control device using a DC compound-wound motor.

ところが、直流複巻電動機は、直流直巻電動機
にくらべて1つの大きな欠点がある。それは、1
台の主電動機が何らかの原因で閃絡した場合、そ
れと並列に接続されている他の主電動機が閃絡す
る可能性があることである。第1図で、仮に、A
号車の主電動機電機子部分3Aのプラス側で接地
点11に閃絡接地する事故が発生したとする。こ
の場合、電車線1から閃絡接地点11に電流が流
れるが、このほかに、健全なB号車の主電動機電
機子部分3Bからも閃絡接地点11に電流が流れ
込む。その理由は、他励界磁巻線5Bに流れてい
る他励界磁電流が直ちに減少しないため、電機子
部分3Bの誘起電圧が電車線1の電圧降下に対応
して減衰せず、この誘起電圧によつて電機子部分
3Bから閃絡接地点11に電流が流れるからであ
る。このため、1台の主電動機が閃絡接地しただ
けで、残りの健全な主電動機も閃絡することにな
る。この場合、高速度しや断器6A,6Bが開い
て保護しようとするが、突入電流の立上り時間に
対して閉間が長いため、保護が不可能である。
However, DC compound-wound motors have one major drawback compared to DC series-wound motors. That is 1
If the traction motor of a machine flashes out for some reason, there is a possibility that other traction motors connected in parallel with it may also flash out. In Figure 1, if A
Assume that an accident occurs in which a flash fault occurs at the grounding point 11 on the positive side of the main motor armature portion 3A of the No. 1 car. In this case, current flows from the overhead contact line 1 to the flash ground point 11, but in addition to this, current also flows from the main motor armature portion 3B of the healthy No. B car to the flash fault ground point 11. The reason for this is that because the separately excited field current flowing through the separately excited field winding 5B does not immediately decrease, the induced voltage in the armature portion 3B does not attenuate in response to the voltage drop in the contact line 1, and this induced This is because a current flows from the armature portion 3B to the flash fault grounding point 11 due to the voltage. Therefore, if only one main motor is flash-grounded, the remaining healthy main motors will also be flash-faulted. In this case, the high-speed shield breakers 6A and 6B open to provide protection, but protection is impossible because the closing time is long compared to the rise time of the rush current.

一方、直流直巻電動機の場合は、第1図の他励
界磁巻線5がないので、健全な主電動機から閃絡
接地点に向つて突入電流が流れると、界磁磁束が
減つて電機子の誘起電圧を低めるので、突入電流
が抑制され、大事故に至らない。これに対し、直
流複巻電動機では、直巻界磁巻線4Bに接地10
Bからパンタグラフ2Bに向つて電流が流れて
も、他励界磁巻線5Bがフライホイールダイオー
ド9Bによつて短絡されているので、磁束の変化
が遅く、かつ電機子回路のインダクタンスも小さ
いため電流の抑制がほとんど行われない。したが
つて、この場合の電流は、電機子部分3Bのイン
ダクタンスと接地点11の接地抵抗によつてのみ
抑制されると考えてよい。
On the other hand, in the case of a DC series motor, there is no separately excited field winding 5 in Figure 1, so when an inrush current flows from a healthy main motor toward the flash fault grounding point, the field magnetic flux decreases and the electric motor Since the induced voltage in the child is reduced, inrush current is suppressed and a major accident does not occur. On the other hand, in a DC compound motor, the series field winding 4B is connected to the ground 10
Even if a current flows from B toward the pantograph 2B, the magnetic flux changes slowly because the separately excited field winding 5B is short-circuited by the flywheel diode 9B, and the inductance of the armature circuit is small, so the current does not flow. is hardly suppressed. Therefore, it may be considered that the current in this case is suppressed only by the inductance of the armature portion 3B and the grounding resistance of the grounding point 11.

第2図は第1図の電機子部分3の詳細図で、説
明を簡単にするため、2極の直流電動機について
示してある。電機子部分3は、2つの端子12,
13、電機子14、2つの刷子15,16および
補極17より構成されている。
FIG. 2 is a detailed view of the armature section 3 of FIG. 1, and to simplify the explanation, a two-pole DC motor is shown. The armature part 3 has two terminals 12,
13, an armature 14, two brushes 15 and 16, and a commutating pole 17.

ところで、電気車においては、従来、端子12
が電車線側に、端子13が接地側になるように接
続されている。これは、電圧降下の少ない巻線類
は接地側に接続し、対地電位を低くしておこうと
いう一般的な考え方によるものである。
By the way, in electric cars, conventionally the terminal 12
is connected to the overhead contact line side, and the terminal 13 is connected to the ground side. This is based on the general idea that windings with low voltage drop should be connected to the ground side to keep the potential to ground low.

そして、上記した事故電流を抑制するため、リ
アクトルを追加して電機子回路のインダクタンス
を大きくする方法が採用されることもあるが、こ
れでは高価なものとなり、また、重量が大きくな
つて、軽量で安価なことを特徴としている界磁チ
ヨツパ制御を採用した電気車制御装置としては極
めて不利となる。
In order to suppress the above-mentioned fault current, a method is sometimes adopted in which a reactor is added to increase the inductance of the armature circuit, but this is expensive, and also increases the weight and reduces the weight. This is extremely disadvantageous for an electric vehicle control device that uses field chopper control, which is characterized by low cost.

〔考案の目的〕[Purpose of invention]

本考案は上記に鑑みてなされたもので、その目
的とするところは、主電動機の閃絡被害の拡大を
特別な装置を付加することなく防止できる電気車
の直流電動機制御装置を提供することにある。
The present invention has been developed in view of the above, and its purpose is to provide a DC motor control device for electric vehicles that can prevent the spread of flashover damage to the main motor without adding any special equipment. be.

〔考案の概要〕[Summary of the idea]

本考案は、補極および刷子を備え少なくとも他
励界磁巻線を有する複数台の直流電動機と、該直
流電動機の他励界磁巻線に流す電流を制御する制
御装置とを備えた電気車において、前記複数台の
直流電動機の電機子を直列接続し、前記それぞれ
の直流電動機のうち最も正電源側に近くなる直流
電動機は刷子よりも補極を前記正電源側に接続
し、最も負電源側に近くなる直流電動機は刷子よ
りも補極を前記負電源側に接続し、前進、後進の
切り換えを行う逆転器の各接点は、前進のときは
前記最も正電源側に近くなる直流電動機の補極が
前記正電源側となり、前記最も負電源側に近くな
る直流電動機の補極が前記負電源側となり、後進
のときは前記最も負電源側に近くなる直流電動機
の補極が前記正電源側となり、前記最も正電源側
に近くなる直流電動機の補極が前記負電源側にな
るように接続してあることを特徴とするものであ
る。
The present invention provides an electric vehicle equipped with a plurality of DC motors each having a commutating pole and a brush and having at least separately excited field windings, and a control device for controlling the current flowing through the separately excited field windings of the DC motors. In this case, the armatures of the plurality of DC motors are connected in series, and the DC motor that is closest to the positive power supply side has its commutative pole connected to the positive power supply side rather than the brush, and the armature of the DC motor that is closest to the positive power supply side is connected to the negative power supply side. For the DC motor that is closest to the side, the commutative pole is connected to the negative power supply side rather than the brush, and each contact of the reversor that switches between forward and reverse travel is connected to the DC motor that is closest to the positive power supply side when moving forward. The commutative pole of the DC motor closest to the negative power supply side becomes the negative power supply side, and when traveling in reverse, the commutative pole of the DC motor closest to the negative power supply side becomes the positive power supply side. This is characterized in that the commutating pole of the DC motor closest to the positive power source side is connected to the negative power source side.

〔考案の実施例〕[Example of idea]

以下本考案を第3図に示した実施例を用いて詳
細に説明する。
The present invention will be explained in detail below using the embodiment shown in FIG.

第3図は本考案の電気車の直流電動機制御装置
の一実施例を示す主回路結線図で、1車両の場合
を示してあり、第1図と第2図と同一部分は、
A,Bの符号を除いて同一符号で示し、ここでは
説明を省略する。第3図においては、直巻界磁巻
線を有する直流複巻電動機2台が電源に対して直
列に接続してあり、第1図、第2図の直巻界磁巻
線4、他励界磁巻線5、端子12,13、電機子
14、2つの刷子15,16および補極17より
構成された主電動機を第1の電動機とし、これに
端子26,27、電機子28、刷子29,30、
補極31、直巻界磁巻線32および他励界磁巻線
33より構成された主電動機を第2の電動機とし
て電機子14,28が電車線1に対して直列にな
るように接続されている。ただし、電機子14,
28は、補極17,31が図示の関係に接続され
ている。なお、18〜21は、前進、後進の切り
換えを行う逆転器の接点で、18,19は逆転器
前進側接点で、前進のとき閉じ、20,21は逆
転器後進側接点で、後進のとき閉じる。
FIG. 3 is a main circuit wiring diagram showing one embodiment of the DC motor control device for an electric vehicle according to the present invention, and shows the case of one vehicle. The same parts as in FIGS. 1 and 2 are as follows.
The same reference numerals are used except for those of A and B, and the description thereof will be omitted here. In FIG. 3, two DC compound motors each having a series field winding are connected in series to a power supply, and the series field winding 4 of FIGS. 1 and 2 is separately excited. A main motor consisting of a field winding 5, terminals 12, 13, an armature 14, two brushes 15, 16, and a commutating pole 17 is used as a first motor. 29, 30,
The armatures 14 and 28 are connected in series with the overhead contact line 1 using a main motor composed of a commutating pole 31, a series field winding 32, and a separately excited field winding 33 as a second motor. ing. However, armature 14,
28, the commutative poles 17 and 31 are connected in the illustrated relationship. In addition, 18 to 21 are the contacts of the reversing device that switches between forward and reverse, 18 and 19 are the forward side contacts of the reversing device, which close when moving forward, and 20 and 21 are the reverse side contacts of the reversing device, which are closed when moving backward. close.

したがつて、前進のときは、第1の電動機の電
機子14は第2の電動機の電機子28より電車線
1側となり、後進のときは、これと逆となるが、
いずれの場合も、電車線1側となる電動機の補極
が電車線1側となる。そのため、A号車とB号車
の2両が連結された状態の場合は、A号車の主電
動機がプラス側で接地点11(第1図参照)に閃
絡したとき、閉絡接地点11に流れる電流は、接
地点11の接地抵抗のほかにA号車の主電動機の
補極17(前進の場合)のインダクタンスによつ
て制限されることになる。つまり、B号車から電
車線1を経て接地点11に流入する電流が補極1
7のインダクタンスによつて抑制されることにな
る。そして、B号車から接地点11に流入する電
流の流れるインダクタンスを大きくすることは、
B号車の電流を制限する上で大きな効果があり、
これにより1台の主電動機に閃絡事故が発生した
ときに、電源に対して、他の並列に接続された健
全な主電動機への閃絡被害の拡大を特別な装置を
付加することなく防止することができる。
Therefore, when moving forward, the armature 14 of the first electric motor is closer to the contact line 1 than the armature 28 of the second electric motor, and when moving backward, it is the opposite.
In either case, the commutating pole of the motor that is on the contact line 1 side is on the contact line 1 side. Therefore, when two cars, car A and car B, are connected, when the main motor of car A flashes to the ground point 11 (see Figure 1) on the positive side, the current flows to the closed ground point 11. The current is limited by the ground resistance of the ground point 11 as well as the inductance of the commutating pole 17 (in the case of forward movement) of the main motor of car A. In other words, the current flowing from car B to the grounding point 11 via the contact wire 1
This will be suppressed by an inductance of 7. Increasing the inductance of the current flowing from car B to the grounding point 11 is as follows:
It has a great effect in limiting the current of car B,
This prevents the spread of flash damage to other healthy traction motors connected in parallel to the power supply when a flash fault occurs in one traction motor, without the need to add any special equipment. can do.

なお、直巻界磁巻線4,32は、電機子14,
28よりも負電源側、すなわち、接地10側に接
続してあるが、その理由は、直巻界磁巻線4,3
2をそれぞれ刷子16,29よりも電車線1側に
接続すると、2つの主電動機の何れかが何らかの
原因で閃絡した場合、閃絡接地点11に流れる電
流はさらに制限されるが、直巻界磁巻線4,32
は短絡事故電流によつて過励磁され、一方、電機
子14,28には電機子短絡電流が流れるので、
電機子14,28に強大なブレーキトルクが発生
し、電機子14,28は回転を停止するからであ
る。
Note that the series field windings 4, 32 are connected to the armature 14,
28 is connected to the negative power supply side, that is, to the ground 10 side.The reason is that the series field windings 4, 3
2 are connected to the contact line 1 side of the brushes 16 and 29, and if either of the two main motors flashes for some reason, the current flowing to the flashground point 11 will be further restricted, but the direct winding Field winding 4, 32
is overexcited by the short-circuit fault current, and on the other hand, the armature short-circuit current flows through the armatures 14 and 28, so
This is because a powerful brake torque is generated in the armatures 14 and 28, and the armatures 14 and 28 stop rotating.

また、前進、後進の切り換えを行う逆転器の接
点18〜21が取り付けてあるが、このようにし
たものにおいても、図のように最も電車線1側に
近くなる主電動機の補極を電車線1側になるよう
にしておけば、主電動機の正逆転切り換えに無関
係に補極が電車線1側に接続されたままの状態に
なるから、効果は変らない。
In addition, contacts 18 to 21 of the reversing device for switching forward and reverse are installed, but even in this case, as shown in the figure, the commutative pole of the traction motor closest to the contact line 1 side is connected to the contact line 1. If it is set to the 1 side, the effect remains unchanged because the commutating pole remains connected to the contact line 1 side regardless of whether the main motor is switched between forward and reverse directions.

なお、以上の説明では、主電動機を直流複巻電
動機としたが、本考案はそれが直巻界磁巻線がな
く他励界磁巻線のみを有する直流他励電動機であ
つてもよく、同一の効果が得られる。
In the above explanation, the main motor is a DC compound-wound motor, but in the present invention, it may be a DC separately-excited motor that does not have a series-wound field winding and only has a separately-excited field winding. The same effect can be obtained.

〔考案の効果〕[Effect of idea]

以上説明したように、本考案によれば、主電動
機の閃絡被害の拡大を特別な装置を付加すること
なく防止できるという顕著な効果がある。
As explained above, the present invention has the remarkable effect of being able to prevent the spread of flash-fault damage to the main motor without adding any special equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電気車の直流電動機制御装置の主回路
図、第2図は第1図の主電動機電機子部分の詳細
結線図、第3図は本考案の電気車の直流電動機制
御装置の一実施例を示す主回路図である。 1……電車線、3,3′……主電動機電機子部
分、4……直巻界磁巻線、5……他励界磁巻線、
8……チヨツパ装置、9……フライホイールダイ
オード、10……接地、12,13,26,27
……端子、14,28……電機子、15,16,
29,30……刷子、17,31……補極、18
〜21……接点。
Fig. 1 is a main circuit diagram of the DC motor control device for an electric car, Fig. 2 is a detailed wiring diagram of the main motor armature part of Fig. 1, and Fig. 3 is an example of the DC motor control device for an electric car according to the present invention. FIG. 2 is a main circuit diagram showing an embodiment. 1... Tram line, 3, 3'... Main motor armature part, 4... Series field winding, 5... Separately excited field winding,
8...Chopper device, 9...Flywheel diode, 10...Grounding, 12, 13, 26, 27
...terminal, 14,28...armature, 15,16,
29, 30... Brush, 17, 31... Complementary electrode, 18
~21...Contact.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 補極および刷子を備え少なくとも他励界磁巻線
を有する複数台の直流電動機と、該直流電動機の
他励界磁巻線に流す電流を制御する制御装置とを
備えた電気車において、前記複数台の直流電動機
の電機子を直列接続し、前記それぞれの直流電動
機のうち最も正電源側に近くなる直流電動機は刷
子よりも補極を前記正電源側に接続し、最も負電
源側に近くなる直流電動機は刷子よりも補極を前
記負電源側に接続し、前進、後進の切り換えを行
う逆転器の各接点は、前進のときは前記最も正電
源側に近くなる直流電動機の補極が前記正電源側
となり、前記最も負電源側に近くなる直流電動機
の補極が前記負電源側となり、後進のときは前記
最も負電源側に近くなる直流電動機の補極が前記
正電源側となり、前記最も正電源側に近くなる直
流電動機の補極が前記負電源側になるように接続
してあることを特徴とする電気車の直流電動機制
御装置。
An electric vehicle comprising a plurality of DC motors each having a commutating pole and a brush and at least a separately excited field winding, and a control device for controlling a current flowing through the separately excited field winding of the DC motor. The armatures of the two DC motors are connected in series, and the DC motor closest to the positive power supply side has its commutative pole connected to the positive power supply side rather than the brush, and the DC motor is closest to the negative power supply side than the brush. In the DC motor, the commutative pole is connected to the negative power supply side rather than the brush, and each contact of the reversing device that switches between forward and reverse travel is such that when moving forward, the commutative pole of the DC motor closest to the positive power supply side is connected to the negative power supply side. The commutative pole of the DC motor that is on the positive power supply side and closest to the negative power supply side becomes the negative power supply side, and when traveling in reverse, the commutative pole of the DC motor that is closest to the negative power supply side becomes the positive power supply side, and the A DC motor control device for an electric vehicle, characterized in that the commutating pole of the DC motor closest to the positive power supply side is connected to the negative power supply side.
JP1984153500U 1984-10-11 1984-10-11 Electric car DC motor control device Granted JPS6099801U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984153500U JPS6099801U (en) 1984-10-11 1984-10-11 Electric car DC motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984153500U JPS6099801U (en) 1984-10-11 1984-10-11 Electric car DC motor control device

Publications (2)

Publication Number Publication Date
JPS6099801U JPS6099801U (en) 1985-07-08
JPH0223041Y2 true JPH0223041Y2 (en) 1990-06-22

Family

ID=30339590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984153500U Granted JPS6099801U (en) 1984-10-11 1984-10-11 Electric car DC motor control device

Country Status (1)

Country Link
JP (1) JPS6099801U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077824A (en) * 1973-11-14 1975-06-25

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576995Y2 (en) * 1977-01-11 1982-02-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077824A (en) * 1973-11-14 1975-06-25

Also Published As

Publication number Publication date
JPS6099801U (en) 1985-07-08

Similar Documents

Publication Publication Date Title
US5528444A (en) Automatic overvoltage protection for an alternator in a locomotive propulsion system
WO1992005611A1 (en) Automatic flashover protection for locomotive traction motors
JPH0223041Y2 (en)
JP2000134717A5 (en) Motor control device for the power unit of an electric vehicle
JP2002291288A (en) Permanent magnet synchronous motor and multi-contact simultaneous short-circuited contactor
US11387717B2 (en) Series wound direct-current motor driving device and equipment
SU685525A1 (en) Rolling stock electrodynamic braking apparatus
US1899649A (en) System of control for electrically driven vehicles
JPS6015361Y2 (en) Chiyotsupa electric car
SU501905A1 (en) Device to protect the DC traction motor
JPS5829716B2 (en) DC electric car drive circuit
JPS591041B2 (en) Regeneration control device for DC electric cars
JPH0542201B2 (en)
US2282822A (en) Power system including rotary transformer
US3364406A (en) Protective system for motors of electric cars
JPH0514482B2 (en)
SU382531A1 (en) DEVICE FOR ELECTRIC BRAKING ELECTRIC MOBILE COMPOSITION
JP2637945B2 (en) Electric vehicle regenerative brake control device
JPH08107604A (en) Connection switching method for main motor circuit of ac electric railcar
SU888426A1 (en) Vehicle electric drive
JPS6325841Y2 (en)
JPS61164405A (en) Controller for electric railcar
JPS60249801A (en) Controller for main motor
JPH0515125B2 (en)
JPS5829682B2 (en) electric car control device