JPS60234403A - Controller for electric railcar - Google Patents

Controller for electric railcar

Info

Publication number
JPS60234403A
JPS60234403A JP59088293A JP8829384A JPS60234403A JP S60234403 A JPS60234403 A JP S60234403A JP 59088293 A JP59088293 A JP 59088293A JP 8829384 A JP8829384 A JP 8829384A JP S60234403 A JPS60234403 A JP S60234403A
Authority
JP
Japan
Prior art keywords
chopper
field
electric vehicle
resistor
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59088293A
Other languages
Japanese (ja)
Other versions
JPH0542201B2 (en
Inventor
Takashi Tsuboi
坪井 孝
Tsutomu Ozawa
小沢 勉
Eiji Takatsu
高津 英二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59088293A priority Critical patent/JPS60234403A/en
Publication of JPS60234403A publication Critical patent/JPS60234403A/en
Publication of JPH0542201B2 publication Critical patent/JPH0542201B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/08Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PURPOSE:To prevent a switching element from a large defect due to an erroneous firing by connecting resistors between field choppers of a bridge circuit of four sets of switching elements and a power source. CONSTITUTION:The voltage of an armature 3 of a DC motor is controlled by an armature chopper 1. On the other hand, the current of a field 4 is controlled by a field chopper 2 of bridge circuit of switchig elements 21-24 in response to the forward or backward, power or regenerative drive command. A current reducing resistor 12 is normally shortcircuited at both ends by a high speed breaker 8, but connected in series with the chopper 2. Thus, even if the chopper 2 is shortcircuited, the shortcircuiting current is suppressed, and there is accordingly no possibility of inducting a large defect.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電気車制御装置に係シ、特に直流電動機の界磁
をチョッパ制御することによシ、力行および電気ブレー
キ制御を行なう電気車に好適な制御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an electric vehicle control device, and is particularly suitable for an electric vehicle that performs power running and electric brake control by chopper controlling the field of a DC motor. This invention relates to a control device.

〔発明の背景〕[Background of the invention]

チョッパを用いた電気車制御方式として、特開昭5’9
−63902号公報に述べられているように、電機子チ
ョッパと界磁チョッパを並設するものが知られている。
As an electric car control system using a chopper, published in Japanese Patent Publication No. 5'9
As described in Japanese Patent No. 63902, it is known that an armature chopper and a field chopper are arranged side by side.

ところで、−気車の前後進に亘って、カ行および回生制
動を、主回路の切換えなしに実行するためには、スイッ
チング素子により、界磁の励磁方向を切換えることが望
ましい。
By the way, in order to perform the forward and regenerative braking without switching the main circuit during the forward and backward movement of the vehicle, it is desirable to switch the excitation direction of the field using a switching element.

このため、界磁チョッパとして、橋絡部に界磁を接続し
た4組のスイッチング素子から成るブリッジ回路を構成
することが考えられる。
For this reason, it is conceivable to configure a bridge circuit as a field chopper, which is composed of four sets of switching elements in which a field is connected to a bridge portion.

しかし、この場合、スイッチング素子が誤点弧すると電
源短絡を生じ、大事故を誘発する危険がある。
However, in this case, if the switching element turns on erroneously, a short circuit may occur in the power supply, which may lead to a serious accident.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、界磁チョッパを備えた電気車において
、逆転器などによυ主回路を切換えることなく前後進の
カ行および回生を夫々連続的に制御でき、かつスイッチ
ング素子の誤点弧が生じても大事故の危険を防止するこ
とのできる電気車制御装置を提供するにある。
An object of the present invention is to enable continuous control of forward and backward movement and regeneration in an electric vehicle equipped with a field chopper without switching the υ main circuit using a reverser, etc. To provide an electric vehicle control device that can prevent the risk of a major accident even if a problem occurs.

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは、橋紬部に界磁を接続した
4組のスイッチング素子のブリッジ回路から成る界磁チ
ョッパと、このチョッパと電源との間に永久接続された
抵抗器を設けることである。
The present invention is characterized by providing a field chopper consisting of a bridge circuit of four sets of switching elements in which a field is connected to a bridge section, and a resistor permanently connected between this chopper and a power source. It is.

本発明の望ましい一実施態様によれば、電気車の受電端
に減流抵抗器を並列接続した遮断器を備え、この減流抵
抗器の中点タップに界磁チョッパの受電端を接続する。
According to a preferred embodiment of the present invention, a circuit breaker having a current reducing resistor connected in parallel is provided at the receiving end of the electric vehicle, and the receiving end of the field chopper is connected to the center tap of the current reducing resistor.

これにより、電気車の前進および後進時に、カ行と回生
の制御が、はぼ無接点で実行でき、界磁チョッパを構成
するスイッチング素子の誤点弧が生じても大事故を誘発
する惧れをなくすことができる。
As a result, power and regeneration control can be performed virtually without contact when the electric vehicle moves forward or backward, and there is no risk of causing a major accident even if the switching elements that make up the field chopper accidentally fire. can be eliminated.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の望捷しい実施例を説明す
る。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

第1図は、電機子チョッパ1と界磁チョッパ2をもち、
直流電動機の電機子3の電圧を主(電機子)チョッパl
で制御し、界磁4の電流を界磁チョッパ2で制御するこ
とにより、霜、気車のカ行制御および回生ブレーキ制御
を行なうものである。
Figure 1 has an armature chopper 1 and a field chopper 2,
The main (armature) chopper l controls the voltage of armature 3 of the DC motor.
By controlling the current of the field 4 with the field chopper 2, frost control, wind wheel power flow control, and regenerative brake control are performed.

カ行時は、バンクグラフ5、断流器6、フィルタリアク
トル7、高速度しゃ断器8を通じて、フィルタコンデン
サ9が加圧され、フィルタコンデンサ9を電源として、
断流器10.電機子3、主チョッパ1の径路で電機子電
流IMが流れ巻。主−F−ヨッパ1のオフ期間には、フ
リーホイールダイオード11を通じて、電機子電流IN
が還流する。
When in operation, the filter capacitor 9 is pressurized through the bank graph 5, the current breaker 6, the filter reactor 7, and the high-speed breaker 8, and the filter capacitor 9 is used as a power source.
Flow interrupter 10. Armature current IM flows through the path of armature 3 and main chopper 1. During the off-period of the main F-jopper 1, the armature current IN
is refluxed.

一方、界磁回路は、例えば前進カ行の場合にはフィルタ
コンデンサ9から減流抵抗器12を介して、界磁チョッ
パ2の第1のスイッチング素子21、界磁4、界磁チョ
ッパ2の第2のスイッチング素子22の径路で界磁電流
IFが流れる。これらのスイッチング素子21.22は
、そのいずれかが自己消弧機能を持つ必要があり、望ま
しくはいずれもGTOを用いる。さて、これらをオフし
た時には、界磁電流IFは、フリーホイールダイオード
241,231及び抵抗12を介し、電源と力っている
フィルタコンデンサ9へ帰還すれる。なお、スイッチン
グ素子(チョッパ単位)21は常時導通状態に保ち、ス
イッチング素子(チョッパ単位)22のみをチョッピン
グ制御しても界磁制御は可能である。この場合は、界磁
電流はフリーホイールダイオード231、スイッチング
素子21を遡って還流する。
On the other hand, in the case of forward movement, for example, the field circuit connects the filter capacitor 9 to the first switching element 21 of the field chopper 2, the field 4, and the first switching element of the field chopper 2 via the current reducing resistor 12. A field current IF flows through the path of the second switching element 22. One of these switching elements 21 and 22 must have a self-extinguishing function, and preferably GTOs are used for both of them. Now, when these are turned off, the field current IF is fed back via the freewheeling diodes 241, 231 and the resistor 12 to the filter capacitor 9 connected to the power supply. Note that field control is possible even if the switching element (chopper unit) 21 is always kept in a conductive state and only the switching element (chopper unit) 22 is subjected to chopping control. In this case, the field current flows back through the freewheel diode 231 and the switching element 21.

回生ブレーキ時は、を様子回路の断流器1oを開いてお
き、界磁チョッパ2のスイッチング素子23.24を制
御することにより、界磁4を逆極性に励磁する。界磁4
が逆極性に励磁されるので、電機子電流IMは主チョッ
パ1がオンの期間に、チョツパ11高速度しゃ断器13
、ダイオード11を通って流れ、オフの期間に、電機子
3の内部インダクタンスの作用によって、フリーホイー
ルダイオード14を通じて、電源であるフィルタコンデ
ンサ9に電流が流れる。このフィルタコンデンサ9から
さらにパンタグラフ゛5を介して、架線15に回生電流
が流れ、電気車匠は回生ブレーキが作用する。
During regenerative braking, the current interrupter 1o of the circuit is kept open, and the switching elements 23 and 24 of the field chopper 2 are controlled to excite the field 4 to the opposite polarity. Field 4
is excited with opposite polarity, the armature current IM flows through the chopper 11 and the high speed breaker 13 during the period when the main chopper 1 is on.
, through the diode 11, and during the off period, under the action of the internal inductance of the armature 3, a current flows through the freewheeling diode 14 to the filter capacitor 9, which is the power source. A regenerative current flows from the filter capacitor 9 to the overhead wire 15 via the pantograph 5, and a regenerative brake is applied to the electric vehicle.

もし、架線15側に回生電力を吸収する他のカ行軍が居
ない場合には、回生電流が架線側へ流れ得す、フィルタ
コンデンサ9が過充電されて過電圧となる。フィルタコ
ンデンサ9の電圧Vcyは、電圧検出器16によって検
出され、比較器17において制限電圧信号Vtと比較さ
れる。もし、コンデンサ電圧信号Vcyが制限電圧信号
Vtを越えると、比較器17は、過電圧抑制サイリスタ
18を点弧するので、抵抗器19によシ過電圧を吸収す
る。
If there is no other force on the overhead line 15 side that absorbs the regenerated power, the regenerative current may flow to the overhead line side, and the filter capacitor 9 will be overcharged, resulting in an overvoltage. Voltage Vcy of filter capacitor 9 is detected by voltage detector 16 and compared with limit voltage signal Vt in comparator 17. If the capacitor voltage signal Vcy exceeds the limit voltage signal Vt, the comparator 17 fires the overvoltage suppression thyristor 18, so that the resistor 19 absorbs the overvoltage.

以上は、前進力行および前進回生時の動作であるが、後
進力行時は、界磁チョッパ2内のスイッチング素子(チ
ョッパ単位)23.24を制御し、また、後進回生時に
は、界磁チョッパ2内のスイッチング素子21.22を
制御すれば、主チョッパ1の制御と相捷って、連続的な
制御が可能である。
The above is the operation during forward power running and forward regeneration, but during reverse power running, the switching elements (chopper unit) 23 and 24 in the field chopper 2 are controlled, and during reverse regeneration, the switching elements 23 and 24 in the field chopper 2 are controlled. By controlling the switching elements 21 and 22, continuous control is possible in combination with the control of the main chopper 1.

これらの制御のために、電機子チョッパ制御装置30、
界磁チョッパ制御装置3″1が設けられ、これらは、該
当チョッパ(チョッパ単位)をオンさせるとき論理信号
″1°′、オフさせるとき論理信号″′0”と力るオン
オフ指令信号a+ fI””” 4を発生する。ゲート
ドライブ回路32,331〜334は、前記論理信号”
1″′のとき点弧信号を、0°′のとき消弧信号を、例
えばGTOで構成されるチョッパ1、単位チョッパ(ス
イッチング素子)21〜24へ与える。
For these controls, an armature chopper control device 30,
A field chopper control device 3''1 is provided, which outputs an on/off command signal a+fI'' which outputs a logic signal ``1°'' when turning on the corresponding chopper (chopper unit) and a logic signal ``0'' when turning it off. The gate drive circuits 32, 331 to 334 generate the logic signal ""4.
An ignition signal is given when the value is 1'', and an extinguishing signal is given when the value is 0°', to the chopper 1 and the unit choppers (switching elements) 21 to 24, which are configured of, for example, a GTO.

この方式は、従来一般に実用されている直流直巻電動機
を用いたチョッパ制御装置に比べて、電気車の前後進切
換えおよび力行、ブレーキの切換えのだめの電機子また
社界磁の機械的接点による極性切換装置が不要となυ、
大幅な無接点化が実現出来るという大きな特徴がある。
Compared to chopper control devices that use DC series-wound motors that have been commonly used in the past, this system uses mechanical contacts in the armature and field magnets to switch the electric vehicle's forward and backward movement, power running, and brake. No switching device required υ,
A major feature is that it can be made largely contactless.

さて、減流抵抗12は、負荷側の接地等の過電流故障に
際し、高速度しゃ断S8を開き、過電流をいったん減流
して、断流器6で最終的にしゃ断するために設けられて
いる抵抗器でちって、電気車の保護機器として一般に用
いられるものである。
Now, the current reducing resistor 12 is provided to open the high-speed cutoff S8 in the event of an overcurrent failure such as grounding on the load side, to reduce the overcurrent once, and to finally cut it off with the current breaker 6. A resistor is commonly used as a protective device for electric cars.

減流抵抗12は、通常時は高速度しゃ断器8によシその
両端が短絡されているが、界磁チョッパ2に対しては、
直列に接続されているので、界磁チョッパ2の短絡が生
じても、短絡電流の抑制効果がある。減流抵抗12は、
通常数オーム程度の抵抗値であり、界磁チョッパ2の保
護用に必要な抵抗値も同様に数オームのオーダであるか
ら、両者を共用するととが可能である。
Normally, both ends of the current reducing resistor 12 are short-circuited to the high-speed breaker 8, but for the field chopper 2,
Since they are connected in series, even if a short circuit occurs in the field chopper 2, there is an effect of suppressing the short circuit current. The flow reducing resistance 12 is
The resistance value is usually on the order of several ohms, and the resistance value required for protecting the field chopper 2 is also on the order of several ohms, so it is possible to use both in common.

中間タップQは必ずしも減流抵抗12の抵抗値を2分す
る点に設ける必要はなく、中間点よりずらせることによ
り、界磁チョッパ2の保護に好適な抵抗値を設定するこ
とができる。
The intermediate tap Q does not necessarily need to be provided at a point that divides the resistance value of the current reducing resistor 12 into two; by shifting it from the midpoint, a resistance value suitable for protecting the field chopper 2 can be set.

−例を示せば、減流抵抗12として5オームが必要であ
シ、通常時、界磁チョッパ2による電源短絡を保護し、
高速度しゃ断器8によυ100ミる。イ肌、4に一抵抗
121ま4−、f? 2 J−へである。
- To give an example, 5 ohms are required as the current reducing resistor 12, which protects the power supply from short circuit caused by the field chopper 2 under normal conditions,
High speed breaker 8 causes υ100 min. Good skin, 4 to 1 resistance 121 ma 4-, f? 2 to J-.

あるいは、減流抵抗12のみでは抵抗値が不足する場合
には、界磁チョッパ2の受電端子Pと減流抵抗12の中
間タップQとの間に不足分の抵抗要素を入れることも出
来る。このようにしても、大部分の抵抗値は減流抵抗1
2を利用出来るので、実質的に抵抗器を大形化する必要
はない。
Alternatively, if the resistance value is insufficient with only the current reducing resistor 12, a resistance element can be inserted between the power receiving terminal P of the field chopper 2 and the intermediate tap Q of the current reducing resistor 12. Even with this method, most of the resistance values are reduced current resistance 1
2 can be used, so there is no need to substantially increase the size of the resistor.

第2図は本発明の他の実施例である。この実施例では第
1図の従来例で用いられていた過電圧抑制用のサイリス
タ18と抵抗19の直列体が省略されておシ、過電圧抑
制抵抗191が端子2〜9間に挿入されている。もちろ
ん、減流抵抗12を含む合成抵抗が過電圧抑制のために
必要な抵抗値となる様に、抵抗191が設定されている
FIG. 2 shows another embodiment of the invention. In this embodiment, the series body of the overvoltage suppressing thyristor 18 and the resistor 19 used in the conventional example shown in FIG. 1 is omitted, and an overvoltage suppressing resistor 191 is inserted between the terminals 2 to 9. Of course, the resistor 191 is set so that the combined resistance including the current reducing resistor 12 has a resistance value necessary for suppressing overvoltage.

この実施例においても、通常の制御時には、前述の実施
例と同様に、電機子チョッパ1と界磁チョッパ2内の単
位チョッパ(スイッチング素子)21〜24が制御され
る。
Also in this embodiment, during normal control, the unit choppers (switching elements) 21 to 24 in the armature chopper 1 and the field chopper 2 are controlled in the same way as in the previous embodiment.

しかし、フィルタコンデンサ9の電圧Vcyすなえた場
合には、比較器17の″′1″出力により、オアゲート
341〜344を介して、ゲートドライブ回路331〜
334に″l″信号が与えられすべての単位チョッパ2
1〜24がオンされる。
However, when the voltage of the filter capacitor 9 is Vcy, the "'1" output of the comparator 17 causes the gate drive circuits 331 to 331 to
334 is given the "l" signal and all unit choppers 2
1 to 24 are turned on.

従って、フィルタコンデンサ9、減流抵抗12、過電圧
吸収用の付加抵抗191および界磁チョッパ2を通して
、フィルタコンデンサ9の電圧が放電され、過電圧を吸
収する。その後、高速度しゃ断器8、断流器6によシ゛
主回路を開放する。
Therefore, the voltage of the filter capacitor 9 is discharged through the filter capacitor 9, the current reducing resistor 12, the additional resistor 191 for overvoltage absorption, and the field chopper 2, and the overvoltage is absorbed. Thereafter, the main circuit is opened by the high speed breaker 8 and the current breaker 6.

このようにして、過電圧抑制サイリスタを省略でき、そ
の機能を界磁チョッパ2に持たせることができる。
In this way, the overvoltage suppression thyristor can be omitted, and the field chopper 2 can have this function.

もちろん、過電圧時には、直列関係にある単位チョッパ
21と24あるいは23と22のいずれかのみをオンし
てもよい。
Of course, at the time of overvoltage, only one of the unit choppers 21 and 24 or 23 and 22 connected in series may be turned on.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電気車の前進、後進ともにカ行および
回生の制御を無接点的に制御でき、かつ界磁チョッパを
構成するスイッチング素子の誤点弧が生じても大事故を
誘発する惧れを力〈すことができる。
According to the present invention, it is possible to control both forward and reverse movement and regeneration of an electric vehicle in a non-contact manner, and even if a switching element constituting a field chopper is ignited incorrectly, there is no risk of causing a major accident. You can force it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の〜実施例、第2図は本発明の別の実施
例を示す電気車制御装置の回路図である。 1・・・電機子チョッパ、2・・・界磁チョッパ、21
〜24・・・単位チョッパ(スイッチング素子)、3・
・・直流電動機の電機子、4・・・同界磁、8・・・高
速度遮断器、12・・・減流抵抗器、16・・・受電端
電圧検出器、17・・・電圧比較器、331〜334・
・・ゲートドライブ回路、341〜344・・・オアゲ
ート。 代理人 弁理士 高橋明夫 第1I¥1 第2図 〜tS
FIG. 1 is a circuit diagram of an electric vehicle control device showing an embodiment of the present invention, and FIG. 2 is a circuit diagram of an electric vehicle control device showing another embodiment of the present invention. 1... Armature chopper, 2... Field chopper, 21
~24... Unit chopper (switching element), 3.
... Armature of DC motor, 4... Same field, 8... High speed circuit breaker, 12... Current reducing resistor, 16... Receiving end voltage detector, 17... Voltage comparison Vessel, 331-334・
...Gate drive circuit, 341-344...OR gate. Agent Patent Attorney Akio Takahashi No. 1 I ¥1 Figure 2 ~ tS

Claims (1)

【特許請求の範囲】 1、直流電動機と、この直流電動機の界磁をその電機子
とは独立して正逆方向に励磁するチョッパ装置と、上記
直流電動機の主回路中に挿入され減流抵抗器を並列接続
した遮断器とを備えた電気車において、前記チョッパ装
置を、前記界磁を橋絡部に接続した4組のスイッチング
手段によシ構成するとともに、このチョッパ装置と電源
間に永久接続された抵抗器を設けたことを特徴とする電
気車制御装置。 2、前記永久接続抵抗器は、前記減流抵抗器でおる第1
項記載の電気車制御装置。 3、前記チョッパ装置の受電端子を、前記減流抵抗器の
中点タップに接続して成る第2項記載の電気車制御装置
。 4、前記直流電動機の電機子は、第2のチョッパ装置と
直列接続されて成る第1項記載の電気車制御装置。 5、直流電動機と、この直流電動機の界磁をその電機子
とは独立して正逆両方向に励磁するチョッパ装置と、上
記直流電動機の主回路中に挿入され減流抵抗器を並列接
続した遮断器とを備えた電気車において、前記チョッパ
装置會、前記界磁を橋絡部に接続した4組のスイッチン
グ手段によシ構成するとともに、このチョッパ装置と電
源間に永久接続された抵抗器と、電気車の受電端電圧が
予定値を越えたことに応動して上記4組のスイッチング
手段のうち直列関係にある2組のスイッチング手段を導
通させる手段を設けたことを特徴とする電気車制御装置
。 6、前記直流電動機の1機子は、第2のチョッパ左 装置と直列接続されて成る第本項記載の電気車制御装置
[Claims] 1. A DC motor, a chopper device that excites the field of the DC motor in forward and reverse directions independently of its armature, and a current reducing resistor inserted into the main circuit of the DC motor. In an electric vehicle equipped with a circuit breaker in which circuit breakers are connected in parallel, the chopper device is configured with four sets of switching means in which the field is connected to a bridge section, and a permanent connection is provided between the chopper device and the power source. An electric vehicle control device comprising a connected resistor. 2. The permanently connected resistor is the first resistor connected to the current reducing resistor.
Electric vehicle control device described in Section 1. 3. The electric vehicle control device according to item 2, wherein the power receiving terminal of the chopper device is connected to the center tap of the current reducing resistor. 4. The electric vehicle control device according to item 1, wherein the armature of the DC motor is connected in series with a second chopper device. 5. A DC motor, a chopper device that excites the field of this DC motor in both forward and reverse directions independently of its armature, and a cutoff device that is inserted into the main circuit of the DC motor and connected in parallel with a current reducing resistor. In the electric vehicle equipped with a chopper device, the chopper device is constituted by four sets of switching means connecting the field to a bridge portion, and a resistor permanently connected between the chopper device and the power source. , an electric vehicle control characterized by providing means for conducting two sets of switching means in series among the four sets of switching means in response to the receiving end voltage of the electric vehicle exceeding a predetermined value; Device. 6. The electric vehicle control device according to the item 1, wherein one of the DC motors is connected in series with a second chopper left device.
JP59088293A 1984-05-04 1984-05-04 Controller for electric railcar Granted JPS60234403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59088293A JPS60234403A (en) 1984-05-04 1984-05-04 Controller for electric railcar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59088293A JPS60234403A (en) 1984-05-04 1984-05-04 Controller for electric railcar

Publications (2)

Publication Number Publication Date
JPS60234403A true JPS60234403A (en) 1985-11-21
JPH0542201B2 JPH0542201B2 (en) 1993-06-25

Family

ID=13938863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59088293A Granted JPS60234403A (en) 1984-05-04 1984-05-04 Controller for electric railcar

Country Status (1)

Country Link
JP (1) JPS60234403A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110542A (en) * 1990-09-25 2000-08-29 Semiconductor Energy Laboratory Co., Ltd. Method for forming a film
US6423383B1 (en) 1987-04-27 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6677001B1 (en) * 1986-11-10 2004-01-13 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147977A (en) * 1979-05-08 1980-11-18 Toshiba Corp Commutation failure detector for chopper
JPS57166804A (en) * 1981-04-01 1982-10-14 Mitsubishi Electric Corp Control device for electric motor vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147977A (en) * 1979-05-08 1980-11-18 Toshiba Corp Commutation failure detector for chopper
JPS57166804A (en) * 1981-04-01 1982-10-14 Mitsubishi Electric Corp Control device for electric motor vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677001B1 (en) * 1986-11-10 2004-01-13 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method and apparatus
US6423383B1 (en) 1987-04-27 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6838126B2 (en) 1987-04-27 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Method for forming I-carbon film
US6110542A (en) * 1990-09-25 2000-08-29 Semiconductor Energy Laboratory Co., Ltd. Method for forming a film
US6660342B1 (en) 1990-09-25 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Pulsed electromagnetic energy method for forming a film
US7125588B2 (en) 1990-09-25 2006-10-24 Semiconductor Energy Laboratory Co., Ltd. Pulsed plasma CVD method for forming a film

Also Published As

Publication number Publication date
JPH0542201B2 (en) 1993-06-25

Similar Documents

Publication Publication Date Title
JPH0219681B2 (en)
JPH0917294A (en) Two-way dc circuit breaker
JPS60234403A (en) Controller for electric railcar
JP2827564B2 (en) Shutdown system for DC electric vehicles
JP3895239B2 (en) Electric vehicle power supply
US3670225A (en) System for braking electric motor vehicles
JPS5829716B2 (en) DC electric car drive circuit
JP2635549B2 (en) Electric car control device
JPS61227602A (en) Controller for electric railcar
JPS6032586A (en) Controller for chopper
US3731150A (en) Filter-to-line transient isolator
JPS5936081Y2 (en) Electric car control device
JPS639228Y2 (en)
JPS6016804B2 (en) Electric car Chiyotupa protection device
JPH0445364Y2 (en)
JPS5829682B2 (en) electric car control device
JPS6325841Y2 (en)
JPS6212301A (en) Controller for dc electric railcar
USRE28517E (en) Filter-to-line transient isolator
JPS60148301A (en) Protecting method of inverter for vehicle
JP2676957B2 (en) Electric car control device
JPS60119128A (en) Switching device
JPH03243101A (en) Controller for electric rolling stock
JPH0458245B2 (en)
JPS59230404A (en) Brake device for chopper controlled electric railcar