JPH0449037B2 - - Google Patents

Info

Publication number
JPH0449037B2
JPH0449037B2 JP59052971A JP5297184A JPH0449037B2 JP H0449037 B2 JPH0449037 B2 JP H0449037B2 JP 59052971 A JP59052971 A JP 59052971A JP 5297184 A JP5297184 A JP 5297184A JP H0449037 B2 JPH0449037 B2 JP H0449037B2
Authority
JP
Japan
Prior art keywords
shell
spherical
heat
expansion
heating medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59052971A
Other languages
Japanese (ja)
Other versions
JPS60196596A (en
Inventor
Tadashi Matsunaga
Shigeo Hijikata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Original Assignee
Mitsubishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp filed Critical Mitsubishi Corp
Priority to JP59052971A priority Critical patent/JPS60196596A/en
Publication of JPS60196596A publication Critical patent/JPS60196596A/en
Publication of JPH0449037B2 publication Critical patent/JPH0449037B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Description

【発明の詳細な説明】 本発明は球状蓄熱体に関する。[Detailed description of the invention] The present invention relates to a spherical heat storage body.

周知の通り、一定温度で起きる物質の融解、凝
固の相変化現象に基く潜熱は一般的に大きく、コ
ンパクトに蓄熱できる利点を有するので、この潜
熱を利用する蓄熱方法又は装置が各分野で実用さ
れている。そして、これら方法又は装置に於いて
は、通常シエルと、シエル内に充填されていて、
融解、凝固の相変化に伴ない潜熱を蓄熱し、放熱
する為の熱媒体より成る蓄熱体が用いられる。
As is well known, the latent heat based on the phase change phenomenon of melting and solidification of substances that occurs at a constant temperature is generally large and has the advantage of being able to store heat compactly, so heat storage methods and devices that utilize this latent heat are put into practice in various fields. ing. In these methods or devices, the shell is usually filled with a shell,
A heat storage body made of a heat medium is used to store and radiate latent heat accompanying phase changes of melting and solidification.

以前に於いては固いシエル内に熱媒体を満たし
て収容していた。この場合には、正味の熱媒体の
量を大とできるものの、使用上の温度により熱媒
体が体積膨張した時にシエルが破損してしまうの
で、熱媒体を充填する時は、以後の使用に於いて
体積膨張する最大の膨張を見込んで、その分だけ
空間を残して熱媒体を充填していた。例えば特公
昭56−16876号公報や、実公昭57−52551号公報に
示されている。これらの従来技術によれば、熱媒
体の凝固時体積膨張によるシエルの破損がない。
所がその空間だけ正味の熱媒体の量が少なくなり
必要な蓄熱又は放熱量を確保する上で障害とな
る。
In the past, a hard shell was filled with a heating medium. In this case, although the net amount of heat transfer medium can be increased, the shell will be damaged when the heat transfer medium expands in volume due to the operating temperature. In anticipation of the maximum volumetric expansion, the heating medium was filled leaving a space corresponding to that amount. For example, it is shown in Japanese Patent Publication No. 56-16876 and Japanese Utility Model Publication No. 57-52551. According to these conventional techniques, there is no damage to the shell due to volume expansion during solidification of the heating medium.
However, the net amount of heat medium decreases in that space, which becomes an obstacle in securing the necessary amount of heat storage or heat radiation.

本発明は上述の点に鑑み成されたもので、その
目的とする所は、球状シエル内に充填する熱媒
体の量を可及的大とすることができるのみなら
ず、熱媒体の凝固時体積膨張によるシエルの破損
がない球状蓄熱体を提供するにあり、特に放
熱、蓄熱の繰り返しにもかかわらず、そして熱媒
体凝固時の体積膨張に伴なう球状シエルの膨張の
みならず、熱媒体液相時の体積収縮に伴なつて球
状シエルが現状に収縮可能であり、而も、常時球
状シエルの球形状を保形できる手段を提供するに
ある。
The present invention has been made in view of the above-mentioned points, and its purpose is not only to increase the amount of heat medium filled in a spherical shell as much as possible, but also to The purpose of the present invention is to provide a spherical heat storage body that does not cause damage to the shell due to volumetric expansion, and in particular can be used in spite of repeated heat dissipation and storage, as well as expansion of the spherical shell due to volumetric expansion during solidification of the heat medium. The object of the present invention is to provide a means by which a spherical shell can be contracted to its current state as the volume contracts in the liquid phase, and the spherical shape of the spherical shell can always be maintained.

上記目的を達成する為に本発明は球状のシエル
と、この球状のシエル内に充填される融解、凝固
の相変化時に潜熱を蓄熱し、放熱する熱媒体より
成り、而もこの熱媒体は液相から固相へ変化した
時に、その体積が膨張する性質を有し、上記熱媒
体の液相時には上記球状のシエル内に空間が残る
ように設定された球状蓄熱体に於いて; 上記熱媒体が液相時に残る上記球状シエル内の
空間の容積は、上記熱媒体が液相から固相へ変化
した時の熱媒体の体積膨張量の全てを吸収できる
ように定められていず、体積膨張量の一部のみを
吸収する大きさに定められていると共に、上記体
積膨張量全部の内の残りの体積膨張量を上記球状
のシエルの同心円的な膨張によつて吸収できるよ
うに上記シエルを上記熱媒体の体積膨張に応じて
同心円的に膨らみ得る材質によつて形成し、而も
球状シエルの同心円的な膨らみの範囲は、球状シ
エルの材質の弾性限界内に設定されている事を特
徴とする球状蓄熱体としたものである。
In order to achieve the above object, the present invention consists of a spherical shell and a heating medium filled in this spherical shell that stores and radiates latent heat during phase changes of melting and solidification, and this heating medium is a liquid. In a spherical heat storage body that has the property of expanding its volume when changing from a phase to a solid phase, and is set so that a space remains within the spherical shell when the heat medium is in a liquid phase; The volume of the space within the spherical shell that remains when the heating medium is in the liquid phase is not determined so as to be able to absorb all of the volumetric expansion of the heating medium when the heating medium changes from the liquid phase to the solid phase. The spherical shell is sized to absorb only a portion of the spherical shell, and the remaining volumetric expansion of the entire volumetric expansion can be absorbed by concentric expansion of the spherical shell. The spherical shell is formed of a material that can expand concentrically in response to the volumetric expansion of the heat medium, and the range of the concentric expansion of the spherical shell is set within the elastic limit of the material of the spherical shell. This is a spherical heat storage body.

次に本発明の実施例を詳述する。 Next, examples of the present invention will be described in detail.

第1図は熱媒体が液相状態の時の球状蓄熱体の
一つの例を示した縦断側面図、第2図は熱媒体が
液相から固相に変化して体積膨張した時の球状蓄
熱体の一つの例を示した縦断側面図であり、図に
於いて1は球状蓄熱体、2は球状のシエル、3は
シエル内に充填される熱媒体を示している。上記
熱媒体3は、周知の通り、温熱を対象とする場合
には固相状態で顕熱として熱を蓄積し、次に固相
から液相に変わる時に、融解の潜熱として多量の
熱を蓄積し、完全に液相に変化すると、更に顕熱
として熱を蓄積し、更に高温の液相状態から凝固
温度までは通常に顕熱を放出し、凝固温度に於い
ては、先に融解の潜熱として蓄積した熱を、固化
の潜熱として放出し、又冷熱を対象とする場合に
は、一定温度で液相から固相に変わる時に固化の
潜熱として蓄積し、固相から液相に変わる時に、
融解の潜熱として放出するものであり、液相から
固相へ変化した時に体積膨張するものであり、例
えば次のようなものがある。
Figure 1 is a vertical side view showing an example of a spherical heat storage body when the heat medium is in a liquid phase, and Figure 2 is a spherical heat storage body when the heat medium changes from a liquid phase to a solid phase and expands in volume. 1 is a longitudinal side view showing one example of a body, in which 1 indicates a spherical heat storage body, 2 indicates a spherical shell, and 3 indicates a heat medium filled in the shell. As is well known, when the heat medium 3 is intended for thermal heating, it accumulates heat as sensible heat in the solid state, and then when it changes from the solid phase to the liquid phase, it accumulates a large amount of heat as latent heat of melting. However, when it completely changes to the liquid phase, it accumulates heat as sensible heat, and from the high temperature liquid phase state to the solidification temperature, sensible heat is normally released, and at the solidification temperature, the latent heat of fusion is first released. The heat accumulated as solidification is released as latent heat of solidification, and when cold heat is the target, it is accumulated as latent heat of solidification when changing from liquid phase to solid phase at a constant temperature, and when changing from solid phase to liquid phase,
It releases as latent heat of fusion, and expands in volume when changing from a liquid phase to a solid phase. Examples include the following.

即ち、従来公知の 塩化マグネシウム(MgCl2).塩化ナトリウム
(NaCl).苛性ソーダ(NaOH).塩化カルシウ
ム6水塩(CaCl2・6H2O).炭酸ナトリウム10水
塩(Na2CO3・10H2O)等の水溶液である。
That is, conventionally known magnesium chloride (MgCl 2 ). Sodium chloride (NaCl). Caustic soda (NaOH). Calcium chloride hexahydrate (CaCl 2 6H 2 O). It is an aqueous solution such as sodium carbonate decahydrate (Na 2 CO 3・10H 2 O).

これらの熱媒体は、液相時の温度変化による体
積変化は僅かであるが、凝固時に相当体積膨張す
る。その体積膨張は周知の通り熱媒体の種類によ
つて異なるが、通常液相等の体積の5%〜8%程
度膨張する。
These heat carriers undergo a slight volume change due to temperature change when in the liquid phase, but expand considerably when solidified. As is well known, the volume expansion varies depending on the type of heat medium, but it usually expands by about 5% to 8% of the volume of the liquid phase.

そして従来は、熱媒体3が液相の時にシエル2
内に空間4が残るように設定するに当り、その空
間の大きさの設定を、熱媒体が凝固した時の体積
膨張量をそつくり吸収できる程度に設定してい
た。従つてシエル2自体の大きさは常時不変であ
つた。例えば、熱媒体が凝固した時に、液体の時
の体積の1.08倍、即ち8%相当の空間を予め設定
していた。
Conventionally, when the heat medium 3 is in a liquid phase, the shell 2
In setting the space 4 to remain inside, the size of the space was set to such an extent that the amount of volumetric expansion when the heating medium solidified could be absorbed. Therefore, the size of Ciel 2 itself remained unchanged at all times. For example, when the heat medium solidifies, a space equivalent to 1.08 times the volume when it is liquid, that is, 8%, is set in advance.

そこで上記目的を達成する為に本発明は、熱媒
体の凝固による体積膨張時の膨張量の全部を上記
空間4で吸収することなく、その体積膨張量の一
部のみを吸収できるように空間4の容積に定め、
而も上記空間4とシエル2の同心円的な膨張の双
方によつて吸収するように定めたものである。
Therefore, in order to achieve the above object, the present invention provides a space 4 in which only a part of the volumetric expansion can be absorbed without the space 4 absorbing the entire volumetric expansion due to solidification of the heating medium. determined by the volume of
This is so determined that it is absorbed by both the space 4 and the concentric expansion of the shell 2.

例えば、熱媒体3が凝固した時に、液体の時の
体積の1.08倍、即ち8%膨張したとすると、空間
4で5.5%、シエル2の膨張で2.5%その膨張量を
吸収するように空間4の大きさを定めるものであ
る。換言すれば、熱媒体3を、中空成形法、真空
成形法等で加工した球状シエル2内に注入等によ
り充填する際は、当然のように熱媒体3は液体で
あるが、その液体の熱媒体3を充填する際に、空
間4として上記の例では5.5%相当を残して充填
するものである。
For example, when the heat medium 3 solidifies, it expands by 1.08 times the volume when it is liquid, or 8%.The space 4 absorbs the expansion by 5.5% and by the expansion of the shell 2 by 2.5%. It determines the size of In other words, when the heat medium 3 is filled by injection into the spherical shell 2 processed by a blow molding method, a vacuum forming method, etc., the heat medium 3 is of course a liquid, but the heat of the liquid is When filling the medium 3, the space 4 is filled with a space equivalent to 5.5% in the above example.

そして球状シエル2自体は凝固熱媒体の膨張時
の内圧によつて、熱媒体の膨張に応じて膨張する
のみならず、熱媒体が液相に変化した時には当初
の空間を残して自然に原状に復するように構成す
る。即ちシエル2の同心円的な膨張の範囲はシエ
ル2の材質の弾性限界内にとどめる。これによつ
て、繰り返しの膨張、収縮に係わらず、球状蓄熱
体の球形が常時保たれ、且つ球状シエルの特定部
分に集中応力が残ることがなく、破壊が防止され
る。
The spherical shell 2 itself not only expands in accordance with the expansion of the heat medium due to the internal pressure when the solidified heat medium expands, but also returns to its original state naturally, leaving the initial space when the heat medium changes to a liquid phase. configure to restore. That is, the range of concentric expansion of the shell 2 is kept within the elastic limit of the material of the shell 2. As a result, the spherical heat storage body always maintains its spherical shape regardless of repeated expansion and contraction, and no concentrated stress remains in a specific portion of the spherical shell, thereby preventing breakage.

材質としては、膨張、収縮性に富むものがよく
軟化点90℃以上の合成樹脂、中でも他の耐力性、
耐熱性、加工性をも考慮するとポリプロピレン、
高密度ポリエチレンが好適である。
The material is preferably a synthetic resin with a softening point of 90℃ or higher, which has good expansion and contraction properties, and other materials with high resistance to stress.
Considering heat resistance and processability, polypropylene,
High density polyethylene is preferred.

次に1つの例を示す。 An example is shown below.

熱媒体3として、塩化カリウム水溶液を主液と
し、他に過冷却防止剤として炭酸カルシウム、結
晶加速剤としてヨウ化銀、相分離防止剤としてポ
リアクリル酸ソーダを添加して成るものを用い
た。この場合、凝固温度に於ける凝固時、体積膨
張は、液体時の1.08倍、即ち8%膨張することが
確認された。
The heating medium 3 used was a mixture of potassium chloride aqueous solution as the main liquid, calcium carbonate as a supercooling inhibitor, silver iodide as a crystal accelerator, and sodium polyacrylate as a phase separation inhibitor. In this case, it was confirmed that the volume expansion during solidification at the solidification temperature was 1.08 times that of liquid, that is, 8% expansion.

他方シエル2は、高密度ポリエチレン製であ
り、外径65mm、厚さ1.2mmのものを用いた。そし
て上記熱媒体3の膨張量8%を空間4で5.5%、
シエルの膨張によつて2.5%吸収させることがで
きた。
On the other hand, the shell 2 was made of high-density polyethylene and had an outer diameter of 65 mm and a thickness of 1.2 mm. Then, the expansion amount of the heat medium 3 is 5.5% in the space 4,
By expanding the shell, it was possible to absorb 2.5%.

即ち、熱媒体3の液相時は; 球状シエル2の内容積(cm3)をA、球状シエル
の内径の半径(cm)をr、熱媒体3の体積(cm3
をV、空間4の容積(cm3)をSとすると、 A=4/3πr3=4/3×3.14 ×(6.5−0.12×2)3/2≒128.44cm3 であり、且つ A=S+Vであり、 V=121.74cm3、S=6.69cm3とした。
That is, when the heat medium 3 is in the liquid phase, A is the internal volume (cm 3 ) of the spherical shell 2, r is the radius (cm) of the inner diameter of the spherical shell, and is the volume of the heat medium 3 (cm 3 ).
When V is the volume of space 4 (cm 3 ) and S is the volume of space 4 (cm 3 ), then A=4/3πr 3 =4/3×3.14×(6.5−0.12×2) 3 /2≒128.44cm 3 and A=S+V Therefore, V=121.74cm 3 and S=6.69cm 3 .

即ち、熱媒体3を121.74cm3充填し、空間を6.69
cm3残した。
That is, 121.74 cm 3 of heat medium 3 is filled, and the space is 6.69 cm.
cm 3 left.

他方熱媒体3の凝固時は; 膨張時の球状シエル2の内容積(cm3)をA′、
膨張時の熱媒体3の体積(cm3)をV′とすると、 V′=131.48cm3となつた。
On the other hand, when the heating medium 3 solidifies; the internal volume (cm 3 ) of the spherical shell 2 at the time of expansion is A′,
If the volume (cm 3 ) of the heat medium 3 during expansion is V', then V' = 131.48 cm 3 .

更に、 A′=V′故にA′≒131.48cm3であり、 且つ、S=0であつた。 Furthermore, since A'=V', A'≒131.48 cm 3 and S=0.

従つて、シエル2の半径の延び(cm)をΔRと
すると、 ΔR=0.024cmであり、 シエルによつて、熱媒体の体積膨張の2.5%相
当分、2.95cm3吸収され、空間4によつて5.5%相
当分、6.69cm3吸収された。
Therefore, if the radius extension (cm) of shell 2 is ΔR, ΔR = 0.024 cm, and the shell absorbs 2.95 cm 3 equivalent to 2.5% of the volumetric expansion of the heating medium, and the space 4 absorbs 2.95 cm 3 . Therefore, 6.69 cm 3 was absorbed, equivalent to 5.5%.

換言すれば、熱媒体の体積膨張量はV′−Vに
よつて求められるからこれを解くと9.74cm3であ
り、上記シエルによる吸収分2.95cm3はその内の
30.3%に相当し空間による吸収分はその内の69.7
%に相当した。
In other words, the amount of volumetric expansion of the heating medium is determined by V'-V, so solving this gives 9.74cm3 , of which the absorption by the shell, 2.95cm3 , is
This corresponds to 30.3%, of which 69.7 is absorbed by space.
%.

この例の場合のシエルの材料破壊の有無につい
て検討した。
The presence or absence of material failure of the shell in this example was investigated.

一般に薄肉球殻に於ける膜応力の計算は、 P=ΔR×2×E×t/R2×(1−ym) σ=P.r/2t 但し、 P:内部圧力Kg/cm2 ΔR:上述したように半径の延びcm r:上述したように球の内径の半径cm E:縦弾性係数Kg/cm2 ym:ポアソン比 σ:膜応力Kg/cm2 で求められる。 Generally, calculation of membrane stress in a thin spherical shell is as follows: P=ΔR×2×E×t/R 2 ×(1−ym) σ=Pr/2t However, P: Internal pressure Kg/cm 2 ΔR: As mentioned above Radius extension cm r: As mentioned above, the radius of the inner diameter of the sphere cm E: Longitudinal elastic modulus Kg/cm 2 ym: Poisson's ratio σ: Membrane stress Kg/cm 2 .

従つて、この上記の具体例について求めると、
E=0.56〜1.05×104Kg/cm2 ym=0.4であるから、 E;0.56×104Kg/cm2の場合 P=0.024×2×0.56×104×0.12/(3.13)2×(1−0
.4)=5.49Kg/cm2 σ=5.49×3.13/2×0.12=71.60Kg/cm2 E;1.05×104Kg/cm2の場合 P=0.024×2×1.05×104×0.12(3.13)2×(1−
0.4)=10.29Kg/cm2 σ=10.29×3.13/2×0.12=134.20Kg/cm2 他方、高密度ポリエチレンの引張り強さは245
〜385Kg/cm2であるから、 安全率fとすると、 f=245/71.60=3.42倍 f=385/134.20=2.87倍 であつた。
Therefore, when asked about the above concrete example,
Since E=0.56~1.05×10 4 Kg/cm 2 ym=0.4, E; 0.56×10 4 Kg/cm 2 P=0.024×2×0.56×10 4 ×0.12/(3.13) 2 ×( 1-0
.4) = 5.49Kg/cm 2 σ = 5.49 x 3.13/2 x 0.12 = 71.60Kg/cm 2 E; 1.05 x 10 4 Kg/cm 2 P = 0.024 x 2 x 1.05 x 10 4 x 0.12 (3.13 ) 2 × (1−
0.4)=10.29Kg/cm 2 σ=10.29×3.13/2×0.12=134.20Kg/cm 2 On the other hand, the tensile strength of high-density polyethylene is 245
~385Kg/cm 2 , so the safety factor f = 245/71.60 = 3.42 times f = 385/134.20 = 2.87 times.

而も高密度ポリエチレンの弾性域内であつて、
熱媒体の体積膨張時シエルは膨張するのみなら
ず、液相時に元に復元する。
However, it is within the elastic range of high-density polyethylene,
The shell not only expands when the heat medium expands in volume, but also returns to its original state when it is in the liquid phase.

上記のように、熱媒体の体積膨張量の一部のみ
を吸収できるように球状シエル内の空間の容積を
定めたので、熱媒体を可及的多量に球状シエル中
に収容でき、蓄・放熱量を従来より多く確保で
き、同時に熱媒体の体積膨張量の全部の内の残り
を球状シエルの同心円的な膨らみによつて吸収で
きるから、球状シエルの破壊がない。即ち繰り返
し使用に於ける膨張、収縮にもかかわらず破損し
ない。
As mentioned above, since the volume of the space inside the spherical shell is determined so that only a part of the volumetric expansion of the heat medium can be absorbed, the heat medium can be accommodated in the spherical shell as much as possible, and stored and released. A larger amount of heat can be secured than before, and at the same time, the rest of the volumetric expansion of the heating medium can be absorbed by the concentric bulges of the spherical shell, so there is no breakage of the spherical shell. That is, it does not break despite expansion and contraction during repeated use.

又、上述のように球状シエルの膨張後、熱媒体
が液相になつた時は球状シエルは原状に復する。
何故ならば球状シエルの材質の弾性限界内で膨
張、収縮するように定められているからである。
故に球状シエルは常時球形を保つ。
Further, as described above, after the spherical shell expands, when the heat medium becomes a liquid phase, the spherical shell returns to its original state.
This is because the spherical shell is designed to expand and contract within the elastic limits of its material.
Therefore, the spherical shell always maintains its spherical shape.

仮に、膨張、収縮しないと、局部に膨張力が集
中し、球形の状態が変形し易く、変形部分に集中
応力が残り、該部分で破壊を生じ易くなるが、こ
の点がないものである。
If it does not expand or contract, the expansion force will concentrate locally, the spherical state will easily deform, concentrated stress will remain in the deformed part, and it will be easy to break in that part, but this is not the case.

更に球形のものを密に集合させると、球状蓄熱
体群の間に一定の率の間隙が生じ、その間隙中を
熱交換されるべき流体が通過するものであるが、
上述のように部分的に変形すると球状蓄熱体同志
の間隙が小になり、流路抵抗が大となる。そうす
ると熱交換効率が低下するが、そのおそれもな
い。
Furthermore, when spherical heat storage bodies are densely assembled, gaps are created between the spherical heat storage bodies at a certain rate, and the fluid to be heat exchanged passes through these gaps.
When the spherical heat storage bodies are partially deformed as described above, the gap between the spherical heat storage bodies becomes small, and the flow path resistance becomes large. If this happens, the heat exchange efficiency will decrease, but there is no risk of this happening.

以上詳述した如くこの発明によれば液相から固
相時への相変化時熱媒体の体積膨張を空間のみな
らずシエルの同心円的な膨張により吸収できるの
で次の効果がある。
As detailed above, according to the present invention, the volumetric expansion of the heating medium during the phase change from the liquid phase to the solid phase can be absorbed not only by the space but also by the concentric expansion of the shell, resulting in the following effects.

熱媒体の液相から固相への体積膨張時破損し
ない。液相時に於ける残存空間が大きくない。
何故ならばシエルの膨張によつて吸収できるよう
にしたので、空間は予め可及的に小に定められて
いるからである。従つて熱媒体を可及的多く収容
できる。
No damage occurs when the heat medium expands in volume from the liquid phase to the solid phase. The remaining space in the liquid phase is not large.
This is because the space is predetermined to be as small as possible since the shell can absorb it by expanding. Therefore, as much heat medium as possible can be accommodated.

特に球状シエルは膨張のみならず、原状に収
縮する。即ち選択された材質の弾性限界内に於い
て膨張、収縮するように定めてあるからである。
故に繰り返しの膨張、収縮に係わらず、球状蓄熱
体の球形態様は常時保形される。従つて球状シエ
ルの特定部分に集中応力が残ることがなく、破壊
のおそれがない。
In particular, the spherical shell not only expands but also contracts to its original state. That is, it is designed to expand and contract within the elastic limits of the selected material.
Therefore, regardless of repeated expansion and contraction, the spherical shape of the spherical heat storage body is always maintained. Therefore, no concentrated stress remains in a specific part of the spherical shell, and there is no risk of breakage.

加えて同じように球状蓄熱体は常時球形を保
形するから、球状蓄熱体群の間の間隙が小さくな
るおそれもなく熱交換されるべき流体の抵抗も特
に大にならない。従つて熱交換効率の低下のおそ
れもない。
In addition, since the spherical heat storage bodies always maintain their spherical shape, there is no fear that the gap between the spherical heat storage bodies will become smaller, and the resistance of the fluid to be heat exchanged will not become particularly large. Therefore, there is no fear of a decrease in heat exchange efficiency.

等実用上各種の利点を呈するものである It exhibits various practical advantages such as

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明の実施例を示し、第1図は熱
媒が溶相時に於ける球状蓄熱体の断面図、第2図
は熱媒体が凝固時に於ける球状蓄熱体の断面図で
あり、図中1は球状蓄熱体、2はシエル、3は熱
媒体、4は空間である。
The accompanying drawings show embodiments of the present invention, in which FIG. 1 is a cross-sectional view of a spherical heat storage body when the heat medium is in a solution phase, and FIG. 2 is a cross-sectional view of the spherical heat storage body when the heat medium is solidified. In the figure, 1 is a spherical heat storage body, 2 is a shell, 3 is a heat medium, and 4 is a space.

Claims (1)

【特許請求の範囲】 1 球状シエルと、この球状のシエル内に充填さ
れる融解、凝固の相変化時に潜熱を蓄熱し、放熱
する熱媒体より成り、而もこの熱媒体は液相から
固相へ変化した時に、その体積が膨張する性質を
有し、上記熱媒体の液相時には上記球状のシエル
内に空間が残るように設定された球状蓄熱体に於
いて; 上記熱媒体が液相時に残る上記球状シエル内の
空間の容積は、上記熱媒体が液相から固相へ変化
した時の熱媒体の体積膨張量の全てを吸収できる
ように定められていず、体積膨張量の一部のみを
吸収する大きさに定められていると共に、上記体
積膨張量全部の内の残りの体積膨張量を上記球状
のシエルの同心円的な膨張によつて吸収できるよ
うに上記シエルを上記熱媒体の体積膨張に応じて
同心円的に膨らむ材質によつて形成し、而も球状
シエルの同心円的な膨らみの範囲は、球状シエル
の材質の弾性限界内に設定されている事を特徴と
する球状蓄熱体。 2 上記シエルは軟化点90℃以上のプラスチツク
素材であることを特徴とする請求項第1項記載の
球状蓄熱体。 3 上記シエルはポリプロピレンにより形成され
ていることを特徴とする請求項第2項記載の球状
蓄熱体。 4 上記シエルは高密度ポリエチレンより形成さ
れていることを特徴とする請求項第2項記載の球
状蓄熱体。
[Claims] 1 Consists of a spherical shell and a heating medium filled in this spherical shell that stores and radiates latent heat during phase changes of melting and solidification, and this heating medium changes from a liquid phase to a solid phase. In a spherical heat storage body, the volume of which expands when the heating medium changes to , and is set such that a space remains within the spherical shell when the heating medium is in the liquid phase; The volume of the remaining space within the spherical shell is not determined so as to be able to absorb all of the volumetric expansion of the heating medium when it changes from a liquid phase to a solid phase, but only a portion of the volumetric expansion. The shell is designed to have a size that absorbs the volume of the heat medium, and the shell is set to have a size that absorbs the volumetric expansion of the heating medium, and the remaining volumetric expansion of the total volumetric expansion can be absorbed by the concentric expansion of the spherical shell. A spherical heat storage body formed of a material that expands concentrically in response to expansion, and further characterized in that the range of the concentric expansion of the spherical shell is set within the elastic limit of the material of the spherical shell. 2. The spherical heat storage body according to claim 1, wherein the shell is made of a plastic material having a softening point of 90° C. or higher. 3. The spherical heat storage body according to claim 2, wherein the shell is made of polypropylene. 4. The spherical heat storage body according to claim 2, wherein the shell is made of high-density polyethylene.
JP59052971A 1984-03-19 1984-03-19 Spherical heat accumulating body Granted JPS60196596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59052971A JPS60196596A (en) 1984-03-19 1984-03-19 Spherical heat accumulating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59052971A JPS60196596A (en) 1984-03-19 1984-03-19 Spherical heat accumulating body

Publications (2)

Publication Number Publication Date
JPS60196596A JPS60196596A (en) 1985-10-05
JPH0449037B2 true JPH0449037B2 (en) 1992-08-10

Family

ID=12929771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59052971A Granted JPS60196596A (en) 1984-03-19 1984-03-19 Spherical heat accumulating body

Country Status (1)

Country Link
JP (1) JPS60196596A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211671A (en) * 1987-07-29 1993-05-18 Oskar Schatz Method of charging the salt space of a latent heat storage means

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495029A (en) * 1978-01-12 1979-07-27 Mitsui Petrochemical Ind Method of utilizing solar heat
JPS5616876A (en) * 1979-07-20 1981-02-18 Advantest Corp Effective value detecting element
JPS5735292A (en) * 1980-08-12 1982-02-25 Mitsubishi Electric Corp Manufacture of heat accumulation vessel
JPS5752551U (en) * 1980-09-09 1982-03-26

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495029A (en) * 1978-01-12 1979-07-27 Mitsui Petrochemical Ind Method of utilizing solar heat
JPS5616876A (en) * 1979-07-20 1981-02-18 Advantest Corp Effective value detecting element
JPS5735292A (en) * 1980-08-12 1982-02-25 Mitsubishi Electric Corp Manufacture of heat accumulation vessel
JPS5752551U (en) * 1980-09-09 1982-03-26

Also Published As

Publication number Publication date
JPS60196596A (en) 1985-10-05

Similar Documents

Publication Publication Date Title
US4702853A (en) Phase change thermal energy storage material
CN106320951A (en) Reinforced heat storage shutter with metal foam and phase change microcapsule material embedded inside
JPH0449037B2 (en)
JPS5812992A (en) Heat accumulating device
JPH0120341B2 (en)
JPS5828988A (en) Heat accumulator
JPS62294897A (en) Heat accumulation type heat exchanger
US4603003A (en) Thermal energy storage
US4189393A (en) Heat storage material comprising lithium chlorate-trihydrate and a nucleating agent
JP2800039B2 (en) Latent heat storage material
KR100307760B1 (en) Double hot water pipe using microencapsulated phase change material
JPS5733792A (en) Heat accumulator
JP2805968B2 (en) Latent heat storage material
JPH0555560B2 (en)
JPS5740583A (en) Regenerating material
JP2982409B2 (en) Latent heat storage material
JPH0347889A (en) Latent heat-accumulating material
JP2800329B2 (en) Latent heat storage material
JPS6121579B2 (en)
JP2538635B2 (en) Heat storage material
JPH06159965A (en) Latent heat medium and heat collecting and accumulating system using the same
JPS57153074A (en) Heat accumulating material
JP2932774B2 (en) Latent heat storage material
JPS60196558A (en) Air-cooling and refrigerating device
JPS57202493A (en) Spherical heat accumulating body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term