JPH0448933B2 - - Google Patents

Info

Publication number
JPH0448933B2
JPH0448933B2 JP59226136A JP22613684A JPH0448933B2 JP H0448933 B2 JPH0448933 B2 JP H0448933B2 JP 59226136 A JP59226136 A JP 59226136A JP 22613684 A JP22613684 A JP 22613684A JP H0448933 B2 JPH0448933 B2 JP H0448933B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
engine
fuel
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59226136A
Other languages
Japanese (ja)
Other versions
JPS61104137A (en
Inventor
Nobuhide Seo
Tomoshi Morita
Kazuya Komatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP22613684A priority Critical patent/JPS61104137A/en
Publication of JPS61104137A publication Critical patent/JPS61104137A/en
Publication of JPH0448933B2 publication Critical patent/JPH0448933B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの空燃比制御装置に関し、
特に排気ガス中の酸素濃度に応じてその出力がほ
ぼリニアに変化する空燃比センサを用いてエンジ
ンの空燃比を所定値にフイードバツク制御するよ
うにしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an air-fuel ratio control device for an engine.
In particular, the present invention relates to an engine in which the air-fuel ratio of an engine is feedback-controlled to a predetermined value using an air-fuel ratio sensor whose output changes approximately linearly in accordance with the oxygen concentration in exhaust gas.

(従来の技術) 従来より、エンジンの排気ガス中の酸素濃度に
よりエンジンの空燃比を検出してエンジンに供給
する混合気の空燃比を所定値にフイードバツク制
御することは広く知られている。
(Prior Art) It is widely known that the air-fuel ratio of the engine is detected based on the oxygen concentration in the exhaust gas of the engine, and the air-fuel ratio of the air-fuel mixture supplied to the engine is feedback-controlled to a predetermined value.

そして、この場合、排気ガス中の酸素濃度を検
出して間接的に空燃比を検出する空燃比センサと
しては、理論空燃比に対応する酸素濃度を境にし
て出力(起電力)がステツプ状に変化する、いわ
ゆるλセンサがある。このλセンサは、その出力
特性から空燃比を理論空燃比に制御する場合には
好適であるが、加速時や高負荷運転時等、高出力
が要求されるときに空燃比を理論空燃比よりもリ
ツチに設定する場合、あるいは高速定常走行時に
おいて燃費向上のために空燃比を理論空燃比より
もリーンに設定する場合には、上述の如く理論空
燃比に対する大小のみを判別するだけであるの
で、これら理論空燃比からリーン又はリツチ側に
外れた空燃比を正確に検出することはできず、空
燃比を任意の値に制御する場合には不向きであ
る。
In this case, the air-fuel ratio sensor, which indirectly detects the air-fuel ratio by detecting the oxygen concentration in the exhaust gas, outputs (electromotive force) in steps at the oxygen concentration corresponding to the stoichiometric air-fuel ratio. There are so-called λ sensors that vary. This λ sensor is suitable for controlling the air-fuel ratio to the stoichiometric air-fuel ratio due to its output characteristics, but when high output is required, such as during acceleration or high-load operation, the air-fuel ratio is lower than the stoichiometric air-fuel ratio. When setting the air-fuel ratio to be richer, or when setting the air-fuel ratio leaner than the stoichiometric air-fuel ratio to improve fuel efficiency during steady high-speed driving, only the magnitude relative to the stoichiometric air-fuel ratio is determined as described above. , it is not possible to accurately detect air-fuel ratios that deviate from the stoichiometric air-fuel ratio to the lean or rich side, and it is not suitable for controlling the air-fuel ratio to an arbitrary value.

そこで、本出願人は、上記λセンサに代わる空
燃比センサとして、特開昭59−100854号公報に示
されるように、排気ガス中の酸素濃度に応じて出
力がほぼリニアに変化して、空燃比をリニア領域
からリーン領域に亘つて連続的に検出できる、い
わゆる広域空燃比センサを提案しており、このも
のにより空燃比を任意の値に制御することを可能
としている。すなわち、この広域空燃比センサ
は、酸素イオン伝導性の固体電解質の両面に多孔
質電極を形成し、被測定ガス(排気ガス)に接触
する側の多孔質電極としてPt等を主成分とする半
触媒性能を有するものを使用するとともに、該電
極と固体電解質と被測定ガスとで構成される3相
点近傍に、HCを酸化してCOを生成するSnO2
の金属酸化物を存在させてなるものである。
Therefore, the present applicant developed an air-fuel ratio sensor to replace the above-mentioned λ sensor, as shown in Japanese Patent Application Laid-Open No. 59-100854, in which the output changes almost linearly according to the oxygen concentration in the exhaust gas. We have proposed a so-called wide-range air-fuel ratio sensor that can continuously detect the fuel ratio from a linear region to a lean region, making it possible to control the air-fuel ratio to an arbitrary value. In other words, this wide-range air-fuel ratio sensor has porous electrodes formed on both sides of an oxygen ion conductive solid electrolyte, and the porous electrode on the side that comes into contact with the gas to be measured (exhaust gas) has Pt etc. as its main component. In addition to using a material with semi-catalytic performance, a metal oxide such as SnO 2 that oxidizes HC to generate CO is present near the three-phase point consisting of the electrode, solid electrolyte, and gas to be measured. That's what happens.

(発明が解決しようとする課題) ところで、上記の如き広域空燃比センサを用い
てエンジンの空燃比を所定の制御利得でエンジン
の運転状態に応じた所定値にフイードバツク制御
する場合、上記広域空燃比センサの出力(起電
力)特性は、理論空燃比(A/F=14.7)で起電
力勾配(傾斜)が最大で、この理論空燃比を境に
してリーン側およびリツチ側に行くにつれて起電
力勾配がゆるやかになる特性を有する(第3図参
照)ため、この起電力勾配の大きい理論空燃比付
近では制御の応答性が良好であるが、理論空燃比
よりもリーン側又はリツチ側では、起電力勾配が
ゆるやかであることから、空燃比の変動が大き
く、制御の応答性が悪いという問題がある。
(Problem to be Solved by the Invention) By the way, when the air-fuel ratio of the engine is feedback-controlled to a predetermined value according to the operating state of the engine with a predetermined control gain using the wide-range air-fuel ratio sensor as described above, the wide-range air-fuel ratio The output (electromotive force) characteristics of the sensor are such that the electromotive force gradient (slope) is maximum at the stoichiometric air-fuel ratio (A/F = 14.7), and the electromotive force gradient increases as you move toward the lean side and rich side from this stoichiometric air-fuel ratio. As shown in Figure 3, the control response is good near the stoichiometric air-fuel ratio where the electromotive force gradient is large, but when the electromotive force is leaner or richer than the stoichiometric air-fuel ratio, Since the slope is gentle, there is a problem in that the air-fuel ratio fluctuates greatly and the control response is poor.

また、広域空燃比センサ自身の検出応答性を見
るに、理論空燃比よりもリツチ側とリーン側とで
は異なり、リツチ側では排気ガス中の未燃焼成分
HC,COの割合が多いため、広域空燃比センサに
対してHC,COが吸着、脱着する際その脱着が速
かに行われずに時間がかかることから、リーン側
と較べて検出応答性が悪く(第4図参照)、空燃
比制御の精度が低下するという問題がある。
In addition, looking at the detection response of the wide-range air-fuel ratio sensor itself, it is found that it differs between richer and leaner sides than the stoichiometric air-fuel ratio, and on the rich side, unburned components in the exhaust gas
Since the ratio of HC and CO is high, when HC and CO are adsorbed and desorbed by the wide range air-fuel ratio sensor, the desorption is not done quickly and it takes time, so the detection response is poor compared to the lean side. (See FIG. 4), there is a problem in that the accuracy of air-fuel ratio control is reduced.

本発明はかかる点に鑑みてなされたもので、そ
の目的とするところは、広域空燃比センサを用い
て空燃比を所定の制御利得でエンジン運転状態に
応じた目標空燃比にフイードバツク制御する場
合、この目標利得を目標空燃比に対する空燃比セ
ンサの起電力勾配特性に応じて変更することによ
り、制御応答性を高めて、全運転域で空燃比を精
度良くフイードバツク制御できるようにすること
にある。
The present invention has been made in view of the above points, and its purpose is to perform feedback control of the air-fuel ratio to a target air-fuel ratio according to the engine operating state with a predetermined control gain using a wide-range air-fuel ratio sensor. By changing this target gain in accordance with the electromotive force gradient characteristic of the air-fuel ratio sensor with respect to the target air-fuel ratio, control responsiveness is improved and the air-fuel ratio can be accurately feedback-controlled over the entire operating range.

(課題を解決するための手段) 上記の目的を達成するため、本発明の解決手段
は、第1図に示すように、エンジンの排気通路中
に設けられ、排気ガス中の酸素濃度に応じてその
出力がほぼリニアに変化する空燃比センサ8と、
エンジンの運転状態を検出する運転状態検出手段
15と、該運転状態検出手段15の出力を受け、
エンジンの運転状態に応じてエンジンに供給する
混合気の空燃比の目標値を設定する目標空燃比設
定手段16と、該目標空燃比設定手段16の出力
と上記空燃比センサ8の出力とを受け、両出力を
比較する比較手段18と、該比較手段18の出力
を受け、エンジンに供給する混合気の空燃比を所
定の制御利得で上記目標空燃比に制御する空燃比
制御手段19とを備えることを基本構成とする。
これに加えて、上記目標空燃比設定手段16から
の目標空燃比に対する上記空燃比センサの起電力
勾配特性に応じて上記空燃比制御手段19の制御
利得を変更する制御利得変更手段17を設ける構
成としたものである。ここで、上記制御利得変更
手段17は、目標空燃比が理論空燃比よりもリツ
チ側の領域での制御定数がリーン側の領域での制
御定数よりも小さく設定されることが好ましい。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention is provided in the exhaust passage of an engine, as shown in FIG. an air-fuel ratio sensor 8 whose output changes almost linearly;
Operating state detecting means 15 for detecting the operating state of the engine; and receiving the output of the operating state detecting means 15;
A target air-fuel ratio setting means 16 sets a target value of the air-fuel ratio of the air-fuel mixture to be supplied to the engine according to the operating state of the engine, and receives the output of the target air-fuel ratio setting means 16 and the output of the air-fuel ratio sensor 8. , a comparison means 18 for comparing both outputs, and an air-fuel ratio control means 19 for receiving the output of the comparison means 18 and controlling the air-fuel ratio of the air-fuel mixture supplied to the engine to the target air-fuel ratio with a predetermined control gain. This is the basic structure.
In addition, a control gain changing means 17 is provided for changing the control gain of the air-fuel ratio control means 19 according to the electromotive force gradient characteristic of the air-fuel ratio sensor with respect to the target air-fuel ratio from the target air-fuel ratio setting means 16. That is. Here, in the control gain changing means 17, it is preferable that the control constant in the region where the target air-fuel ratio is richer than the stoichiometric air-fuel ratio is set smaller than the control constant in the region where the target air-fuel ratio is leaner.

(作用) 上記の構成により、本発明では、排気ガス中の
酸素濃度に応じてその出力がほぼリニアに変化す
る、いわゆる広域空燃比センサを用いて空燃比を
所定の制御利得でエンジン運転状態に応じた目標
空燃比にフイードバツク制御する場合、上記フイ
ードバツク制御における制御利得が目標空燃比に
応じて変更され、起電力勾配が最大で制御応答性
の良い例えば理論空燃比付近では大に、理論空燃
比よりもリーン側又はリツチ側に行くにしたがつ
て、つまり起電力勾配がゆるやかになり制御応答
性が悪くなるにしたがつて小さくなり、好ましく
は空燃比センサ自身の検出応答性の悪いリツチ側
での制御定数がリーン側での制御定数よりも小さ
くなる。このことにより、エンジン運転状態に応
じた各目標空燃比での空燃比センサの制御応答性
ないし検出応答性に対してそのときの制御利得が
良好に対応することになり、ハンチングを生ずる
ことなく全運転域で空燃比を目標空燃比に精度良
くフイードバツク制御することが可能となる。
(Function) With the above configuration, the present invention uses a so-called wide-range air-fuel ratio sensor whose output changes almost linearly according to the oxygen concentration in exhaust gas to control the air-fuel ratio to the engine operating state with a predetermined control gain. When performing feedback control to the target air-fuel ratio according to the target air-fuel ratio, the control gain in the feedback control is changed according to the target air-fuel ratio, and the electromotive force gradient is large near the stoichiometric air-fuel ratio where the control response is good, for example, the stoichiometric air-fuel ratio. It decreases as the electromotive force gradient becomes gentler and the control response becomes worse, preferably on the rich side where the air-fuel ratio sensor itself has poor detection response. The control constant on the lean side becomes smaller than the control constant on the lean side. As a result, the control gain at that time corresponds well to the control response or detection response of the air-fuel ratio sensor at each target air-fuel ratio depending on the engine operating state, and the control gain at that time corresponds well to the control response or detection response of the air-fuel ratio sensor at each target air-fuel ratio depending on the engine operating state. It becomes possible to accurately feedback control the air-fuel ratio to the target air-fuel ratio in the operating range.

(実施例) 以下、本発明の実施例を第2図以下の図面に基
づいて説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は本発明の一実施例に係るエンジンの空
燃比制御システムの概略構成を示し、1はエンジ
ン、2はエンジン1に吸気を供給するための吸気
通路、3はエンジン1からの排気ガスを排出する
ための排気通路である。上記吸気通路2には、エ
ンジン1に供給する吸入空気量を制御するスロツ
トル弁4が配設され、該スロツトル弁4下流の吸
気通路2にはエンジン1に燃料を噴射供給する燃
料噴射弁5が配設されている。
FIG. 2 shows a schematic configuration of an engine air-fuel ratio control system according to an embodiment of the present invention, in which 1 is an engine, 2 is an intake passage for supplying intake air to the engine 1, and 3 is an exhaust gas from the engine 1. This is an exhaust passage for discharging. A throttle valve 4 for controlling the amount of intake air supplied to the engine 1 is disposed in the intake passage 2, and a fuel injection valve 5 for injecting fuel to the engine 1 is disposed in the intake passage 2 downstream of the throttle valve 4. It is arranged.

また、上記吸気通路2のスロツトル弁4上流に
は、吸入空気量を検出するエアフローセンサ6お
よび吸気の温度を検出する吸気温センサ7が設け
られている。一方、上記排気通路3には、排気ガ
ス中の酸素濃度により空燃比を検出する空燃比セ
ンサ8、排気ガス中の炭化水素(HC)濃度を検
出するHCセンサ9および排気ガス温度により上
記空燃比センサ8の温度を検出する排気温センサ
10が設けられており、これらセンサ6〜10の
各出力は、上記燃料噴射弁5を制御する空燃比コ
ントローラ11に入力されている。また、12は
点火プラグ、13はイグニツシヨンコイル、14
はイグナイタであつて、該イグナイタ14からの
点火信号はエンジン回転数信号等として上記空燃
比コントローラ11に入力されている。
Further, upstream of the throttle valve 4 in the intake passage 2, an air flow sensor 6 for detecting the amount of intake air and an intake temperature sensor 7 for detecting the temperature of intake air are provided. On the other hand, the exhaust passage 3 includes an air-fuel ratio sensor 8 that detects the air-fuel ratio based on the oxygen concentration in the exhaust gas, an HC sensor 9 that detects the hydrocarbon (HC) concentration in the exhaust gas, and an air-fuel ratio sensor 9 that detects the air-fuel ratio based on the exhaust gas temperature. An exhaust temperature sensor 10 is provided to detect the temperature of the sensor 8, and the outputs of these sensors 6 to 10 are input to an air-fuel ratio controller 11 that controls the fuel injection valve 5. Also, 12 is a spark plug, 13 is an ignition coil, 14
is an igniter, and the ignition signal from the igniter 14 is inputted to the air-fuel ratio controller 11 as an engine rotational speed signal or the like.

上記空燃比センサ8は、既述の如く酸素イオン
伝導性の固体電解質の両面に多孔質電極を形成
し、被測定ガス(排気ガス)に接触する側の多孔
質電極としてPt等の半触媒性能を有するものを
使用するとともに、該電極と固体電解質と被測定
ガス(排気ガス)とで構成される3相点近傍に、
HCを酸化してCOを生成するSnO2,In2O3
NiO,Co3O4,CnO等の金属酸化物を存在させて
なるもので、その起電力特性は第3図に示すよう
に排気ガス中の酸素濃度に応じてその出力として
の起電力がほぼリニアに変化して、空燃比をリツ
チ領域からリーン領域に亘つて連続的に検出でき
る基本特性を有するいわゆる広域空燃比センサで
ある。そして、この空燃比センサ8は、その起電
力特性はほぼリニアであるものの、仔細にみる
と、第3図の如く理論空燃比(A/F=14.7)付
近でその起電力勾配(傾斜)が最大で、理論空燃
比よりもリツチ側又はリーン側に行くに従つて起
電力勾配がゆるやかになることから、フイードバ
ツク制御での制御利得を一定とした場合、理論空
燃比付近では良好な制御応答性が得られる反面、
それよりもリツチ側又はリーン側では制御応答性
が悪くなる傾向を示す。しかも、第4図に示すよ
うに、制御利得を一定とした場合でのフイードバ
ツク時の空燃比センサ8の起電力振動周波数、つ
まり検出応答性を示す制御周波数をみるに、理論
空燃比よりもリツチ側では、排気ガス中のHC,
COの割合が多いことから、空燃比センサ8に対
してHC,COが吸着、脱着する際にその脱着が速
かに行われずに時間がかかるので、リーン側と較
べて検出応答性が悪いという特性を示す。また、
この空燃比センサ8の起電力特性は、空燃比セン
サ8の温度(排気ガス温度)により変化する温度
特性を有し、該温度が高くなるに従つて理論空燃
比よりもリーン側では起電力が低下し、リツチ側
では起電力が増大する。また、上記空燃比センサ
8の起電力特性は、排気ガス中のHC濃度により
変化するHC濃度特性を有し、理論空燃比よりも
リーン側でHC濃度が大になるにつれて起電力が
増大する(尚、リツチ側では元来HC濃度が高い
のでほとんど起電力の変化は生じない)。
As mentioned above, the air-fuel ratio sensor 8 has porous electrodes formed on both sides of an oxygen ion conductive solid electrolyte, and the porous electrode on the side that comes into contact with the gas to be measured (exhaust gas) is made of semi-catalytic material such as Pt. In addition, near the three-phase point consisting of the electrode, solid electrolyte, and gas to be measured (exhaust gas),
SnO 2 , In 2 O 3 , which oxidizes HC to generate CO
It is made up of metal oxides such as NiO, Co 3 O 4 and CnO, and its electromotive force characteristics vary depending on the oxygen concentration in the exhaust gas, as shown in Figure 3. It is a so-called wide-range air-fuel ratio sensor that has a basic characteristic of linearly changing the air-fuel ratio and continuously detecting the air-fuel ratio from a rich region to a lean region. Although the air-fuel ratio sensor 8 has a nearly linear electromotive force characteristic, a closer look shows that the electromotive force gradient (slope) near the stoichiometric air-fuel ratio (A/F = 14.7) as shown in Figure 3. At maximum, the electromotive force gradient becomes gentler as it goes richer or leaner than the stoichiometric air-fuel ratio, so if the control gain in feedback control is constant, good control response is achieved near the stoichiometric air-fuel ratio. On the other hand,
On the richer or leaner side, control responsiveness tends to deteriorate. Moreover, as shown in Fig. 4, when looking at the electromotive force oscillation frequency of the air-fuel ratio sensor 8 during feedback when the control gain is constant, that is, the control frequency indicating detection response, it is richer than the stoichiometric air-fuel ratio. On the side, HC in the exhaust gas,
Since the proportion of CO is high, when HC and CO adsorb and desorb to the air-fuel ratio sensor 8, the desorption is not done quickly and takes time, so the detection response is poor compared to the lean side. Show characteristics. Also,
The electromotive force characteristic of this air-fuel ratio sensor 8 has a temperature characteristic that changes depending on the temperature of the air-fuel ratio sensor 8 (exhaust gas temperature), and as the temperature becomes higher, the electromotive force increases on the lean side of the stoichiometric air-fuel ratio. On the rich side, the electromotive force increases. Further, the electromotive force characteristic of the air-fuel ratio sensor 8 has an HC concentration characteristic that changes depending on the HC concentration in the exhaust gas, and the electromotive force increases as the HC concentration increases on the lean side of the stoichiometric air-fuel ratio ( In addition, since the HC concentration is originally high on the rich side, almost no change in electromotive force occurs).

次に、上記空燃比コントローラ11の作動を第
5図に示すフローチヤートにより説明するに、リ
セツト後、ステツプS11で目標空燃比に対するリ
ーンゾーンとリツチゾーンとを区別するためのゾ
ーンフラグFzone(リーン側で“0”、リツチ側で
“1”)を“0”に、燃料噴射がデイレイ中か否か
を区別するためのリーン側およびリツチ側のデイ
レイフラグFl,Fr(デイレイ中でないときは、
“0”、デイレイ中は“1”)を共に“0”に、ま
たエンジン回転数と噴射時間との関係を決めるフ
イードバツク係数Cfbを“1”にそれぞれ初期設
定する。さらに、ステツプS2でエンジン回転数等
を計算するための一定周期を定める基本タイマを
リセツトして、次のステツプS3で基本タイマが一
定時間Ti経過するのを待ち、一定時間Tiを経過
するとステツプS4で上記基本タイマを再びリセツ
トする。尚、この基本タイマはリセツトされた瞬
間から時間をアツプカウントするカウンタであ
る。
Next, the operation of the air-fuel ratio controller 11 will be explained with reference to the flowchart shown in FIG. 5. After resetting, in step S11 , a zone flag Fzone (lean side "0" on the rich side and "1" on the rich side) to "0", and the delay flags Fl, Fr on the lean side and rich side to distinguish whether or not fuel injection is in delay mode (when not in delay mode,
The feedback coefficient Cfb, which determines the relationship between the engine speed and the injection time, is initially set to "1". Furthermore, in step S2 , the basic timer that determines a fixed cycle for calculating engine speed, etc. is reset, and in the next step S3 , the basic timer waits for a certain period of time Ti to elapse, and when the certain period of time Ti has elapsed, the basic timer is reset. In step S4 , the basic timer is reset again. Note that this basic timer is a counter that counts up the time from the moment it is reset.

次に、ステツプS5でイグナイタ14からのイグ
ニツシヨンパルス信号によりエンジン回転数Ne
を計算し、またステツプS6でエアフローセンサ6
および吸気温センサ7からの信号により吸入空気
流量Ueを計算して、エンジン1の運転状態を検
出する。
Next, in step S5 , the engine speed Ne is determined by the ignition pulse signal from the igniter 14.
Calculate the airflow sensor 6 in step S6.
The intake air flow rate Ue is calculated based on the signal from the intake air temperature sensor 7, and the operating state of the engine 1 is detected.

次いで、ステツプS7で空燃比センサ8からの出
力信号としての起電力Vs信号、HCセンサ9から
のHC濃度信号および排気温センサ10からの排
気ガス温度信号(空燃比センサ温度信号)を入力
したのち、ステツプS8において上記エンジン運転
状態に応じた目標空燃比、HC濃度および排気ガ
ス温度を第6図に示すようなデータテーブルに入
力して、目標空燃比に対応する空燃比センサ8の
目標値としてのスライスレベル中央値Vrefを求
めるとともに、該目標値としてのスライスレベル
中央値Vrefに対するリーン側およびリツチ側の
不感帯幅Vhl,Vhrを求める。さらに、ステツプ
S9において上記目標空燃比に基づいて後述のフイ
ードバツク制御における積分定数Cl,Cr、比例
定数Csl,Csrおよびデイレイ時間tdl,tdrを求め
る。
Next, in step S7 , the electromotive force Vs signal as an output signal from the air-fuel ratio sensor 8, the HC concentration signal from the HC sensor 9, and the exhaust gas temperature signal from the exhaust temperature sensor 10 (air-fuel ratio sensor temperature signal) are input. Thereafter, in step S8 , the target air-fuel ratio, HC concentration, and exhaust gas temperature according to the engine operating state are input into a data table as shown in FIG. 6, and the target air-fuel ratio sensor 8 corresponding to the target air-fuel ratio is determined. The slice level median value Vref as a value is determined, and the dead band widths Vhl and Vhr on the lean side and the rich side with respect to the slice level median value Vref as the target value are determined. Furthermore, the steps
In S9 , integral constants Cl, Cr, proportional constants Csl, Csr, and delay times tdl, tdr in feedback control, which will be described later, are determined based on the target air-fuel ratio.

ここにおいて、上記目標空燃比は例えばエンジ
ン回転数とエンジン負荷によりエンジン運転状態
に応じて設定され、例えば高負荷運転時には目標
空燃比A/Fが理論空燃比(A/F=14.7)より
もリツチに、高速定常走行時には理論空燃比より
もリーンに設定される。また、上記第6図のデー
タテーブルには、各目標空燃比毎に排気ガス温度
とHC濃度とに応じたスライスレベル中央値Vref
が書き込まれていて、排気ガス温度に対しては理
論空燃比(A/F=14.7)を境にしてリツチ側で
は温度の上昇に伴つてVrefが増大し、リーン側
では温度の上昇に伴つてVrefが低下し、理論空
燃比では温度変化に対してVrefがほぼ一定であ
る。また、HC濃度に対しては理論空燃比(A/
F=14.7)よりもリーン側ではHC濃度の増大に
伴つてVrefが増大し、理論空燃比およびそれよ
りもリツチ側ではHC濃度変化に対してVrefがほ
ぼ一定である。さらに、上記スライスレベル中央
値Vrefに対する不感帯幅(つまりヒステリシス
幅)Vhl,Vhrは、空燃比センサ8の出力(起電
力)に対するノイズの影響をなくすために設定さ
れたもので、目標空燃比に対応するスライスレベ
ル中央値Vrefに応じて変化し、理論空燃比で最
大で、理論空燃比よりもリーン側又はリツチ側に
なるにしたがつて小さくなる。
Here, the target air-fuel ratio is set depending on the engine operating state, for example, based on engine speed and engine load. For example, during high-load operation, the target air-fuel ratio A/F is richer than the stoichiometric air-fuel ratio (A/F = 14.7). In addition, during high-speed steady driving, the air-fuel ratio is set to be leaner than the stoichiometric air-fuel ratio. The data table in Figure 6 above also includes slice level median value Vref according to exhaust gas temperature and HC concentration for each target air-fuel ratio.
is written, and for the exhaust gas temperature, Vref increases as the temperature rises on the rich side with the stoichiometric air-fuel ratio (A/F = 14.7) as the boundary, and as the temperature rises on the lean side. Vref decreases, and at the stoichiometric air-fuel ratio, Vref remains almost constant with respect to temperature changes. In addition, for the HC concentration, the stoichiometric air-fuel ratio (A/
On the leaner side than F=14.7), Vref increases as the HC concentration increases, and at the stoichiometric air-fuel ratio and on the richer side, Vref remains almost constant with respect to changes in HC concentration. Furthermore, the dead band widths (that is, hysteresis widths) Vhl and Vhr for the median slice level Vref are set to eliminate the influence of noise on the output (electromotive force) of the air-fuel ratio sensor 8, and correspond to the target air-fuel ratio. The slice level changes according to the median slice level Vref, and is maximum at the stoichiometric air-fuel ratio and decreases as the air-fuel ratio becomes leaner or richer than the stoichiometric air-fuel ratio.

また、目標空燃比に対する制御定数の1つとし
ての積分定数Cl,Crは、第7図に示すマツプに
より求められ、理論空燃比(A/F=14.7)付近
でCl,Crが最大で、理論空燃比よりもリツチ側
又はリーン側に行くに従つて小さくなり、かつ理
論空燃比よりもリツチ側の方がリーン側よりも小
さくなるように設定されている。また、目標空燃
比に対する比例定数Csl,Csrは、第8図に示すマ
ツプにより求められ、上記積分定数Cl,Crと同
様の特性、つまり理論空燃比付近で最大で、理論
空燃比よりもリツチ側又はリーン側に行くに従つ
て小さく、かつ理論空燃比よりもリツチ側の方が
リーン側よりも小さくなるように設定されてい
る。さらに、目標空燃比に対するデイレイ時間
tdl,tdrは、第9図に示すマクプにより求めら
れ、上記積分定数Cl,Crや比例定数Csl,Csrと
同様の特性に設定されている。
In addition, the integral constants Cl and Cr, which are one of the control constants for the target air-fuel ratio, are obtained from the map shown in Fig. 7, and Cl and Cr are maximum near the stoichiometric air-fuel ratio (A/F = 14.7). The air-fuel ratio is set to become smaller as it goes richer or leaner than the stoichiometric air-fuel ratio, and is smaller on the rich side than on the lean side of the stoichiometric air-fuel ratio. In addition, the proportionality constants Csl and Csr for the target air-fuel ratio are obtained from the map shown in Fig. 8, and have the same characteristics as the above-mentioned integral constants Cl and Cr, that is, they are maximum near the stoichiometric air-fuel ratio and are richer than the stoichiometric air-fuel ratio. Alternatively, it is set so that it becomes smaller as it goes to the lean side, and is smaller on the rich side than on the lean side than the stoichiometric air-fuel ratio. Furthermore, the delay time for the target air-fuel ratio
tdl and tdr are determined by the MAKUP shown in FIG. 9, and are set to have the same characteristics as the integral constants Cl and Cr and the proportionality constants Csl and Csr.

しかる後、以下のステツプS10〜S30において、
第10図に示す如き空燃比センサ8の出力特性と
燃料噴射弁5からの平均燃料噴射量との対応関係
でもつて空燃比を所定の不感帯および所定の制御
利得でもつて目標空燃比にすべくフイードバツク
制御が実行される。すなわち、耐ノイズ性のため
空燃比センサ8の目標起電力の不感帯(ヒステリ
シス)を決めるべく、先ず、ステツプS10でゾー
ンフラグFzoneが“0”か“1”かを判定し、
Fzone=0のリーン側のときには上記ステツプS8
で求めたスライスレベル中央値Vrefに対するリ
ーン側不感帯幅VhlによりステツプS11でスライ
スレベル中央値V′refをVref+Chlとし、Fzone=
1のリツチ側のときには上記ステツプS8で求めた
スライスレベル中央値Vrefに対するリツチ側不
感帯幅VhrによりステツプS12でスライスレベル
中央値V′refをVref−Vhrとして、それぞれステ
ツプS13に進む。そして、ステツプS13で空燃比セ
ンサ8からの実測した起電力Vsと上記ステツプ
S11又はS12で定められたスライスレベル中央値
V′refとの大小を比較判別する。
After that, in the following steps S10 to S30 ,
As shown in FIG. 10, the correspondence between the output characteristics of the air-fuel ratio sensor 8 and the average fuel injection amount from the fuel injection valve 5 is used to provide feedback so that the air-fuel ratio can reach the target air-fuel ratio within a predetermined dead zone and a predetermined control gain. Control is executed. That is, in order to determine the dead zone (hysteresis) of the target electromotive force of the air-fuel ratio sensor 8 for noise resistance, first, in step S10 , it is determined whether the zone flag Fzone is "0" or "1".
When Fzone = 0 on the lean side, perform step S 8 above.
Based on the lean side dead zone width Vhl for the slice level median value Vref found in step S11 , the slice level median value V′ref is set to Vref + Chl, and Fzone=
If it is on the rich side of 1, the slice level median value V'ref is set to Vref - Vhr in step S12 using the rich side dead zone width Vhr for the slice level median value Vref obtained in step S8 , and the process proceeds to step S13 . Then, in step S13 , the actually measured electromotive force Vs from the air-fuel ratio sensor 8 and the above step
Median slice level determined by S 11 or S 12
Compare and determine the size with V′ref.

このステツプS13での判別がVs≧V′refのとき
にはステツプS14でゾーンフラグFzoneの判定を
行い、Fzone=1のリツチ側のときには空燃比が
目標空燃比よりもリツチ側であると判断して、ス
テツプS15において、上記ステツプS9で求めた目
標空燃比に応じた積分定数Crに基づいて空燃比
をリーン化つまり燃料噴射量を減少すべくフイー
ドバツク係数CfbをCfb−Crとし、ステツプS16
燃料噴射時間τを式K・Cfb・Ue/Neより演算
してステツプS3に戻る。
If the determination in step S13 is that Vs≧V'ref, the zone flag Fzone is determined in step S14 , and if Fzone=1, which is on the rich side, it is determined that the air-fuel ratio is richer than the target air-fuel ratio. Then, in step S15 , the feedback coefficient Cfb is set to Cfb-Cr in order to make the air-fuel ratio leaner, that is , to reduce the fuel injection amount, based on the integral constant Cr corresponding to the target air-fuel ratio determined in step S9. At step 16 , the fuel injection time τ is calculated using the formula K.Cfb.Ue/Ne, and the process returns to step S3 .

その後、ステツプS16での燃料噴射量の減少に
より第10図に示す如く空燃比がリーン方向に向
い、ステツプS13の判別がVs<V′refとなると、
ステツプS17でゾーンフラグFzoneの判定を行い、
未だFzone=1のリツチ側であるので、次のステ
ツプS18でリーン側デイレイフラグFlが“1”か
否かを判別し、Fl=0のNOのときにはリツチ側
からリーン側へ反転したときと判断してステツプ
S19でデイレイフラグFlを“1”としたのち、ス
テツプS20でデイレイタイマをリセツトする(尚、
このデイレイタイマは上述の基本タイマと同様、
リセツトされた瞬間から時間をアツプカウントす
るタイマである)。そして、Fl=1のYESのデイ
レイ中のときと共に次のステツプS21でデイレイ
タイマが上記ステツプS9で求めた目標空燃比に応
じた所定のデイレイ時間tdlを経過したか否かを
判別し、経過していないときにはノイズの影響を
防止すべくステツプS15に移りフイードバツク係
数CfbをCfb−Crに維持して、ステツプS16で燃料
噴射量を減少したままステツプS3に戻る。一方、
デイレイ時間tdlを経過すると、ステツプS22でゾ
ーンフラグFzoneを“0”にかつデイレイフラグ
Flを“0”にしたのち、ステツプS23において、
上記ステツプS9で求めた目標空燃比に応じた比例
定数Cslに基づいて空燃比をリツチ化すべくフイ
ードバツク係数CfbをCfb+Cslとして、ステツプ
S16で燃料噴射量を増大してステツプS3に戻る。
After that, as the fuel injection amount decreases in step S16 , the air-fuel ratio becomes lean as shown in FIG. 10, and when the determination in step S13 becomes Vs<V'ref,
In step S17 , the zone flag Fzone is determined.
Since it is still on the rich side with Fzone = 1, it is determined in the next step S18 whether the lean side delay flag Fl is "1" or not. Decide and step
After setting the delay flag Fl to "1" in S19 , the delay timer is reset in step S20 (in addition,
This delay timer is similar to the basic timer mentioned above.
(This is a timer that counts up the time from the moment it is reset.) Then, during the delay of YES with Fl=1, in the next step S21 , the delay timer determines whether a predetermined delay time tdl has elapsed according to the target air-fuel ratio obtained in the above step S9 , If the fuel injection amount has not elapsed yet, the process moves to step S15 to maintain the feedback coefficient Cfb at Cfb-Cr in order to prevent the influence of noise, and returns to step S3 with the fuel injection amount reduced in step S16 . on the other hand,
When the delay time tdl has elapsed, the zone flag Fzone is set to "0" and the delay flag is set to "0" in step S22 .
After setting Fl to “0”, in step S23 ,
In order to enrich the air-fuel ratio based on the proportionality constant Csl corresponding to the target air-fuel ratio obtained in step S9 above, the feedback coefficient Cfb is set as Cfb + Csl, and the step
The fuel injection amount is increased in S16 and the process returns to step S3 .

次いで、この燃料噴射量の増大によつても未だ
ステツプS13の判別がVs<V′refであるので、ス
テツプS17でゾーンフラグFzone=0のリーン側
と判定されて、ステツプS24において、上記ステ
ツプS9で求めた目標空燃比に応じた積分定数Clに
基づいてさらに空燃比をリツチ化すべくフイード
バツク係数CfbをCfb+Clとし、ステツプS16でさ
らに燃料噴射量を増大してステツプS3に戻る。
Next, even with this increase in the fuel injection amount, the determination in step S13 is still that Vs<V'ref, so in step S17 it is determined that the zone flag Fzone is on the lean side of 0, and in step S24 , In order to further enrich the air-fuel ratio, the feedback coefficient Cfb is set to Cfb+Cl based on the integral constant Cl corresponding to the target air-fuel ratio obtained in step S9 , and the fuel injection amount is further increased in step S16 , and the process returns to step S3 . .

その後、この燃料噴射量の増大によりステツプ
S13での判別がVs≧V′refとなるが、ステツプS14
での判定がゾーンフラグFzone=0のリーン側で
あるので、ステツプS25でリツチ側デイレイフラ
グFrが“1”か否かを判別し、Fr=0のNOのと
きにはリーン側からリツチ側へ反転したときと判
断してステツプS26でデイレイフラグFrを“1”
にしたのち、ステツプS27でデイレイタイマをリ
セツトする。そして、Fr=1のYESのデイレイ
中のときと共に次のステツプS28でデイレイタイ
マが上記ステツプS9で求めた目標空燃比に応じた
所定のデイレイ時間tdrを経過したか否かを判別
し、経過していないときにはノイズの影響を防止
すべくステツプS24に移りフイードバツク係数Cfb
+Clに維持して、ステツプS16で燃料噴射量を増
大したままステツプS3に戻る。一方、デイレイ時
間tdrを経過すると、ステツプS29でゾーンフラグ
Fzoneを“1”に、かつデイレイフラグFrを
“0”にしたのち、ステツプS30において、上記ス
テツプS9で求めた目標空燃比に応じた比例定数
Csrに基づいて空燃比をリーン化すべくフイード
バツク係数CfbをCfb−Csrとして、ステツプS16
で燃料噴射量を減少してステツプS3に戻る。その
後、ステツプS13の判別がVs≧V′refで、ステツ
プS14で判定がFzone=1となり、以下上記と同
じ動作を繰返すことになる。
After that, this increase in fuel injection amount causes the step
The determination in S 13 is Vs≧V′ref, but step S 14
Since the judgment is on the lean side with the zone flag Fzone = 0, it is determined in step S25 whether the rich side delay flag Fr is "1" or not, and if it is NO with Fr = 0, it is reversed from the lean side to the rich side. Judging that this is the case, set the day delay flag Fr to “1” in step S26 .
After that, the day delay timer is reset in step S27 . Then, during the delay of YES with Fr=1, in the next step S28 , the delay timer determines whether or not a predetermined delay time tdr corresponding to the target air-fuel ratio obtained in the above step S9 has elapsed. If the feedback coefficient Cfb has not elapsed, the process moves to step S24 to prevent the influence of noise.
+Cl and returns to step S3 while increasing the fuel injection amount in step S16 . On the other hand, when the delay time tdr has elapsed, the zone flag is set in step S29 .
After Fzone is set to "1" and the delay flag Fr is set to "0", in step S30 , a proportional constant is determined according to the target air-fuel ratio obtained in step S9 above.
In order to make the air-fuel ratio lean based on Csr, the feedback coefficient Cfb is set to Cfb - Csr, and step S16
Decrease the fuel injection amount and return to step S3 . Thereafter, the determination in step S13 is that Vs≧V'ref, and the determination in step S14 is that Fzone=1, and the same operation as above is repeated thereafter.

尚、燃料噴射弁5の噴射タイミングは、第11
図に示すようにイグナイタ14からのイグニツシ
ヨンパルスの立上りによつて上記空燃比コントロ
ーラ11のインフロー中にインタラプトされ、先
ず噴射タイマを燃料噴射時間τにセツトした
(尚、この噴射タイマはセツトされた時間をダウ
ンカウントし、零となつた瞬間に後述の噴射終了
インタラプト信号を発生するカウンタである)の
ち、燃料噴射弁5への電流をONにして燃料噴射
を開始する。そして、燃料噴射の終了は第12図
に示すように上記噴射タイマからの噴射終了イン
タラプト信号によつてインタラプトされ、燃料噴
射弁5への電流をOFFにしてなされる。
Note that the injection timing of the fuel injection valve 5 is the 11th injection timing.
As shown in the figure, the rise of the ignition pulse from the igniter 14 interrupts the inflow of the air-fuel ratio controller 11, and first the injection timer is set to the fuel injection time τ (note that this injection timer is (This is a counter that counts down the time that has elapsed and generates an injection end interrupt signal, which will be described later, at the moment it reaches zero.) After that, the current to the fuel injection valve 5 is turned on to start fuel injection. Then, the end of the fuel injection is interrupted by the injection end interrupt signal from the injection timer, as shown in FIG. 12, and the current to the fuel injection valve 5 is turned off.

よつて、上記空燃比コントローラ11の作動フ
ローにおいて、ステツプS5,S6により、エンジン
1の運転状態を検出する運転状態検出手段15を
構成している。また、ステツプS8により、上記運
転状態検出手段15の出力を受け、エンジン運転
状態に応じてエンジン1に供給する混合気の目標
値を設定する目標空燃比設定手段16を構成して
いる。さらに、ステツプS9により、上記目標空燃
比設定手段16から目標空燃比に応じてフイード
バツク制御での積分定数Cl,Cr、比例定数Csl,
Csrおよびデイレイ時間tdl,tdrを変更して制御
利得を変更し、目標空燃比が理論空燃比付近では
制御利得を大とし、それよりもリーン側およびリ
ツチ側に行くに従つて小さくし、かつ理論空燃比
よりもリツチ側の方がリーン側よりも小さくなる
ようにした制御利得変更手段17を構成してい
る。また、ステツプS13により、空燃比センサ8
の出力(起電力Vs)と目標空燃比設定手段16
の出力(目標空燃比としてのスライスレベル中央
値V′ref)とを比較する比較手段18を構成して
いる。さらに、ステツプS14〜S30により、上記比
較手段18の出力を受け、燃料噴射弁5の燃料噴
射量を制御することによりエンジン1に供給する
混合気の空燃比を所定の制御利得で上記目標空燃
比に制御する空燃比制御手段19を構成してい
る。
Therefore, in the operation flow of the air-fuel ratio controller 11, steps S5 and S6 constitute the operating state detection means 15 that detects the operating state of the engine 1. Furthermore, step S8 constitutes a target air-fuel ratio setting means 16 which receives the output of the operating state detecting means 15 and sets a target value of the air-fuel mixture to be supplied to the engine 1 in accordance with the engine operating state. Furthermore, in step S9 , the integral constants Cl, Cr, proportionality constants Csl, Csl,
The control gain is changed by changing Csr and delay times tdl and tdr, and the control gain is increased when the target air-fuel ratio is near the stoichiometric air-fuel ratio, and is decreased as the target air-fuel ratio becomes leaner or richer. The control gain changing means 17 is configured such that the air-fuel ratio is smaller on the rich side than on the lean side. Also, in step S13 , the air-fuel ratio sensor 8
output (electromotive force Vs) and target air-fuel ratio setting means 16
(slice level median value V'ref as a target air-fuel ratio). Further, in steps S14 to S30 , the air-fuel ratio of the air-fuel mixture supplied to the engine 1 is adjusted to the target level with a predetermined control gain by receiving the output of the comparing means 18 and controlling the fuel injection amount of the fuel injection valve 5. It constitutes an air-fuel ratio control means 19 that controls the air-fuel ratio.

したがつて、上記実施例においては、エンジン
1の排気ガス中の酸素濃度に応じてその出力(起
電力)がほぼリニアに変化する空燃比センサ8に
より空燃比が検出され、該空燃比センサ8の出力
とエンジン運転状態に応じて設定された目標空燃
比に対応した目標値(スライスレベル中央値)と
が比較されて、その偏差に応じて燃料噴射弁5か
らの燃料噴射量が制御されることにより、エンジ
ン1に供給する混合気の空燃比が所定の制御利得
で目標空燃比にフイードバツク制御されることに
なる。
Therefore, in the above embodiment, the air-fuel ratio is detected by the air-fuel ratio sensor 8 whose output (electromotive force) changes almost linearly according to the oxygen concentration in the exhaust gas of the engine 1; The output of the engine is compared with a target value (slice level median value) corresponding to the target air-fuel ratio set according to the engine operating state, and the amount of fuel injected from the fuel injection valve 5 is controlled according to the deviation. As a result, the air-fuel ratio of the air-fuel mixture supplied to the engine 1 is feedback-controlled to the target air-fuel ratio with a predetermined control gain.

この場合、空燃比センサ8は、第3図に示す如
くその起電力特性はほぼリニアに変化するが、理
論空燃比(A/F=14.7)付近で起電力勾配(傾
斜)が最大で制御応答性が良好であり、理論空燃
比よりもリーン側およびリツチ側になるにつれて
起電力勾配がゆるやかになり制御応答性が悪くな
る特性を有するとともに、第4図に示すように理
論空燃比よりもリツチ側での検出応答性がリーン
側での検出応答性よりも悪くなる特性を有する。
これに対し、上記フイードバツク制御における制
御利得(積分定数Cl,Cr、比例定数Csl,Csr、
デイレイ時間tdl,tdr)を、制御利得変更手段1
7により目標空燃比に応じて変更し、目標空燃比
が理論空燃比(A/F=14.7)付近で最大で、理
論空燃比よりもリーン側およびリツチ側に行くに
従つて小さく、かつ理論空燃比よりもリツチ側の
方がリーン側よりも小さくしたことにより、上記
エンジン運転状態に応じた各目標空燃比における
空燃比センサ8の制御応答性及び検出応答性に対
してそのときの制御利得が良好に対応することに
なり、ハンチング等を生じることなく全運転域で
空燃比を目標空燃比に精度良くフイードバツク制
御することができ、よつて、空燃比制御を正確に
かつ安定して行うことができる。
In this case, the air-fuel ratio sensor 8 has an electromotive force characteristic that changes almost linearly as shown in FIG. As the air-fuel ratio becomes leaner or richer than the stoichiometric air-fuel ratio, the electromotive force gradient becomes gentler and the control response becomes worse. It has a characteristic that the detection response on the lean side is worse than the detection response on the lean side.
On the other hand, the control gains (integral constants Cl, Cr, proportionality constants Csl, Csr,
delay time tdl, tdr), control gain changing means 1
7, the target air-fuel ratio is changed according to the target air-fuel ratio, and the target air-fuel ratio is maximum near the stoichiometric air-fuel ratio (A/F = 14.7), and decreases as it goes leaner and richer than the stoichiometric air-fuel ratio. By setting the fuel ratio on the rich side to be smaller than on the lean side, the control gain at that time becomes smaller with respect to the control response and detection response of the air-fuel ratio sensor 8 at each target air-fuel ratio according to the engine operating state. As a result, the air-fuel ratio can be accurately and accurately feedback-controlled to the target air-fuel ratio in the entire operating range without causing hunting, etc., and the air-fuel ratio can be controlled accurately and stably. can.

尚、上記実施例では、燃料噴射方式においてそ
の燃料噴射量の制御により空燃比制御を行つた
が、気化器方式においてエアブリード量の制御に
より空燃比制御を行うようにしてもよい。
In the above embodiment, the air-fuel ratio is controlled by controlling the fuel injection amount in the fuel injection method, but the air-fuel ratio may be controlled by controlling the air bleed amount in the carburetor method.

(発明の効果) 以上説明したように、本発明によれば、エンジ
ン排気ガス中の酸素濃度に応じてその出力がほぼ
リニアに変化する空燃比センサを用いてエンジン
の空燃比を所定の制御利得でエンジン運転状態に
応じた目標空燃比にフイードバツク制御する場
合、その制御利得を目標空燃比に対する空燃比セ
ンサの起電力勾配特性に応じて変更して、エンジ
ン運転状態に応じた各目標空燃比での空燃比セン
サの応答性とそのときの制御利得とを良好に対応
させるようにしたので、全運転域で空燃比を精度
良くフイードバツク制御することができ、空燃比
制御を安定して正確に行うことができる。
(Effects of the Invention) As explained above, according to the present invention, the air-fuel ratio of the engine is controlled by a predetermined control gain using an air-fuel ratio sensor whose output changes almost linearly according to the oxygen concentration in engine exhaust gas. When feedback control is performed to the target air-fuel ratio according to the engine operating state, the control gain is changed according to the electromotive force gradient characteristic of the air-fuel ratio sensor with respect to the target air-fuel ratio, and the control gain is controlled at each target air-fuel ratio according to the engine operating state. Since the responsiveness of the air-fuel ratio sensor and the control gain at that time are made to correspond well, the air-fuel ratio can be accurately feedback controlled in the entire operating range, and the air-fuel ratio can be controlled stably and accurately. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロツク図であ
る。第2図〜第12図は本発明の実施例を例示
し、第2図はエンジンの空燃比制御システムの概
略構成図、第3図は空燃比センサの起電力特性を
示す特性図、第4図は空燃比センサの起電力勾配
に対する制御周波数(応答性)特性を示す特性
図、第5図は空燃比コントローラの作動を示すフ
ローチヤート図、第6図はデータテーブルの一例
を示す図、第7図は目標空燃比に対する積分定数
のマツプを示す図、第8図は目標空燃比に対する
比例定数のマツプを示す図、第9図は目標空燃比
に対するデイレイ時間のマツプを示す図、第10
図は空燃比センサの出力特性と平均燃料噴射量と
の対応関係を示す説明図、第11図および第12
図はそれぞれ燃料噴射開始時および終了時のイン
タラプト処理を示す図である。 1……エンジン、3……排気通路、5……燃料
噴射弁、8……空燃比センサ、11……空燃比コ
ントローラ、15……運転状態検出手段、16…
…目標空燃比設定手段、17……制御利得変更手
段、18……比較手段、19……空燃比制御手
段。
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 12 illustrate embodiments of the present invention, FIG. 2 is a schematic configuration diagram of an engine air-fuel ratio control system, FIG. 3 is a characteristic diagram showing the electromotive force characteristics of the air-fuel ratio sensor, and FIG. The figure is a characteristic diagram showing control frequency (responsiveness) characteristics with respect to the electromotive force gradient of the air-fuel ratio sensor, Figure 5 is a flowchart diagram showing the operation of the air-fuel ratio controller, Figure 6 is a diagram showing an example of a data table, 7 is a diagram showing a map of the integral constant with respect to the target air-fuel ratio, FIG. 8 is a diagram showing a map of the proportionality constant with respect to the target air-fuel ratio, FIG. 9 is a diagram showing a map of the delay time with respect to the target air-fuel ratio, and FIG.
Figures 11 and 12 are explanatory diagrams showing the correspondence between the output characteristics of the air-fuel ratio sensor and the average fuel injection amount.
The figures are diagrams showing interrupt processing at the start and end of fuel injection, respectively. DESCRIPTION OF SYMBOLS 1... Engine, 3... Exhaust passage, 5... Fuel injection valve, 8... Air-fuel ratio sensor, 11... Air-fuel ratio controller, 15... Operating state detection means, 16...
...Target air-fuel ratio setting means, 17... Control gain changing means, 18... Comparing means, 19... Air-fuel ratio control means.

Claims (1)

【特許請求の範囲】 1 エンジンの排気通路中に設けられ、排気ガス
中の酸素濃度に応じてその出力がほぼリニアに変
化する空燃比センサと、エンジンの運転状態を検
出する運転状態検出手段と、該運転状態検出手段
の出力を受け、エンジンの運転状態に応じてエン
ジンに供給する混合気の空燃比の目標値を設定す
る目標空燃比設定手段と、該目標空燃比設定手段
の出力と上記空燃比センサの出力とを受け、両出
力を比較する比較手段と、該比較手段の出力を受
け、エンジンに供給する混合気の空燃比を所定の
制御利得で上記目標空燃比に制御する空燃比制御
手段と、上記目標空燃比設定手段の目標空燃比に
対する上記空燃比センサの起電力勾配の特性に応
じて上記空燃比制御手段の制御利得を変更する制
御利得変更手段とを設けたことを特徴とするエン
ジンの空燃比制御装置。 2 制御利得変更手段は、目標空燃比が理論空燃
比よりもリツチ領域での制御定数がリーン領域で
の制御定数よりも小さく設定されている特許請求
の範囲第1項記載のエンジンの空燃比制御装置。
[Scope of Claims] 1. An air-fuel ratio sensor that is provided in the exhaust passage of the engine and whose output changes approximately linearly according to the oxygen concentration in the exhaust gas, and an operating state detection means that detects the operating state of the engine. , target air-fuel ratio setting means for receiving the output of the operating state detection means and setting a target value of the air-fuel ratio of the air-fuel mixture to be supplied to the engine according to the operating state of the engine; and the output of the target air-fuel ratio setting means and the above. a comparison means that receives the output of the air-fuel ratio sensor and compares both outputs; and an air-fuel ratio that receives the output of the comparison means and controls the air-fuel ratio of the air-fuel mixture supplied to the engine to the target air-fuel ratio with a predetermined control gain. The present invention is characterized by comprising a control means and a control gain changing means for changing the control gain of the air-fuel ratio control means in accordance with the characteristics of the electromotive force gradient of the air-fuel ratio sensor with respect to the target air-fuel ratio of the target air-fuel ratio setting means. Air-fuel ratio control device for engines. 2. The control gain changing means controls the air-fuel ratio of the engine according to claim 1, wherein the target air-fuel ratio is set to be smaller than the stoichiometric air-fuel ratio, and the control constant in the rich region is smaller than the control constant in the lean region. Device.
JP22613684A 1984-10-27 1984-10-27 Control device for air-fuel ratio of engine Granted JPS61104137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22613684A JPS61104137A (en) 1984-10-27 1984-10-27 Control device for air-fuel ratio of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22613684A JPS61104137A (en) 1984-10-27 1984-10-27 Control device for air-fuel ratio of engine

Publications (2)

Publication Number Publication Date
JPS61104137A JPS61104137A (en) 1986-05-22
JPH0448933B2 true JPH0448933B2 (en) 1992-08-10

Family

ID=16840410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22613684A Granted JPS61104137A (en) 1984-10-27 1984-10-27 Control device for air-fuel ratio of engine

Country Status (1)

Country Link
JP (1) JPS61104137A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260943A (en) * 1985-09-11 1987-03-17 Mazda Motor Corp Air-fuel ratio controller for engine
JPH06100125B2 (en) * 1985-11-20 1994-12-12 株式会社日立製作所 Air-fuel ratio controller
JPH0528364Y2 (en) * 1986-08-06 1993-07-21
JPS6326747U (en) * 1986-08-06 1988-02-22
JP2753223B2 (en) * 1987-03-06 1998-05-18 株式会社日立製作所 Air-fuel ratio control method
JP2007231844A (en) * 2006-03-01 2007-09-13 Mitsubishi Electric Corp Control device for internal combustion engine
JP5867357B2 (en) * 2012-02-03 2016-02-24 株式会社デンソー Exhaust gas purification device for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433916A (en) * 1977-08-22 1979-03-13 Nissan Motor Co Ltd Air-fuel ratio control device
JPS55112838A (en) * 1979-02-21 1980-09-01 Hitachi Ltd Air-fuel ratio controller
JPS5612698A (en) * 1979-07-11 1981-02-07 Matsushita Electric Ind Co Ltd Echo attaching apparatus
JPS5859330A (en) * 1981-10-03 1983-04-08 Toyota Motor Corp Air-fuel ratio control method for internal-combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433916A (en) * 1977-08-22 1979-03-13 Nissan Motor Co Ltd Air-fuel ratio control device
JPS55112838A (en) * 1979-02-21 1980-09-01 Hitachi Ltd Air-fuel ratio controller
JPS5612698A (en) * 1979-07-11 1981-02-07 Matsushita Electric Ind Co Ltd Echo attaching apparatus
JPS5859330A (en) * 1981-10-03 1983-04-08 Toyota Motor Corp Air-fuel ratio control method for internal-combustion engine

Also Published As

Publication number Publication date
JPS61104137A (en) 1986-05-22

Similar Documents

Publication Publication Date Title
US4825837A (en) Air/fuel ratio control system having gain adjusting means
WO2014118896A1 (en) Control device for internal combustion engine
JP5949958B2 (en) Control device for internal combustion engine
US4958612A (en) Air-fuel ratio control method for internal combustion engines
JPH0448933B2 (en)
JPS5945824B2 (en) Air-fuel ratio control device for internal combustion engines
JP2976490B2 (en) Method for detecting deterioration of oxygen sensor in internal combustion engine
JPS6259220B2 (en)
JPH0328577B2 (en)
JPH08121223A (en) Deterioration detection device for air-fuel ratio sensor in internal combustion engine
JPH08158915A (en) Air fuel ratio control device for internal combustion engine
JPH061236B2 (en) Engine misfire detection device
JPH0319377B2 (en)
JPS61106941A (en) Air-fuel ratio control device of engine
JPS61104138A (en) Control device for air-fuel ratio of engine
KR0154019B1 (en) Air/fuel ratio control device and method of engin state
JPS61106940A (en) Air-fuel ratio control device of engine
JPH0318019B2 (en)
JPH06137193A (en) Air-fuel ratio control device for internal combustion engine
JPS61106939A (en) Air-fuel ratio control device of engine
JPH03271541A (en) Air-fuel ratio feedback control device of internal combustion engine
JP2560303B2 (en) Air-fuel ratio control device for internal combustion engine
JPH01267449A (en) Air/fuel ratio controller for engine
JPH02169835A (en) Air-fuel ratio controller of internal combustion engine
JPS61104140A (en) Control device for air-fuel ratio of engine