JPS5859330A - Air-fuel ratio control method for internal-combustion engine - Google Patents

Air-fuel ratio control method for internal-combustion engine

Info

Publication number
JPS5859330A
JPS5859330A JP15694181A JP15694181A JPS5859330A JP S5859330 A JPS5859330 A JP S5859330A JP 15694181 A JP15694181 A JP 15694181A JP 15694181 A JP15694181 A JP 15694181A JP S5859330 A JPS5859330 A JP S5859330A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
value
sensor
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15694181A
Other languages
Japanese (ja)
Other versions
JPH0343459B2 (en
Inventor
Yoshiki Nakajo
中條 芳樹
Keiji Aoki
啓二 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP15694181A priority Critical patent/JPS5859330A/en
Publication of JPS5859330A publication Critical patent/JPS5859330A/en
Publication of JPH0343459B2 publication Critical patent/JPH0343459B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • F02D41/1476Biasing of the sensor

Abstract

PURPOSE:To compensate for the delay in response of a lean sensor when an objective value is changed, in the case the air-fuel ratio is controlled to meet the objective value based on the detected value of the lean sensor which generates an output signal that is proportional to the oxygen concentration. CONSTITUTION:An electronic control unit receives the detected values of a negative pressure sensor for an air intake pipe, an engine speed sensor, and the lean sensor which generates an output signal proportional to the oxygen concentration, and executes setting of the objective air-fuel ratio, computation of the corresponding objective output value V0 of the lean sensor, and computation of a basic fuel injecting quantity in steps 50-52. The present and previous objective values V0 and V1 are compared in a step 54. When the result is changed, an objective value change flag is made a 1. Then a correcting coefficient (f) is added or subtracted by gamma and delta which are larger than an ordinary fuel increasing rate alpha and a decreasing rate beta, in response to the value of (V0-V1), until the abolute value of the difference between the present and previous output values V and V2 of the lean sensor exceeds a specified value Q in a step 61.

Description

【発明の詳細な説明】 本発明は内燃機関の空燃比制御方法に関する。[Detailed description of the invention] The present invention relates to an air-fuel ratio control method for an internal combustion engine.

、気体中の酸素濃度を検出することのできる酸素濃度検
出器として例えば特開昭52−72286号公報に記載
されているようにジルコニアのような酸素イオン伝導性
固体電解質を用いた酸素濃度検出器が公知である。この
酸素濃度検出器ではジルコニア板の一側表面上に陽極を
表す薄膜をコーティングすると共にジルコニア板の他側
表面上に陽極をなす薄膜をコーティングしてこれら陰極
と陽極との間に電圧を印加し、陰極に接触して電子を付
与された酸素分子がジルフェア板肉を通過し九後に陽極
において電子を放出するととくより陽極からを極に向か
う電流が発生せしめられ、この電流がジルコニア板肉を
通過する酸素分子の数、即ち陰極に接触する気体中の酸
素の分圧に比例するのでこの電流値から酸素濃度を知る
ことができる。従ってこの酸素濃度検出器を機関排気通
路内に取付けると排気通路内の酸素濃度を検出でき、従
って機関シリンダ内に供給される混合気の空燃比を知る
ことができる。このようにこの酸素濃度検出器は排気通
路内の酸素濃度を検出するようにしているので機関シリ
ンダ内に供給される混合気が稀薄混合気のときに検出器
としての機能を果し、斯くしてこのよう慶酸素濃度検出
器を以後リー/セ/すと称する。
As an oxygen concentration detector capable of detecting the oxygen concentration in a gas, for example, an oxygen concentration detector using an oxygen ion conductive solid electrolyte such as zirconia is described in Japanese Patent Application Laid-Open No. 52-72286. is publicly known. In this oxygen concentration sensor, a thin film representing an anode is coated on one surface of a zirconia plate, a thin film representing an anode is coated on the other surface of the zirconia plate, and a voltage is applied between the cathode and the anode. When the oxygen molecules that come into contact with the cathode and are given electrons pass through the zirconia plate and then release electrons at the anode, a current is generated that flows from the anode to the electrode, and this current passes through the zirconia plate. The oxygen concentration can be determined from this current value because it is proportional to the number of oxygen molecules that are in contact with the cathode, that is, the partial pressure of oxygen in the gas that contacts the cathode. Therefore, if this oxygen concentration detector is installed in the engine exhaust passage, the oxygen concentration in the exhaust passage can be detected, and therefore the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder can be known. Since this oxygen concentration detector detects the oxygen concentration in the exhaust passage, it functions as a detector when the air-fuel mixture supplied to the engine cylinder is a lean mixture. This type of oxygen concentration detector will hereinafter be referred to as ``Lee/Se/S''.

このようなリーンセンサを用いて空燃比を制御する一つ
の方法として空燃比が予め定められた空燃比となるよう
にリーンセンサの出力信号に基いて燃料噴射時間を直接
制御する方法であり、別の方法として燃料噴射量を機関
回転数と吸気管負圧ニ応シて、或いはエアフローメータ
の出力信号に応じて成る程度定めておいてこの設定噴射
量からのずれをリーンセンサの出力信号に基いて制御す
る方法がある。いづれの場合においても目標空燃比、即
ちリーンセンサの目標出力電圧値が一定に保持されてい
る場合には特に問題がないが、目標出力電圧値が急激に
変化した場合にはリーンセ/すの出力信号がこれに追従
することができず、斯くしてこの間空燃比が目標空燃比
から大巾にずれてしまうという間−がある。
One method of controlling the air-fuel ratio using such a lean sensor is to directly control the fuel injection time based on the output signal of the lean sensor so that the air-fuel ratio becomes a predetermined air-fuel ratio. As a method, the fuel injection amount is determined according to the engine speed and intake pipe negative pressure, or according to the output signal of the air flow meter, and the deviation from this set injection amount is determined based on the output signal of the lean sensor. There are ways to control it. In either case, there is no particular problem if the target air-fuel ratio, that is, the target output voltage value of the lean sensor, is held constant, but if the target output voltage value changes suddenly, the output of the lean sensor There is a period in which the signal is unable to follow this and the air-fuel ratio deviates significantly from the target air-fuel ratio during this period.

本発明は上述のように目標空燃比、即ちリーンセンサの
目標出力値が急激に変化してもこれに空燃比が曳好に追
従できるようにした内燃機関の空燃比制御方法を提供す
ることにある。
As described above, the present invention provides an air-fuel ratio control method for an internal combustion engine that allows the air-fuel ratio to follow the pull even if the target air-fuel ratio, that is, the target output value of the lean sensor changes rapidly. be.

以下、添附図画を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図を参照すると、lは機関本体、2はシリンダブロ
ック、3はシリンダブ悶ツクz内において往復動するピ
ストン、4はシリンダゾロツク2上に固締されたシリン
ダヘッド、5はピストン3とシリンダヘッド4間に形成
された燃焼室、6は燃焼IK器内に配置された点火栓、
7は吸気/−)、8は吸気弁、9紘排気ポート、lOは
排気弁を夫夫示す、吸気I−・トフは枝管^lを介して
共通のサージタンク12に連結され、一方排気一一ト9
は排気マニホルl’13に連結される。各枝管11には
電子制御ユニットx<h出力信号によりて制御される燃
料噴射弁15が夫々設けられ、これらの燃料噴射弁15
から対応する吸気/−)7に向けて燃料が噴射される。
Referring to FIG. 1, 1 is the engine body, 2 is the cylinder block, 3 is the piston that reciprocates within the cylinder cylinder z, 4 is the cylinder head fixed on the cylinder block 2, and 5 is the piston 3. A combustion chamber formed between the cylinder heads 4, a spark plug 6 disposed within the combustion IK device,
7 is an intake/-), 8 is an intake valve, 9 is an exhaust port, 1O is an exhaust valve, the intake I- and TOF are connected to a common surge tank 12 via a branch pipe, 11to 9
is connected to the exhaust manifold l'13. Each branch pipe 11 is provided with a fuel injection valve 15 that is controlled by an output signal from an electronic control unit x<h, and these fuel injection valves 15
Fuel is injected from the corresponding intake air /-)7.

サージタンク12は吸気管16を介して図示しないエア
クリーナに接続され、この吸気管16内にアクセルペタ
ルに連結されたスロットル弁17が配置される。サージ
タンク12内には負圧センサ18が取付けられ、この負
圧センサ18並びに回転数十ンサ19は電子制御ユニッ
ト14に接続される。一方、排気マニホルド13にはリ
ーンセンサ20が取付けられ、このリーンセンサ20は
電子制御ユニット14に接続される。リーンセンナ20
は例えば第2図に示すようにノルコニアからなるカッグ
状の酸素イオン伝導性固体電解質21と、その外周面を
蝋う多孔質セラミック22とを具備し、この多孔質セラ
ミック22が排気ガス流中に配置される。また、酸素イ
オン伝導性固体電解質21の内周面並びに外周面上には
夫々陽極用白金薄膜並びに陰極用白金薄膜がコーティン
グされ、これら白金薄膜に接続されたり−−線23.2
4間には電圧が印加される。排気ガス中の酸素分子線多
孔質セラミック22内を拡散によシ通過して酸素イオン
伝導性固体電解質21の陰極用白金薄膜に到達し、ここ
で電子を付与され九酸素分子が酸素イオン伝導性固体電
解質21内を通過し九iK酸素イオン伝導性固体電解質
21の陽極用白金薄膜と接触して電子を放出することK
より電流が発生せしめられる。
The surge tank 12 is connected to an air cleaner (not shown) via an intake pipe 16, and a throttle valve 17 connected to an accelerator pedal is disposed within the intake pipe 16. A negative pressure sensor 18 is installed inside the surge tank 12 , and the negative pressure sensor 18 and rotational speed sensor 19 are connected to the electronic control unit 14 . On the other hand, a lean sensor 20 is attached to the exhaust manifold 13, and this lean sensor 20 is connected to the electronic control unit 14. Lean Senna 20
For example, as shown in FIG. 2, the device includes a cag-shaped oxygen ion conductive solid electrolyte 21 made of norconia, and a porous ceramic 22 whose outer peripheral surface is brazed. Placed. Further, a platinum thin film for an anode and a platinum thin film for a cathode are coated on the inner peripheral surface and the outer peripheral surface of the oxygen ion conductive solid electrolyte 21, respectively, and are connected to the platinum thin films.
A voltage is applied between 4. Oxygen molecular beams in the exhaust gas pass through the porous ceramic 22 by diffusion and reach the cathode platinum thin film of the oxygen ion conductive solid electrolyte 21, where they are given electrons and the oxygen molecules become oxygen ion conductive. passing through the solid electrolyte 21 and coming into contact with the anode platinum thin film of the oxygen ion conductive solid electrolyte 21 to emit electrons;
More current is generated.

第5図は排気ガス中の酸素濃度p(−重量・譬−セント
)と発生電流A(mA)との関係を示す。M5図におい
て夷線区で示されるように発生電流人は酸素嬢度にほぼ
比例することがわかる。なお、排気ガス中の酸素111
度がわかれば機関シリンダ内に供給される空燃比がわか
抄、この空燃比を第5図の横軸ルタに示す。従って#&
5図から発生電流がわかれば機関シリンダ内に供給され
る混合気の空燃比を検出できることがわかる。
FIG. 5 shows the relationship between the oxygen concentration p (-weight/cents) in the exhaust gas and the generated current A (mA). It can be seen that the generated current is approximately proportional to the oxygen deficiency as shown by the elongated line in the M5 diagram. In addition, oxygen 111 in the exhaust gas
If the air-fuel ratio is known, the air-fuel ratio supplied to the engine cylinder can be determined, and this air-fuel ratio is shown on the horizontal axis in FIG. Therefore #&
It can be seen from FIG. 5 that if the generated current is known, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder can be detected.

第3図に電子制御具エッ)14を示す、第3図を参照す
ると、電子制御ユニット14はディジタルコン−島−夕
からなり、各種の演算処理を行危うマイクロ蛋ロセッ−
q(MPU)30、ランダムアクセスメモリ(RAM 
) 31 、制御グロダラム、演算定数等が予め格納さ
れているリードオンリメモリ(ROM ) 32、入力
ポート33並びに出力ポート34が双方向ノ4ス35を
介して互に連結されている。東に、電子制御ユニット1
4内には各種のクロック信号を発生するクロック発生器
36が設けられる。第3図に示されるように負圧センサ
18はノ譬ツファ37並びにAD変換器38を介して入
力ポート33に接続される。負圧センサ18はサージタ
ンク12内に発生する負圧、即ち吸気管負圧Pに比例し
た出力電圧を発生し、この出力電圧がAD変換器38に
おいて対応する2進数に変換されてこの2進数が入力ポ
ート33並びにノ々ス35を介してMPU 30に入力
される。一方、回転数センサ19は・ぐツファ39を介
して入力4−ト33に接続される。この回転数センサ1
9は機関クランクシャフトが所定のクランク角度回転す
る毎に/ぐルスを発生し、このノ臂ルスが入力ポート3
3並びにパス35を介してMPU 30に入力される。
FIG. 3 shows the electronic control unit 14. Referring to FIG. 3, the electronic control unit 14 consists of a digital computer and is a microprocessor that performs various calculation processes.
q (MPU) 30, random access memory (RAM)
) 31, a read-only memory (ROM) 32 in which a control programmable controller, calculation constants, etc. are stored in advance, an input port 33, and an output port 34 are interconnected via a bidirectional node 35. To the east, electronic control unit 1
A clock generator 36 for generating various clock signals is provided within the circuit 4. As shown in FIG. 3, the negative pressure sensor 18 is connected to the input port 33 via a converter 37 and an AD converter 38. The negative pressure sensor 18 generates an output voltage proportional to the negative pressure generated in the surge tank 12, that is, the intake pipe negative pressure P, and this output voltage is converted into a corresponding binary number by the AD converter 38. is input to the MPU 30 via the input port 33 and the node 35. On the other hand, the rotation speed sensor 19 is connected to an input port 33 via a buffer 39. This rotation speed sensor 1
9 generates a signal every time the engine crankshaft rotates by a predetermined crank angle, and this signal is connected to the input port 3.
3 and a path 35 to the MPU 30.

MPU 36では回転数センサ19の出力・やルスから
機関回転数が計算される。また、リーンセンサ20は電
流電圧変換器40.増巾器41並びにAD変換器42を
介して入力/−ト33に接続される。リーンセンサ20
の発生電流は電流電圧変換器40において対応する電圧
に変換され、次いでこの電圧がAD変換器42において
対応する2進数に変換されてこの2進数が入力ポート3
3並びにパス35を介してMPU 30に入力される。
The MPU 36 calculates the engine speed from the output of the rotation speed sensor 19. In addition, the lean sensor 20 is connected to a current-voltage converter 40. It is connected to the input port 33 via an amplifier 41 and an AD converter 42. lean sensor 20
The generated current is converted into a corresponding voltage in the current-voltage converter 40, and then this voltage is converted into a corresponding binary number in the AD converter 42, and this binary number is input to the input port 3.
3 and a path 35 to the MPU 30.

第5図において実線にで示す関係は予めROM 32内
に記憶されているがこの場合第5図の縦軸が電圧Vとし
て表わされ、従ってROM 32内には第5図の実線に
で示す電圧Vと酸素濃度Pとの関係がデータテーブル或
いは関数の形で記憶されている。
The relationship shown by the solid line in FIG. 5 is stored in advance in the ROM 32, but in this case, the vertical axis in FIG. The relationship between voltage V and oxygen concentration P is stored in the form of a data table or function.

出力ポート34は燃料噴射弁15を作動するためのデー
タを出力するために設けられており、この出力ポート3
4には2進数のデータがIIIIPU 30からノ4ス
35を介して書き込まれる。出力ポート34の各出力端
子はダウンカウンタ43の対応する各入力端子に接続さ
れている。このダウンカウンタ43はMPU 30から
書き込まれた2進数のデータをそれに対応する時間の長
さに変換するために設けられており、このダウンカウン
タ43は出力ポート34から送り込まれたデータのダウ
ンカウントをクロック発生器36のクロック信号によっ
て開始し、カウント値が0になるとカウントを完了して
出力端子にカウント完了信号を発生する。
The output port 34 is provided to output data for operating the fuel injection valve 15.
Binary data is written to No.4 from IIIPU 30 via No.4 bus 35. Each output terminal of the output port 34 is connected to a corresponding input terminal of the down counter 43. This down counter 43 is provided to convert the binary data written from the MPU 30 into the corresponding time length, and this down counter 43 counts down the data sent from the output port 34. It starts with a clock signal from the clock generator 36, completes counting when the count value reaches 0, and generates a count completion signal at the output terminal.

S−Rフリッ!フロッ7”44のリセット入力端子Rは
ダウンカウンタ43の出力端子に接続され、5−R7リ
ツグフロツf44のセット入力端子Sはクロック発生器
36に接続される。このS−″Rフリッグフロツf44
はクロック発生器36のクロック信号によりダウンカウ
ント開始と同時にナツトされ、ダウンカウント完了時に
ダウンカウンタ43のカウント完了信号によってリセッ
トされる。従ってS−Rフリツf70ツ7”44の出力
端子Qはダウンカウントが行なわれている間高レベル、
!: なり。8−Rフリッグフロツ7”44の出力端子
Qは電力増巾回路45を介して燃料噴射弁15に接続さ
れており、従って燃料噴射弁15はダウンカウンタ43
がダウンカウントしている間村勢されることがわかる。
S-R Fri! The reset input terminal R of the 5-R7 rig float f44 is connected to the output terminal of the down counter 43, and the set input terminal S of the 5-R7 rig float f44 is connected to the clock generator 36.
is incremented by the clock signal of the clock generator 36 at the same time as the down count starts, and is reset by the count completion signal of the down counter 43 when the down count is completed. Therefore, the output terminal Q of the S-R Fritz f70tz7''44 is at a high level while the down count is being performed.
! : Nari. The output terminal Q of the 8-R frig float 7'' 44 is connected to the fuel injection valve 15 via the power amplification circuit 45, so that the fuel injection valve 15 is connected to the down counter 43.
It can be seen that the village is attacked while the number is counting down.

次に第4図を参照して本発明による空燃比制御装置の作
動について説明する。第4図を参照するとまず始めにス
テップ50において負圧センサ18と回転数センサ19
の出力信号から目標空燃比が設定される。この目標空燃
比は例えば第7図に示すように吸気管負圧Pと機関回転
数Nの関数として予めROM 32内に記憶されている
。なお、第7図中の数値は空燃比を示す、従ってステッ
プ50では第7図に示す関係から目標空燃比が計算され
る0次いで目標空燃比が決まるとステップ51においで
第5図からリーンセンサ20の目標出力電圧値v0が計
算され、次いでステップ52において基本燃料噴射時間
τ。が計算される。この基本燃料噴射時間τ6は第7図
に示すような空燃比の混合気を形成するのに必要な時間
であり、この基本燃料噴射時間τ。は第7図に示すのと
同様に吸気管負圧Pと機関回転数Nの関数としてマッグ
の形で予め10M32内に記憶iれている。なお、この
基本燃料噴射時間T0は予め定められた機関回転数範囲
内および吸気管負圧範囲内では一定であり、従って機関
回転数或いは吸気管負圧が多少変化しても基本燃料噴射
時間τ。は変化しない0次いでステラf53では目標空
燃比が変化したときに立てられる目標値変化フ゛ラグが
立っているか否かが判別され、目標値変化フラグが立っ
ていない1場合にはステップ54に進む。・ステラf5
4では現在の処理サイクルにおけるリーンセンサ20の
目標出力電圧値v0が前回の処理サイクルにおける目標
出力電圧値V、と等しいか否かが判別され、voがV。
Next, the operation of the air-fuel ratio control device according to the present invention will be explained with reference to FIG. Referring to FIG. 4, first, in step 50, the negative pressure sensor 18 and the rotation speed sensor 19 are connected to each other.
The target air-fuel ratio is set from the output signal. This target air-fuel ratio is stored in advance in the ROM 32 as a function of the intake pipe negative pressure P and the engine speed N, as shown in FIG. 7, for example. The numerical values in FIG. 7 indicate the air-fuel ratio. Therefore, in step 50, the target air-fuel ratio is calculated from the relationship shown in FIG. A target output voltage value v0 of 20 is calculated, and then in step 52 a basic fuel injection time τ. is calculated. This basic fuel injection time τ6 is the time required to form a mixture with an air-fuel ratio as shown in FIG. 7, and is the basic fuel injection time τ. is stored in advance in the 10M32 in the form of a mag as a function of the intake pipe negative pressure P and the engine speed N, as shown in FIG. Note that this basic fuel injection time T0 is constant within a predetermined engine speed range and intake pipe negative pressure range, so even if the engine speed or intake pipe negative pressure changes slightly, the basic fuel injection time τ remains constant. . does not change (0) Next, in Stella f53, it is determined whether or not a target value change flag, which is set when the target air-fuel ratio changes, is set, and if the target value change flag is not set (1), the process proceeds to step 54.・Stella f5
4, it is determined whether the target output voltage value v0 of the lean sensor 20 in the current processing cycle is equal to the target output voltage value V in the previous processing cycle, and vo is V.

と等しくない場合、即ち目標空燃比が変化していない場
合にはステップ55に進む。ステラ7’55ではリーン
センサ20の現在の出力電圧値Vが目標電圧111vo
よりも小さくないか否かが判別される。
If the target air-fuel ratio is not equal to , that is, if the target air-fuel ratio has not changed, the process proceeds to step 55. In Stella 7'55, the current output voltage value V of the lean sensor 20 is the target voltage 111vo.
It is determined whether or not it is smaller than .

ステラf5&において現在の出力電圧値Vが目標電圧値
v0よシも小さくないと判別されたときはステラf56
において補正係数tに一定値αを加算し、その加算結果
をfとした後にスオツfstにatr。一方、ステツノ
55において現在の出力電圧値Vが目標電圧値v0よシ
も小さいと判別されたときはステラf5Bにおいて補正
係数fから一定値Iを減算し、その減算結果なfとした
後にステップ57に進む、ステップ57では基本燃料噴
射時間T0に補正係数1が乗算されて燃料噴射時間Tが
計算され、この燃料噴射時間iに対応した時間だけ燃料
が燃料噴射弁15から噴射される。第6図はリーンセン
サ20の出力電圧Vと補正係数fの酸化を示す、第6図
の区間T、内並びに区間Tb内に示されるようにり一ン
センサの出力電圧値Vが目標電圧値v0よシも大きくな
ると、即ち空燃比が目標空燃比よ〕も大きくなると補正
係数fがαづつ増大せしめられるために燃料噴射量が増
大せしめられ、一方り一ンセンサ20の出力電圧Vが目
標電圧値v0よシも小さくなると、即ち空燃比が目標空
燃比よりも小吉くなると補正係数1がβづつ減少せしめ
られる丸めに燃料噴射量が減少せしめられる。
When Stella f5 & determines that the current output voltage value V is not smaller than the target voltage value v0, Stella f56
, a constant value α is added to the correction coefficient t, and the addition result is set as f, and then atr is added to the correction coefficient fst. On the other hand, when the current output voltage value V is determined to be smaller than the target voltage value v0 in the STETSUNO 55, the constant value I is subtracted from the correction coefficient f in the STELLA f5B, and the subtraction result is set as f, and then step 57 In step 57, the basic fuel injection time T0 is multiplied by the correction coefficient 1 to calculate the fuel injection time T, and fuel is injected from the fuel injection valve 15 for a time corresponding to this fuel injection time i. FIG. 6 shows the oxidation of the output voltage V of the lean sensor 20 and the correction coefficient f.As shown in the sections T and Tb of FIG. When the air-fuel ratio becomes larger than the target air-fuel ratio, the correction coefficient f is increased by α, so that the fuel injection amount is increased, and the output voltage V of the sensor 20 becomes the target voltage value. When v0 also becomes smaller, that is, when the air-fuel ratio becomes smaller than the target air-fuel ratio, the fuel injection amount is decreased in a rounded manner in which the correction coefficient 1 is decreased by β.

一方、目標空燃比が変化すると(但し、このとき基本燃
料噴射時間τ6は変化しないとする)第4図のステラf
54においてvoはV、と等しくないと判別されるため
にステラ7”59に進む。このときが第6図の時刻Te
で示される。ステラ7”59では目標値変化フラグ59
が立てられ、次いでステップ60において現在の目標電
圧値V。から前lの処理サイクルにおける目標電圧値V
、が減算され、その減算結果をΔVとする。従って目標
空燃比が大きくなればΔVは正となシ、目標空燃比が小
さくなればΔVは負となる。次いでステラ7”61では
り一ンセンサ20の現在の出力電圧Vから前回の処理サ
イクルにおけるリーンセンサ20の出力電圧v2を減算
した減算結果の絶対値が予め定められた一定値Qよシも
小さいか否かが判別される。即ち、ステップ61の左辺
By−v21はリーンセンサ20の出力電圧の変化率を
表わしておシ、従ってステップ61ではリーンセンサ2
0の出力電圧の変化率が予め定められた変化率Qよりも
小さいか否かが判別される。第6図かられかるように時
刻Tcにおいて目標空燃比が変化してもこれに応じてリ
ーンセンサ20の出力電圧が区間Td間では急激に変化
しないことがわかる。従って第6図の区間T4内におい
てはステツノ62に進み、ステップ60において得られ
たΔVが正か否かが判別される。
On the other hand, when the target air-fuel ratio changes (provided that the basic fuel injection time τ6 does not change at this time), the Stellar f in Fig. 4
At step 54, it is determined that vo is not equal to V, so the process goes to Stella 7"59. At this time, the time Te in FIG.
It is indicated by. In Stella 7”59, target value change flag 59
is set and then in step 60 the current target voltage value V. The target voltage value V in the previous l processing cycle from
, is subtracted, and the subtraction result is set as ΔV. Therefore, if the target air-fuel ratio becomes large, ΔV becomes positive, and if the target air-fuel ratio becomes small, ΔV becomes negative. Next, Stella 7''61 subtracts the output voltage v2 of the lean sensor 20 in the previous processing cycle from the current output voltage V of the lean sensor 20, and determines whether the absolute value of the subtraction result is smaller than a predetermined constant value Q. In other words, the left side By-v21 of step 61 represents the rate of change of the output voltage of the lean sensor 20. Therefore, in step 61, the lean sensor 2
It is determined whether the rate of change of the output voltage of 0 is smaller than a predetermined rate of change Q. As can be seen from FIG. 6, even if the target air-fuel ratio changes at time Tc, the output voltage of the lean sensor 20 does not change rapidly during the interval Td. Therefore, within section T4 in FIG. 6, the process proceeds to step 62, where it is determined whether ΔV obtained at step 60 is positive or not.

ステラf62においてΔVが正であると判別されたとき
はステラf63に進んで補正係数fからδを滅、算し、
その減算結果をfとする。一方、ステラf62において
4vが正でないと判別され九ときはステラf64に進ん
で補正係数fKrが加算され、その加算結果をfとする
。ステップ63のaはステラ7’S8のlに比べてはる
かに大きく、ステラf64のrはステラf56のαに比
べてはるかに大きい、従って第6図に示されるように区
間Tdでは補正係数fが急激に減少せしめられ、斯くし
て燃料噴射時間丁が急激に減少せしめられる0次いで時
刻T、に達するとリーンセンサ20の出力電圧が目標空
燃比の変化に応動して立上るためにステラf61におい
てリーンセンサ20の出力電圧の変化率1v−v、1が
予め定められた変化率qよシも小さくないと判別され、
その結果ステラf65に進んで目標値変化フラグを降ろ
した後ステップ55に進む、従りて以後は↓1テッf5
6或いはステ、グ58において補正係数fにαが加算さ
れ、或いは補正係数fからβが減算されることになる。
When it is determined in Stellar f62 that ΔV is positive, proceed to Stellar f63 and calculate δ from the correction coefficient f,
Let the subtraction result be f. On the other hand, if it is determined in Stellar f62 that 4v is not positive, the process proceeds to Stellar f64, where correction coefficient fKr is added, and the addition result is set as f. a of step 63 is much larger than l of Stellar 7'S8, and r of Stellar f64 is much larger than α of Stellar f56. Therefore, as shown in FIG. 6, the correction coefficient f is When the fuel injection time reaches 0 and then time T, the output voltage of the lean sensor 20 rises in response to the change in the target air-fuel ratio. It is determined that the rate of change of the output voltage of the lean sensor 20, 1v-v, is not smaller than the predetermined rate of change q,
As a result, proceed to Stella f65, lower the target value change flag, and then proceed to Step 55. Therefore, from then on, ↓1 step f5
In Step 6 or Step 58, α is added to the correction coefficient f, or β is subtracted from the correction coefficient f.

なお、上述の実施例ではステツブ63.64におけるr
、δは一定値として説明してきたがこれらγ、δは第8
図に示すように目標空燃比の変些率lΔv1、即ちIv
o−v、lが増大するにつれて大きくすることもできる
In addition, in the above-mentioned embodiment, r at steps 63 and 64
, δ have been explained as constant values, but these γ and δ are
As shown in the figure, the variation rate lΔv1 of the target air-fuel ratio, that is, Iv
It can also be increased as ov,l increases.

以上述べたように本発明によれば目標空燃比が変化した
ときに基本燃料噴射4間あ補正係数を強制的かつ急速に
増大成いは減少せしめる仁とによってリーンセンサの応
答遅れをカッ4−することができ、斯くして空燃比を目
標空燃比に即座に一致せしめることができる。更に1 
リーンセ/すの出力電圧の変化率が予忰定められた変化
率を越えたときに補正係数の急速な増大成いは減少作用
を停止することによって補正係数が目標とする補正係数
値に対してオーバーシェード或いはアンダシートトする
のを阻止でき、またこのようなオー/4−シ鼻−ト並び
にアンダシーート紘補正係数の増大率並びに減少率を目
標空燃比の変化率に応じて変えることによシ一層良好に
阻止することができる。
As described above, according to the present invention, the response delay of the lean sensor is reduced by forcibly and rapidly increasing or decreasing the basic fuel injection interval correction coefficient when the target air-fuel ratio changes. In this way, the air-fuel ratio can be made to match the target air-fuel ratio immediately. 1 more
The correction coefficient is adjusted to the target correction coefficient value by stopping the rapid increasing or decreasing action of the correction coefficient when the rate of change of the output voltage of the lean sensor exceeds a predetermined rate of change. Overshading or undersheeting can be prevented, and this can be further improved by changing the rate of increase and decrease of the overshading or undersheeting correction coefficient according to the rate of change in the target air-fuel ratio. can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る内燃機関の側面断面図、第2図は
リーンセンサの側面断面図、第3図は電子M#ユニット
の回路図、第4図は空燃比制御装置の作動を説明するた
めのフローチャート、第5図はリーンセンサの出力と酸
素濃度の関係を示す図% dN 6図は補正係数の変化
を示す図、第7図は目標、空燃比を示す図、第8図は空
燃比の変化率と補正係数の加算項及び減算環の関係を示
す図である。 12・・・サージタンク、13・・・排気マニホルド、
14・・・電子制御エニツ)、15−・・燃料噴射弁、
17・・・スロットル弁、1g・・・負圧センサ、19
・・・回転数センサ、20・・・リーンセン!。
Fig. 1 is a side sectional view of the internal combustion engine according to the present invention, Fig. 2 is a side sectional view of the lean sensor, Fig. 3 is a circuit diagram of the electronic M# unit, and Fig. 4 explains the operation of the air-fuel ratio control device. Figure 5 is a diagram showing the relationship between lean sensor output and oxygen concentration. Figure 6 is a diagram showing changes in the correction coefficient. Figure 7 is a diagram showing the target and air-fuel ratio. FIG. 6 is a diagram showing the relationship between the rate of change of the air-fuel ratio and the addition term and subtraction ring of the correction coefficient. 12...Surge tank, 13...Exhaust manifold,
14...electronic control unit), 15-...fuel injection valve,
17...Throttle valve, 1g...Negative pressure sensor, 19
...Rotation speed sensor, 20...Leansen! .

Claims (1)

【特許請求の範囲】 1、機関排気通路に誼排気通路内の酸素濃度に比例した
出力信号を発生するり一ンセンサを取付けて該リーンセ
ンナの出力信号に基いて機関シリンダ内に供給される燃
料量を制御するようにした内燃機関の空燃比制御方法に
おいて、上記リーンセンサの出力電圧が目標出力電圧以
上になったときに上記燃料量を予め定められ九増大率で
増大せしめると共に該リーンセンサ出力電圧が目標出力
電圧以下になったときに上記燃料量を予め定められた減
少率で減少せしめ、上記目標出力電圧が別の目標出力電
圧に変化したときに上記燃料量の増大率並びに増少率を
増大せしめるようにした内燃機関の空燃比制御方法。 2、特許請求の範囲第fil紀載の内燃機−の1燃比制
御方法において、上記り一ンセンサの、:、、″I電圧
値の変化率が予め定められた変化率を越えたときに上記
増大率並びに減少率の増大作用を停止せしめるようKし
た内燃機関の空燃比制御方法。
[Claims] 1. A lean sensor is attached to the engine exhaust passage to generate an output signal proportional to the oxygen concentration in the lean exhaust passage, and the amount of fuel supplied to the engine cylinder based on the output signal of the lean sensor is installed. In the air-fuel ratio control method for an internal combustion engine, the fuel amount is increased at a predetermined increase rate when the output voltage of the lean sensor becomes equal to or higher than the target output voltage, and the lean sensor output voltage is increased by a predetermined increase rate. When the target output voltage becomes lower than the target output voltage, the fuel amount is decreased at a predetermined reduction rate, and when the target output voltage changes to another target output voltage, the increase rate and the rate of increase of the fuel amount are reduced. A method for controlling the air-fuel ratio of an internal combustion engine. 2. In the fuel ratio control method for an internal combustion engine recited in claim No. A method for controlling an air-fuel ratio of an internal combustion engine to stop the increasing effect of the rate and the rate of decrease.
JP15694181A 1981-10-03 1981-10-03 Air-fuel ratio control method for internal-combustion engine Granted JPS5859330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15694181A JPS5859330A (en) 1981-10-03 1981-10-03 Air-fuel ratio control method for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15694181A JPS5859330A (en) 1981-10-03 1981-10-03 Air-fuel ratio control method for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS5859330A true JPS5859330A (en) 1983-04-08
JPH0343459B2 JPH0343459B2 (en) 1991-07-02

Family

ID=15638688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15694181A Granted JPS5859330A (en) 1981-10-03 1981-10-03 Air-fuel ratio control method for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5859330A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603446A (en) * 1983-06-21 1985-01-09 Mitsubishi Electric Corp Air-fuel ratio controller of engine
JPS60216044A (en) * 1984-04-12 1985-10-29 Nissan Motor Co Ltd Air-fuel ratio controller
JPS60228740A (en) * 1984-04-27 1985-11-14 Toyota Motor Corp Air-fuel ratio controller for internal-combustion engine
JPS60252134A (en) * 1984-05-28 1985-12-12 Hitachi Ltd Air-fuel ratio controlling method
JPS6134329A (en) * 1984-07-27 1986-02-18 Nissan Motor Co Ltd Air-fuel ratio controller for internal-combustion engine
JPS61104137A (en) * 1984-10-27 1986-05-22 Mazda Motor Corp Control device for air-fuel ratio of engine
JPS61210261A (en) * 1985-03-13 1986-09-18 Yanmar Diesel Engine Co Ltd Air-fuel ratio controller for spark ignition type gas engine
DE3612826A1 (en) * 1985-04-16 1986-10-30 Honda Giken Kogyo K.K., Tokio/Tokyo DEVICE FOR REGULATING THE AIR FUEL RATIO FOR AN INTERNAL COMBUSTION ENGINE
JPS6260943A (en) * 1985-09-11 1987-03-17 Mazda Motor Corp Air-fuel ratio controller for engine
US4730590A (en) * 1986-04-09 1988-03-15 Fuji Jukogyo Kabushiki Kaisha Air-fuel ratio control system for an engine
JPS6460746A (en) * 1987-08-29 1989-03-07 Fuji Heavy Ind Ltd Air-fuel ratio control device
JPH04330346A (en) * 1991-05-10 1992-11-18 Nippondenso Co Ltd Air-fuel ratio control device
US5682866A (en) * 1995-09-01 1997-11-04 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for internal combustion engines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140021A (en) * 1975-05-28 1976-12-02 Toyota Motor Corp Returning type air-fuel ratio controlling device
JPS5612698A (en) * 1979-07-11 1981-02-07 Matsushita Electric Ind Co Ltd Echo attaching apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140021A (en) * 1975-05-28 1976-12-02 Toyota Motor Corp Returning type air-fuel ratio controlling device
JPS5612698A (en) * 1979-07-11 1981-02-07 Matsushita Electric Ind Co Ltd Echo attaching apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603446A (en) * 1983-06-21 1985-01-09 Mitsubishi Electric Corp Air-fuel ratio controller of engine
JPS60216044A (en) * 1984-04-12 1985-10-29 Nissan Motor Co Ltd Air-fuel ratio controller
JPS60228740A (en) * 1984-04-27 1985-11-14 Toyota Motor Corp Air-fuel ratio controller for internal-combustion engine
JPS60252134A (en) * 1984-05-28 1985-12-12 Hitachi Ltd Air-fuel ratio controlling method
JPS6134329A (en) * 1984-07-27 1986-02-18 Nissan Motor Co Ltd Air-fuel ratio controller for internal-combustion engine
JPH0452853B2 (en) * 1984-07-27 1992-08-25 Nissan Motor
JPS61104137A (en) * 1984-10-27 1986-05-22 Mazda Motor Corp Control device for air-fuel ratio of engine
JPH0448933B2 (en) * 1984-10-27 1992-08-10 Mazda Motor
JPH0262698B2 (en) * 1985-03-13 1990-12-26 Yanmar Diesel Engine Co
JPS61210261A (en) * 1985-03-13 1986-09-18 Yanmar Diesel Engine Co Ltd Air-fuel ratio controller for spark ignition type gas engine
US4870586A (en) * 1985-04-16 1989-09-26 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for an internal combustion engine with an engine load responsive correction operation
DE3612826C2 (en) * 1985-04-16 1991-05-16 Honda Giken Kogyo K.K., Tokio/Tokyo, Jp
DE3612826A1 (en) * 1985-04-16 1986-10-30 Honda Giken Kogyo K.K., Tokio/Tokyo DEVICE FOR REGULATING THE AIR FUEL RATIO FOR AN INTERNAL COMBUSTION ENGINE
JPS6260943A (en) * 1985-09-11 1987-03-17 Mazda Motor Corp Air-fuel ratio controller for engine
JPH0318019B2 (en) * 1985-09-11 1991-03-11 Mazda Motor
US4730590A (en) * 1986-04-09 1988-03-15 Fuji Jukogyo Kabushiki Kaisha Air-fuel ratio control system for an engine
JPS6460746A (en) * 1987-08-29 1989-03-07 Fuji Heavy Ind Ltd Air-fuel ratio control device
JPH04330346A (en) * 1991-05-10 1992-11-18 Nippondenso Co Ltd Air-fuel ratio control device
US5682866A (en) * 1995-09-01 1997-11-04 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for internal combustion engines

Also Published As

Publication number Publication date
JPH0343459B2 (en) 1991-07-02

Similar Documents

Publication Publication Date Title
US4251989A (en) Air-fuel ratio control system
US4475517A (en) Air-fuel ratio control method and apparatus for an internal combustion engine
JP3065127B2 (en) Oxygen concentration detector
KR890000497B1 (en) Method of controlling air fuel ratio
JPS5859330A (en) Air-fuel ratio control method for internal-combustion engine
US4392471A (en) Method and apparatus for controlling the air-fuel ratio in an internal combustion engine
JPS58150038A (en) Fuel injection method of electronically controlled engine
US4819602A (en) System of abnormality detection for oxygen concentration sensor
US20070012564A1 (en) Element crack detecting apparatus and method for oxygen sensor
JPS601340A (en) Air-fuel ratio control device in internal-combustion engine
US4517949A (en) Air fuel ratio control method
JPH0217705B2 (en)
US4561404A (en) Fuel injection system for an engine
JP2601455B2 (en) Air-fuel ratio control method for internal combustion engine
US6576118B2 (en) Correction device of air-fuel ratio detection apparatus
US4391256A (en) Air-fuel ratio control apparatus
JPS60233326A (en) Control apparatus for internal-combustion engine with swirl control valve
JPH0325625B2 (en)
JPS6145057B2 (en)
US4732127A (en) Air/fuel ratio control system for an internal combustion engine with a function for preventing the blackening phenomenon of oxygen concentration sensor
JPS61234235A (en) Throttle valve controller of engine
JP3216310B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPH0146696B2 (en)
JP2780710B2 (en) Air-fuel ratio control method for internal combustion engine
JPS6388241A (en) Air-fuel ratio control device for internal combustion engine