JPH0448557B2 - - Google Patents

Info

Publication number
JPH0448557B2
JPH0448557B2 JP59115248A JP11524884A JPH0448557B2 JP H0448557 B2 JPH0448557 B2 JP H0448557B2 JP 59115248 A JP59115248 A JP 59115248A JP 11524884 A JP11524884 A JP 11524884A JP H0448557 B2 JPH0448557 B2 JP H0448557B2
Authority
JP
Japan
Prior art keywords
flux
coating
cmc
weight
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59115248A
Other languages
Japanese (ja)
Other versions
JPS60257992A (en
Inventor
Yoshinori Nakamura
Yasuya Ito
Norio Seike
Yoshio Inohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Sanyo Kokusaku Pulp Co Ltd
Original Assignee
Kobe Steel Ltd
Sanyo Kokusaku Pulp Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Sanyo Kokusaku Pulp Co Ltd filed Critical Kobe Steel Ltd
Priority to JP11524884A priority Critical patent/JPS60257992A/en
Publication of JPS60257992A publication Critical patent/JPS60257992A/en
Publication of JPH0448557B2 publication Critical patent/JPH0448557B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用性〕 本発明は、鋼心線外周へのフラツクスの塗装作
業性が良好であると共に、乾燥後におけるフラツ
クスの耐脱落性の優れた被覆アーク溶接棒に関す
るものである。 〔従来の技術〕 被覆アーク溶接棒の製造に当たつては、スラグ
形成剤、アーク安定剤、成分調整用合金元素等の
粉末を水及びバインダ(通常は水ガラス)と共に
混練して被覆用フラツクスを調製し、これを塗装
装置に供給して鋼心線と共に押出すことによつて
該心線の表面へ塗布することにより製造される。
この場合、塗装作業性を改善する目的で潤滑剤と
して少量のアルギン酸ソーダをフラツクス中に添
加することが一般的に行なわれている。一方、シ
ールド効果を高める為のガス発生剤として添加す
る有機物の一種にカルボキシメチルセルロースナ
トリウム(以下CMCと略記)があるが、これは
あくまでもガス発生剤としての機能が期待されて
いるだけであり、塗装性改善の為のフラツクス潤
滑剤として使用された例はない。 〔発明が解決しようとする問題点〕 ところが上記アルギン酸ソーダは、被覆の焼付
乾燥時に熱分解を受けて発泡し被覆の耐脱落性を
低下させるという問題がある。即ち被覆中のアル
ギン酸ソーダが熱分解により発泡すると、被覆層
内に空隙ができてフラツクス粒子間の接触面積が
少なくなつて固着力が低下し、僅かな衝撃で簡単
に被覆が脱落する様になる。しかもアルギン酸ソ
ーダは天然の海藻を原料として製造されるもの
で、その大部分は海外からの輸入に頼つている
が、その価格は年々高くなる傾向が見受けられる
他、将来枯渇する可能性も有している。従つて被
覆の耐脱落性を損なうことなくフラツクス塗料作
業性を改善することのできる技術を開発する必要
がある。 本発明者等は上記の様な事情に着目し、特にア
ルギン酸ソーダに匹敵するフラツクス潤滑油を有
し且つ耐脱落性を低下させることのない様な潤滑
性向上剤を見出すことによつて、生産性及び耐脱
落性の双方を満足する被覆アーク溶接棒を提供し
ようとして種々研究を進めてきた。そして化学構
造が骨格的にアルギン酸ソーダとよく似たCMC
に注日し、フラツクス潤滑剤としての適性を調べ
た。その結果ガス発生剤として使用される通常の
CMCにはその適性を見出すことができなかつた
が、特定範囲のエーテル化度と水溶液粘度を有す
るCMCはアルギン酸ソーダに匹敵するフラツク
ス潤滑性能を有していると共に、被覆の耐脱落性
を低下させる恐れもない、という新たな知見を得
た。 〔問題を解決する為の手段〕 本発明は上記の様な知見を基に更に研究の結果
完成したものであり、即ち本発明に係る被覆アー
ク溶接棒の構成とは、無水グルコース単位当たり
のエーテル化度(以下単にエーテル化度という)
が1.0〜2.0モルであり、且つ1重量%水溶液の25
℃における粘度が100〜1000センチポイズである
CMCを0.1〜4.0重量%配合したフラツクス、或は
更にアルカリ土類金属水酸化物を0.1〜2.0重量%
加えたフラツクスを、鋼心線外周に被覆してなる
ところに要旨を有するものである。 〔各構成々分の作用〕 上記数値範囲の設定理由を以下詳細に説明す
る。 CMCのエーテル化度:1.0〜2.0モル CMCをフラツクス潤滑剤として有効に活用す
る為には、第1の要件としてCMC自身が水ガラ
ス(バインダ)と馴じみのよいものでなければな
らないが、種々実験の結果CMCのエーテル化度
と水ガラスとの馴じみの間には密接な関係があ
り、この馴じみはCMCのエーテル化度が高い程
良好であることが判明した。そしてアルギン酸ソ
ーダに匹敵するフラツクス潤滑性能を確保する為
には、エーテル化度が1.0モル以上であるCMCを
選択すべきであることが明らかになつた。尚この
エーテル化度は理論的には3.0モルまで可能であ
が、2.0モルを超えるエーテル化度を得る為には、
セルロースのエーテル化に際してモノクロル酢酸
やモノクロル酢酸Na塩の様な高価なエーテル化
剤を多量使用しなければならず、アルギン酸ソー
ダよりも高価なものとなるので、実用性を考えれ
ばエーテル化度の上限は2.0モル程度と考えられ
る。 CMCの1%水溶液粘度:100〜1000センチポイ
ズ この粘度は25℃でB型粘度計により測定した値
を示し、CMCの分子量を表わす指標となるが、
この粘度もエーテル化度と同様水ガラスとの馴じ
みに関係する他、練和フラツクスを鋼心線外周へ
押出塗装する際におけるフラツクスの滑り性に大
きな影響を及ぼす。そしてこの粘度が100センチ
ポイズ未満である低分子量物、或は1000センチポ
イズを超える高分子量物を使用すると、練和フラ
ツクスの滑りが悪くなつて押出塗装時の圧力が変
動し易くなり、均一に塗装し得なくなる他、製品
の被覆表面がかすれた状態となり、外観、品質共
に劣悪となる。 CMC添加量:0.1〜4.0重量% 上記の要件に合致するCMCを前述の様なフラ
ツクス原料中へ少量含有させると、練和フラツク
スの滑りは極めて円滑となり、押出塗装時の圧力
変動が少なくなつて塗装作業性が著しく向上する
他、被覆の表面も極めて平滑で美麗なものとな
る。こうした効果は0.1重量%以上含有させるこ
とによつて有効に発揮され、含有量を増加させる
につれて塗装性は向上する。しかし4重量%を超
えると被覆の耐脱落性が低下して所期の目的を達
成し得なくなる。即ちCMCはアルギン酸ソーダ
の様にフラツクス塗装後の焼付乾燥工程で発泡す
ることがほとんどなく、全フラツクス中の含有率
が4.0重量%以下である限り被覆の耐脱落性には
殆んど悪影響を及ぼさないが、含有率が4.0重量
%を超えると焼付乾燥時の熱分解によつて微細な
空孔が被覆層内に多数形成され、フラツクス粒子
間の接触面積が小さくなつて固着力が低下する為
と考えられる。 本発明の目的は、上記の如くエーテル化度及び
1%水溶液粘度により特定されるCMCを全フラ
ツクス中に0.1〜4.0重量%含有させることによつ
て目的を達成することができるが、更に下記のア
ルカリ土類金属水酸化物を適量併用することによ
つて、練和フラツクスの塗装性を一層改善するこ
とができる。 アルカリ土類金属水酸化物:0.1〜2.0重量% Mg(OH)2、Ca(OH)2、Sr(OH)2、Ba(OH)2
で代表されるアルカリ土類金属水酸化物は、水ガ
ラスと接触して2価の金属イオンを遊離し水をガ
ラス及びCMCのゲル化を促進する働きがあり、
それにより練和フラツクスの“ベとつき”が少な
くなつて塗装性が改善される。こうした効果は
0.1重量%以上の添加によつて有効に発揮される
が、多すぎると練和フラツクスの固化が早くなり
すぎて塗装性が逆に低下してくるので、全フラツ
クス中の含有率は2.0重量%以下に抑えなければ
ならない。 〔実施例〕 実施例 1 第1表に示す低水素系フラツクスに粉末状態の
CMCを添加し均一に混合した後、水ガラス(比
重:1.45、添加量:16.0ml/100gフラツクス)
を加えて混練し、被覆用フラツクスを調製した。
[Industrial Applicability] The present invention relates to a coated arc welding rod that has good workability in applying flux to the outer periphery of a steel core wire and has excellent resistance to flux falling off after drying. [Prior Art] In manufacturing coated arc welding rods, powders such as slag forming agents, arc stabilizers, and alloying elements for composition adjustment are kneaded with water and a binder (usually water glass) to form a coating flux. It is manufactured by preparing a coating material, supplying it to a coating device, extruding it together with the steel core wire, and applying it to the surface of the steel core wire.
In this case, it is common practice to add a small amount of sodium alginate to the flux as a lubricant for the purpose of improving painting workability. On the other hand, sodium carboxymethylcellulose (hereinafter abbreviated as CMC) is a type of organic substance added as a gas generating agent to enhance the shielding effect, but this is only expected to function as a gas generating agent, and is used for painting. There are no examples of it being used as a flux lubricant to improve sex. [Problems to be Solved by the Invention] However, the above-mentioned sodium alginate has a problem in that it undergoes thermal decomposition and foams when the coating is baked and dried, thereby reducing the shedding resistance of the coating. In other words, when the sodium alginate in the coating foams due to thermal decomposition, voids are created within the coating layer, reducing the contact area between flux particles and reducing the adhesion force, making it easier for the coating to fall off with the slightest impact. . Moreover, sodium alginate is manufactured using natural seaweed as a raw material, and most of it is imported from overseas, but its price tends to increase year by year, and there is a possibility that it will run out in the future. ing. Therefore, there is a need to develop a technique that can improve flux coating workability without impairing the shedding resistance of the coating. The present inventors focused on the above-mentioned circumstances, and by finding a lubricity improver that has a flux lubricating oil comparable to sodium alginate and does not reduce the shedding resistance, it is possible to improve production. Various studies have been carried out in an attempt to provide a coated arc welding rod that satisfies both properties of durability and drop-off resistance. And CMC, whose chemical structure is skeletally similar to sodium alginate
and investigated its suitability as a flux lubricant. As a result, the usual
Although CMC could not be found to be suitable for this purpose, CMC, which has a specific range of etherification degree and aqueous viscosity, has flux lubrication performance comparable to that of sodium alginate, and also reduces the shedding resistance of the coating. I gained a new knowledge that there is nothing to be afraid of. [Means for Solving the Problems] The present invention was completed as a result of further research based on the above-mentioned knowledge. That is, the structure of the coated arc welding rod according to the present invention is such that the amount of ether per anhydroglucose unit is degree of etherification (hereinafter simply referred to as degree of etherification)
is 1.0 to 2.0 mol, and 25% of the 1% by weight aqueous solution
Viscosity at °C is 100-1000 centipoise
Flux containing 0.1-4.0% by weight of CMC, or 0.1-2.0% by weight of alkaline earth metal hydroxide
The gist is that the added flux is coated on the outer periphery of the steel core wire. [Effects of each component] The reason for setting the above numerical range will be explained in detail below. Etherification degree of CMC: 1.0 to 2.0 mol In order to effectively utilize CMC as a flux lubricant, the first requirement is that CMC itself must be compatible with water glass (binder), but there are various As a result of experiments, it was found that there is a close relationship between the degree of etherification of CMC and its compatibility with water glass, and this compatibility is better as the degree of etherification of CMC is higher. In order to ensure flux lubrication performance comparable to that of sodium alginate, it became clear that CMC with a degree of etherification of 1.0 mol or more should be selected. The degree of etherification is theoretically possible up to 3.0 mol, but in order to obtain a degree of etherification exceeding 2.0 mol,
When etherifying cellulose, it is necessary to use large amounts of expensive etherifying agents such as monochloroacetic acid and monochloroacetic acid sodium salt, which are more expensive than sodium alginate, so considering practicality, the upper limit of the degree of etherification is is thought to be about 2.0 mol. Viscosity of a 1% aqueous solution of CMC: 100 to 1000 centipoise This viscosity is a value measured using a B-type viscometer at 25°C, and is an indicator of the molecular weight of CMC.
Similar to the degree of etherification, this viscosity is related to the compatibility with water glass, and also has a large effect on the slipperiness of the flux when extrusion coating the kneaded flux onto the outer periphery of the steel core wire. If a low molecular weight material with a viscosity of less than 100 centipoise or a high molecular weight material with a viscosity of more than 1000 centipoise is used, the kneaded flux will become less slippery and the pressure during extrusion coating will tend to fluctuate, making it impossible to apply uniformly. In addition, the coated surface of the product becomes faded, resulting in poor appearance and quality. Addition amount of CMC: 0.1 to 4.0% by weight When a small amount of CMC that meets the above requirements is included in the flux raw material as described above, the kneaded flux will slide extremely smoothly and pressure fluctuations during extrusion coating will be reduced. In addition to significantly improving painting workability, the coating surface also becomes extremely smooth and beautiful. These effects are effectively exhibited by containing 0.1% by weight or more, and as the content increases, coating properties improve. However, if it exceeds 4% by weight, the shedding resistance of the coating decreases, making it impossible to achieve the intended purpose. In other words, unlike sodium alginate, CMC hardly foams during the baking drying process after flux coating, and as long as its content in the total flux is 4.0% by weight or less, it has almost no negative effect on the shedding resistance of the coating. However, if the content exceeds 4.0% by weight, many fine pores will be formed in the coating layer due to thermal decomposition during baking drying, which will reduce the contact area between flux particles and reduce the adhesion force. it is conceivable that. The object of the present invention can be achieved by containing 0.1 to 4.0% by weight of CMC, which is specified by the degree of etherification and the viscosity of a 1% aqueous solution, in the total flux as described above. By using an appropriate amount of alkaline earth metal hydroxide, the coating properties of the kneaded flux can be further improved. Alkaline earth metal hydroxide: 0.1-2.0% by weight Mg(OH) 2 , Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2
Alkaline earth metal hydroxides, represented by , have the function of liberating divalent metal ions when they come into contact with water glass and promoting the gelation of water into glass and CMC.
This reduces the "stickiness" of the mixed flux and improves coating properties. These effects
It is effective when added in an amount of 0.1% by weight or more, but if it is too large, the kneaded flux solidifies too quickly and the coating properties deteriorate, so the content in the total flux is 2.0% by weight. Must be kept below. [Example] Example 1 Powdered powder was added to the low hydrogen flux shown in Table 1.
After adding CMC and mixing uniformly, water glass (specific gravity: 1.45, amount added: 16.0ml/100g flux)
was added and kneaded to prepare a coating flux.

【表】 得られた各被覆用フラツクスを下記の押出試験
に供し、塗装性を調べた。押出試験は第1図(概
略縦断面図)に示す様な装置を使用し、シリンダ
1内に充填したフラツクスFをピストトン2によ
り背面側から押してダイス3より押出し、そのと
きの押出圧力の変動を調べると共に、押出物の表
面性状を調べた。尚押出圧力は例えば第2図に示
す様に変動するので、夫々の実験データより塗装
圧の増加速度及び塗装圧のばらつきを求める。 また耐脱落性は、常法に準じて各フラツクスを
鋼心線(4mmφ×400mm)の外周に塗布(被覆率
30%)した後、400℃で60分間の焼付乾燥処理を
施し、放冷後1mの高さから落下させたときの被
覆の脱落量により比較した。 結果を第2表に一括して示す。 但し各試験における判定基準は下記の通りとし
た。 圧力増加速度 〇:±50Kg/分以内 △:+50〜+150Kg/分 ×:+150Kg/分超 但しアルギン酸ソーダ添加品(No.1−20)
は−30〜+30Kg/分 圧力ばらつき ○:50Kg以下 △:50〜100Kg ×:100Kg超 但しアルギン酸ソーダ添加品(No.1−20)
は30Kg以下 耐脱落性 ◎:アルギン酸ソーダ添加品以上 ○:アルギン酸ソーダ添加品(No.1−20)と
同等 ×:アルギン酸ソーダ添加品以下
[Table] Each of the obtained coating fluxes was subjected to the following extrusion test to examine the coating properties. In the extrusion test, an apparatus as shown in Figure 1 (schematic longitudinal cross-sectional view) was used, and the flux F filled in the cylinder 1 was pushed from the back side by the piston 2 and extruded from the die 3, and the fluctuation of the extrusion pressure at that time was measured. In addition to the investigation, the surface properties of the extrudates were also investigated. Since the extrusion pressure fluctuates, for example, as shown in FIG. 2, the rate of increase in coating pressure and the variation in coating pressure are determined from each experimental data. In addition, the falling resistance was determined by applying each flux to the outer periphery of the steel core wire (4 mmφ x 400 mm) according to the usual method (coverage rate
30%), a baking drying process was performed at 400°C for 60 minutes, and after cooling, the amount of coating that fell off when dropped from a height of 1 m was compared. The results are summarized in Table 2. However, the criteria for each test were as follows. Pressure increase rate 〇: Within ±50Kg/min △: +50 to +150Kg/min ×: More than +150Kg/min However, sodium alginate additive (No. 1-20)
-30 to +30Kg/min Pressure variation ○: 50Kg or less △: 50 to 100Kg ×: Over 100Kg However, sodium alginate additive (No. 1-20)
is 30Kg or less Shedding resistance ◎: More than the product with sodium alginate additive ○: Equivalent to the product with sodium alginate additive (No. 1-20) ×: Less than the product with sodium alginate additive

【表】 第2表より次の様に考察することができる。 実験No.1−1,1−2,1−3:CMCのエー
テル化度が1.0モル未満である為塗装圧力のばら
つきが大きく、また被覆の表面にはかすれ傷が生
じる為、アルギン酸ソーダ添加物の代替品として
使用することができない。 実験No.1−4,1−10,1−17,1−18:
CMCの1%水溶液粘度が規定範囲を外れている
為、圧力増加速度、圧力ばらつきが共に大きく、
しかも被覆表面にかすれ傷が発生している。 実験No.1−6,1−12:CMCの添加量が不足
する為、圧力増加速度、圧力ばらつきが共に著し
く大きく、フラツクスの潤滑不足が端的に表われ
ている。 実験No.1−8,1−15:CMCの添加量が4%
を超える例で、圧力増加速度、圧力ばらつきが共
に小さく、押出塗装性に関する限り全く問題はな
いが、被覆の耐脱落性が劣悪である。 実験No.1−5,1−7,1−9,1−11,1−
13,1−14,1−16:何れも本発明の要件を満た
す実施例であり、練和フラツクスの潤滑性及び被
覆の外観、並びに耐脱落性が何れも良好な結果を
与えた。 実験No.1−19:上記本発明の実施例と同様何れ
の性能も良好であるが、CMCのエーテル化度が
高くアルギン酸ソーダに比べて極めて高価である
ので実用的でない。 実施例 2 前記実施例1におけるNo.1−7のフラツクス
〔CMCのエーテル化度:1.1モル、同1%水溶液
粘度:450CP、添加量:1.2重量%〕に種々のア
ルカリ土類金属水酸化物を適量添加し、以下実施
例1と同様にして押出試験及び被覆の耐脱落試験
を行なつた。 結果を第3表に示す、但し圧力増加速度の欄の
◎印は±20Kg/分以内、圧力ばらつきの欄の◎印
は20Kg以下のものを夫々示す。
[Table] From Table 2, the following can be considered. Experiment No. 1-1, 1-2, 1-3: Because the degree of etherification of CMC is less than 1.0 mol, the coating pressure varies greatly, and scratches occur on the surface of the coating, so sodium alginate additive was used. cannot be used as a substitute for Experiment No. 1-4, 1-10, 1-17, 1-18:
Since the viscosity of the 1% aqueous solution of CMC is outside the specified range, both the pressure increase rate and pressure variation are large.
Moreover, scratches have occurred on the coated surface. Experiment No. 1-6, 1-12: Because the amount of CMC added was insufficient, both the pressure increase rate and pressure variation were extremely large, clearly indicating insufficient lubrication of the flux. Experiment No. 1-8, 1-15: Addition amount of CMC is 4%
In the example above, the pressure increase rate and pressure variation are both small, and there is no problem at all as far as extrusion coating property is concerned, but the coating has poor peeling resistance. Experiment No. 1-5, 1-7, 1-9, 1-11, 1-
13, 1-14, and 1-16: All of these examples met the requirements of the present invention, and gave good results in terms of the lubricity of the kneaded flux, the appearance of the coating, and the resistance to shedding. Experiment No. 1-19: Similar to the above examples of the present invention, all performances are good, but CMC has a high degree of etherification and is extremely expensive compared to sodium alginate, so it is not practical. Example 2 Various alkaline earth metal hydroxides were added to the flux No. 1-7 in Example 1 [degree of etherification of CMC: 1.1 mol, viscosity of 1% CMC aqueous solution: 450CP, amount added: 1.2% by weight] An appropriate amount of was added thereto, and an extrusion test and a coating shedding resistance test were conducted in the same manner as in Example 1. The results are shown in Table 3, with the exception that ◎ in the pressure increase rate column indicates within ±20 kg/min, and ◎ in the pressure variation column indicates 20 kg or less.

【表】 第3表からも明らかな様に、0.1〜2.0重量%の
アルカリ土類金属水酸化物を併用すると練和フラ
ツクスの潤滑性は一段と改善され、押出塗装性及
び被覆外観は更に良好となる。但しアルカリ土類
金属水酸化物の添加量が2.0重量%を超えると、
練和フラツクス中の水ガラス及びCMCの固化が
進みすぎて塗装性が悪くなる。 実施例 3 第4表に示す低水素系フラツクスに粉末状の
CMCを加えて均一に混合し、これに水ガラス
(比重:1.45、添加量:14ml/100gフラツクス)
を加えて混練して被覆用フラツクスを調製した。
[Table] As is clear from Table 3, when 0.1 to 2.0% by weight of alkaline earth metal hydroxide is used in combination, the lubricity of the kneaded flux is further improved, and the extrusion coating property and coating appearance are even better. Become. However, if the amount of alkaline earth metal hydroxide added exceeds 2.0% by weight,
The solidification of water glass and CMC in the mixed flux progresses too much, resulting in poor coating properties. Example 3 Powdered powder was added to the low hydrogen flux shown in Table 4.
Add CMC and mix uniformly, add water glass (specific gravity: 1.45, amount added: 14ml/100g flux)
was added and kneaded to prepare a coating flux.

【表】 得られた各被覆用フラツクスを使用し、実施例
1と同様の方法で押出塗装性及び被覆の耐脱落性
を調べた。 結果を第5表に一括して示す。
[Table] Using each of the obtained coating fluxes, extrusion coating properties and coating shedding resistance were examined in the same manner as in Example 1. The results are summarized in Table 5.

〔発明の効果〕〔Effect of the invention〕

(1) 潤滑性改善剤としてアルギン酸ソーダに代え
てCMCを使用することにより、押出塗装性を
何ら阻害することなく被覆の耐脱落性に優れた
被覆アーク溶接棒を提供することができる。 (2) CMCは国内で大量且つ安価に入手すること
ができるので、アルギン酸ソーダと代替使用す
ることによつて被覆アーク溶接棒の低コスト化
に貢献することができる。 (3) CMCと共に適量のアルカリ土類金属水酸化
物を併用することによつて押出塗装性を一段と
改善することができ、被覆アーク溶接棒の生産
性向上及び品質向上に寄与できる。
(1) By using CMC in place of sodium alginate as a lubricity improver, it is possible to provide a coated arc welding rod with excellent coating shedding resistance without impairing extrusion coating properties. (2) Since CMC can be obtained domestically in large quantities and at low cost, its use as an alternative to sodium alginate can contribute to lowering the cost of coated arc welding rods. (3) By using an appropriate amount of alkaline earth metal hydroxide together with CMC, extrusion coating properties can be further improved, contributing to improved productivity and quality of coated arc welding rods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は押出塗装試験法を示す概略縦断面図、
第2図は押出塗装試験時における圧力変化を例示
するグラフである。 1……シリンダ、2……ピストン、3……ダイ
ス、4……フラツクス。
Figure 1 is a schematic longitudinal cross-sectional view showing the extrusion coating test method;
FIG. 2 is a graph illustrating pressure changes during an extrusion coating test. 1...Cylinder, 2...Piston, 3...Dice, 4...Flux.

Claims (1)

【特許請求の範囲】 1 無水グルコース単位当たりのエーテル化度が
1.0〜2.0モルであり、且つ1重量%水溶液の25℃
における粘度が100〜1000センチポイズであるカ
ルボキシメチルセルロースナトリウムを0.1〜4.0
重量%含有するフラツクスを、鋼心線外周に被覆
してなることを特徴とする被覆アーク溶接棒。 2 無水グルコース単位当たりのエーテル化度が
1.0〜2.0モルであり、且つ1重量%水溶液の25℃
における粘度が100〜1000センチポイズであるカ
ルボキシメチルセルロースナトリウムを0.1〜4.0
重量%、並びにアルカリ土類金属水酸化物を0.1
〜2.0重量%含有するフラツクスを、鋼心線外周
に被覆してなることを特徴とする被覆アーク溶接
棒。
[Claims] 1. The degree of etherification per anhydroglucose unit is
1.0 to 2.0 mol and 1% by weight aqueous solution at 25°C
Sodium carboxymethylcellulose whose viscosity is 100-1000 centipoise is 0.1-4.0
A coated arc welding rod characterized in that the outer periphery of a steel core wire is coated with flux containing % by weight. 2 The degree of etherification per anhydroglucose unit is
1.0 to 2.0 mol and 1% by weight aqueous solution at 25°C
Sodium carboxymethylcellulose whose viscosity is 100-1000 centipoise is 0.1-4.0
wt%, as well as alkaline earth metal hydroxides 0.1
A coated arc welding rod characterized in that the outer periphery of a steel core wire is coated with flux containing ~2.0% by weight.
JP11524884A 1984-06-05 1984-06-05 Coated electrode Granted JPS60257992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11524884A JPS60257992A (en) 1984-06-05 1984-06-05 Coated electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11524884A JPS60257992A (en) 1984-06-05 1984-06-05 Coated electrode

Publications (2)

Publication Number Publication Date
JPS60257992A JPS60257992A (en) 1985-12-19
JPH0448557B2 true JPH0448557B2 (en) 1992-08-07

Family

ID=14657996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11524884A Granted JPS60257992A (en) 1984-06-05 1984-06-05 Coated electrode

Country Status (1)

Country Link
JP (1) JPS60257992A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9199341B2 (en) 2012-08-28 2015-12-01 Hobart Brothers Company Systems and methods for welding electrodes
US10016850B2 (en) 2012-08-28 2018-07-10 Hobart Brothers Company Systems and methods for welding electrodes
US9999944B2 (en) 2012-08-28 2018-06-19 Hobart Brothers Company Systems and methods for welding electrodes
US10543556B2 (en) 2012-08-28 2020-01-28 Hobart Brothers Llc Systems and methods for welding zinc-coated workpieces
EP2945773B1 (en) * 2013-01-16 2021-09-01 Hobart Brothers Company Method of manufacturing a tubular metal-cored welding wire
EP3055101A2 (en) 2013-10-09 2016-08-17 Hobart Brothers Company Systems and methods for corrosion-resistant welding electrodes
US10300565B2 (en) 2014-10-17 2019-05-28 Hobart Brothers Company Systems and methods for welding mill scaled workpieces

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524992A (en) * 1978-08-07 1980-02-22 Siemens Ag Corrosion preventing method
JPS56122697A (en) * 1980-03-04 1981-09-26 Nippon Steel Weld Prod & Eng Co Ltd Core wire of covered welding rod and its surface treatment
JPS57159294A (en) * 1981-03-25 1982-10-01 Daicel Chem Ind Ltd Covered electrode
JPS58176202A (en) * 1982-04-12 1983-10-15 Daicel Chem Ind Ltd Production of alkali salt of highly substituted carboxy- methylcellulose
JPS58223686A (en) * 1982-06-14 1983-12-26 ダイセル化学工業株式会社 Viscosifier for aqueous explosive
JPS597494A (en) * 1982-07-06 1984-01-14 Daicel Chem Ind Ltd Water glass composition
JPS5920684A (en) * 1982-07-26 1984-02-02 Fujitsu Ltd Print gap adjusting mechanism

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524992A (en) * 1978-08-07 1980-02-22 Siemens Ag Corrosion preventing method
JPS56122697A (en) * 1980-03-04 1981-09-26 Nippon Steel Weld Prod & Eng Co Ltd Core wire of covered welding rod and its surface treatment
JPS57159294A (en) * 1981-03-25 1982-10-01 Daicel Chem Ind Ltd Covered electrode
JPS58176202A (en) * 1982-04-12 1983-10-15 Daicel Chem Ind Ltd Production of alkali salt of highly substituted carboxy- methylcellulose
JPS58223686A (en) * 1982-06-14 1983-12-26 ダイセル化学工業株式会社 Viscosifier for aqueous explosive
JPS597494A (en) * 1982-07-06 1984-01-14 Daicel Chem Ind Ltd Water glass composition
JPS5920684A (en) * 1982-07-26 1984-02-02 Fujitsu Ltd Print gap adjusting mechanism

Also Published As

Publication number Publication date
JPS60257992A (en) 1985-12-19

Similar Documents

Publication Publication Date Title
CA1054134A (en) High-temperature lubricant for the hot-working of metals
US2988455A (en) Polysaccharide composition and method of manufacture
US2547771A (en) Solder composition
JP6088204B2 (en) Solder composition
JPH0448557B2 (en)
JPH01205062A (en) Ni-base alloy powder for forming amorphous sprayed deposit excellent in corrosion resistance
US3653884A (en) Process for the continuous production of a strip from powdered metal
CN103706961B (en) Halogen-free tin paste
US4298383A (en) Low viscosity composition for forming shaped bodies
JP2003509581A (en) Lubricant composite material and method for producing the same
DE2813524B2 (en) Coated electrode for arc welding and process for their manufacture
US2077397A (en) Hard surfacing weldrod
US2456609A (en) Welding electrodes
US2515022A (en) Method of tinning copper wire
US2578976A (en) Method of coating ingot molds and composition therefor
US3108020A (en) Coated welding electrodes and methods of making same
US3037873A (en) Method and composition for coating molds
PH27183A (en) Soap composition
JPS6213400B2 (en)
US2150000A (en) Welding electrode
CN108015269A (en) A kind of additive for powder metallurgy
WO2003080286A1 (en) Paste-like composition for brazing and brazing method using the same
JPH0124600B2 (en)
JPS5847096A (en) High-temperature lubricant composition
US4062703A (en) Sand containing flux