JPH0447367B2 - - Google Patents

Info

Publication number
JPH0447367B2
JPH0447367B2 JP57160966A JP16096682A JPH0447367B2 JP H0447367 B2 JPH0447367 B2 JP H0447367B2 JP 57160966 A JP57160966 A JP 57160966A JP 16096682 A JP16096682 A JP 16096682A JP H0447367 B2 JPH0447367 B2 JP H0447367B2
Authority
JP
Japan
Prior art keywords
magnetic
thin film
film
head
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57160966A
Other languages
Japanese (ja)
Other versions
JPS5952421A (en
Inventor
Hideo Zama
Kanji Kawano
Mitsuo Abe
Katsuo Konishi
Mitsuharu Tamura
Norio Goto
Hiroaki Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16096682A priority Critical patent/JPS5952421A/en
Publication of JPS5952421A publication Critical patent/JPS5952421A/en
Publication of JPH0447367B2 publication Critical patent/JPH0447367B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3103Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は2つの非磁性基板間に磁性層を有し、
該磁性層の厚み方向に所定のヘツドギヤツプが形
成されてなる薄膜磁気ヘツドとその製造方法に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention has a magnetic layer between two non-magnetic substrates,
The present invention relates to a thin film magnetic head in which a predetermined head gap is formed in the thickness direction of the magnetic layer, and a method for manufacturing the same.

〔従来技術〕[Prior art]

従来、ビデオテープレコーダなどに用いられる
磁気ヘツドとして、薄膜磁気ヘツドが開発されて
おり、トラツク幅を充分に狭くすることができる
ようにして記録密度の向上を可能にしている。
Conventionally, thin film magnetic heads have been developed as magnetic heads used in video tape recorders and the like, and have made it possible to sufficiently narrow the track width, thereby improving recording density.

かかる薄膜磁気ヘツドは、磁性層とこれを保護
する非磁性基板とからなり、該非磁性基板の一方
にスパツタリングなどにより該磁性層が形成さ
れ、該磁性層の表面に該非磁性基板の他方を接着
し、磁性層を非磁性基板によりサンドイツチ状に
挾んで構成されている。そして、ヘツドギヤツプ
は、磁性層の厚み方向に所定ギヤツプ幅で形成さ
れており、アジマス角に応じてヘツドギヤツプの
傾きを定めることができる。
Such a thin film magnetic head consists of a magnetic layer and a nonmagnetic substrate that protects the magnetic layer.The magnetic layer is formed on one side of the nonmagnetic substrate by sputtering or the like, and the other side of the nonmagnetic substrate is bonded to the surface of the magnetic layer. , a magnetic layer is sandwiched between non-magnetic substrates in the shape of a sandwich. The head gap is formed with a predetermined gap width in the thickness direction of the magnetic layer, and the inclination of the head gap can be determined according to the azimuth angle.

ところで、このような薄膜磁気ヘツドにおいて
は、従来、非磁性基板と磁性層との接着を、適当
は樹脂でもつて行なつていた。このように、接着
剤として樹脂を用いることは、接着強度の点で信
頼性に乏しく、また、薄膜磁気ヘツドのテープと
の接触面に樹脂層が露出していることになるか
ら、薄膜磁気ヘツドのテープに対する、いわゆる
テープタツチに著しく悪影響を及ぼし、テープの
円滑な走行を阻害するとともに、テープの走行に
よる樹脂層の磨耗が生ずることになる。
By the way, in such a thin film magnetic head, the nonmagnetic substrate and the magnetic layer have conventionally been bonded together using a resin. As described above, using resin as an adhesive is not reliable in terms of adhesive strength, and the resin layer is exposed on the contact surface of the thin-film magnetic head with the tape. This has a significant adverse effect on the so-called tape touch of the tape, impeding smooth running of the tape, and causing wear of the resin layer due to the running of the tape.

また、磁性層は応力により大きく磁気特性が変
化し、この変化を小さくするためには、接着層を
極力薄くする方が好ましいが、このことは、接着
強度の信頼性をさらに低下させることになる。
In addition, the magnetic properties of the magnetic layer change significantly due to stress, and in order to reduce this change, it is preferable to make the adhesive layer as thin as possible, but this further reduces the reliability of the adhesive strength. .

ビデオテープレコーダに用いられる磁気ヘツド
のヘツドギヤツプのトラツク幅は、一般に、約
20μm以上である。しかるに、ビデオテープレコ
ーダに用いられる薄膜磁気ヘツドの場合、その磁
性層は厚みが約20μm以上であることを必要とす
るから、かかる厚さの磁性層をスパツタリング法
などで形成しようとすると、膨大な時間を要する
ことになる。また、薄膜磁気ヘツドの磁性層は、
金属磁性体からなるものであるから抵抗抗体であ
り、渦電流が生じて高周波での透磁率損失が顕著
になり、金属磁性体のみからなる厚さ約20μmの
磁性層である場合、この損失は非常に大きいもの
となる。そこで、通常20μm以上の厚さの磁性層
は、薄い磁性膜と非磁性絶縁物の層間膜とで多層
構造とする必要がある。
The track width of the head gap of a magnetic head used in a video tape recorder is generally approximately
It is 20 μm or more. However, in the case of thin-film magnetic heads used in video tape recorders, the thickness of the magnetic layer must be approximately 20 μm or more, so if a magnetic layer of such thickness is to be formed by sputtering or the like, it will take an enormous amount of time. It will take time. In addition, the magnetic layer of a thin film magnetic head is
Since it is made of a metal magnetic material, it is a resistive antibody, and eddy currents occur and the permeability loss becomes significant at high frequencies.If the magnetic layer is approximately 20 μm thick and is made of only a metal magnetic material, this loss will be It will be very large. Therefore, a magnetic layer having a thickness of 20 μm or more usually needs to have a multilayer structure consisting of a thin magnetic film and an interlayer film of nonmagnetic insulator.

磁性層の形成に際し、たとえば、スパツタリン
グにおける基板温度、Arガスのガス圧、電極間
の距離などの条件により、形成される金属磁性膜
の応力が変化して磁気特性が影響を受ける。この
応力は膜厚が厚くなる程顕著となり、特に、膜厚
が10μm以上で応力が増加して応力のコントロー
ルが困難になる。また、非磁性基板と磁性層との
熱膨張率が異なると、磁性層の厚さに比例して応
力が増加する。両者の熱膨張率が合致していれば
問題はないが、通常、これらを合致させることは
容易でなく、多少の応力は許容されていた。
When forming a magnetic layer, the stress of the formed metal magnetic film changes depending on conditions such as the substrate temperature during sputtering, the gas pressure of Ar gas, and the distance between electrodes, thereby affecting the magnetic properties. This stress becomes more pronounced as the film thickness increases, and in particular, when the film thickness is 10 μm or more, the stress increases and becomes difficult to control. Furthermore, if the nonmagnetic substrate and the magnetic layer have different coefficients of thermal expansion, stress increases in proportion to the thickness of the magnetic layer. There is no problem if the coefficients of thermal expansion of both materials match, but it is usually not easy to match them, and some stress is allowed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の欠点を除き、
優れた機械的強度と一様は磁気特性を有し、製造
時間が短縮された薄膜磁気ヘツドとその製造方法
を提供するにある。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned prior art,
It is an object of the present invention to provide a thin film magnetic head having excellent mechanical strength and uniform magnetic properties and shortening the manufacturing time, and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

この目的を達成するために、本発明は、非磁性
基板の夫々に部分磁性層がスパツタリング法など
によつて形成され、該部分磁性層をガラス薄膜に
より互いに接着するようにした点を特徴とする。
In order to achieve this object, the present invention is characterized in that a partial magnetic layer is formed on each of the nonmagnetic substrates by a sputtering method or the like, and the partial magnetic layers are bonded to each other with a glass thin film. .

先述のように、スパツタリングなどにより金属
磁性膜を形成する場合、膜厚が、10μm以上とな
ると応力が増加する。しかし、実験の結果では、
膜厚が10μm以下では、常に安定した高磁気特性
が再現性よく得られ、磁気特性にバラツキが生じ
ないということがわかつた。このように、金属磁
性膜の膜厚を10μm以下に形成することは、ま
た、磁性層を金属磁性膜と非磁性絶縁物の層間膜
とを交互に積層した多層構造とすることに何等支
障とならないし、また、層間膜として、金属磁性
膜相互を接着する非磁性絶縁物の接着剤を用いる
ことができる。
As mentioned above, when a metal magnetic film is formed by sputtering or the like, stress increases when the film thickness becomes 10 μm or more. However, the experimental results show that
It was found that when the film thickness was 10 μm or less, stable and high magnetic properties were always obtained with good reproducibility, and no variation occurred in the magnetic properties. In this way, forming the metal magnetic film to a thickness of 10 μm or less does not pose any problem in forming the magnetic layer into a multilayer structure in which metal magnetic films and non-magnetic insulating interlayer films are alternately laminated. Alternatively, a non-magnetic insulating adhesive that adheres the metal magnetic films to each other can be used as the interlayer film.

〔発明の実施例〕[Embodiments of the invention]

本発明は、以上の点を考慮してなされたもので
ある。
The present invention has been made in consideration of the above points.

以下、本発明の実施例を図面について説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による薄膜磁気ヘツドの一実施
例を示す正面図であつて、、1,1′は非磁性基
板、21,22,21′,22′は金属磁性膜、3,
3′は層間膜、4はガラス薄膜、5はヘツドギヤ
ツプである。ここにガラス薄膜4とヘツドギヤツ
プ5の方向は、図からわかるように略直交してい
る。
FIG. 1 is a front view showing an embodiment of a thin film magnetic head according to the present invention, in which 1 and 1' are nonmagnetic substrates, 2 1 , 2 2 , 2 1 ', and 2 2 ' are metal magnetic films, 3,
3' is an interlayer film, 4 is a glass thin film, and 5 is a head gap. As can be seen from the figure, the directions of the glass thin film 4 and the head gap 5 are substantially perpendicular to each other.

この実施例は、非磁性基板1,1′間に磁性層
が形成され、該磁性層は、金属磁性膜21,22
1′,22′、層間膜3,3′、ガラス薄膜4が積層
されて多層構造をなしている。金属磁性膜21
層間膜3、金属磁性層22の部分磁性層は非磁性
基板1上に、また、金属磁性膜21′、層間膜3′、
金属磁性膜22′の部分磁性層は非磁性基板1′上
に夫々スパツタリング法などで形成されたもので
あつて、金属磁性膜22,22′は低融点のガラス
薄膜4によつて接着されている。層間膜3,3′
はSiOなどの非磁性絶縁層であつて、磁性層での
渦電流の発生を防止する。ガラス薄膜4は接着剤
とともに層間膜としても機能している。
In this embodiment, a magnetic layer is formed between non-magnetic substrates 1 and 1', and the magnetic layer consists of metal magnetic films 2 1 , 2 2 ,
2 1 ', 2 2 ', interlayer films 3, 3', and glass thin film 4 are laminated to form a multilayer structure. metal magnetic film 2 1 ,
The interlayer film 3, the partial magnetic layer of the metal magnetic layer 22 are on the non-magnetic substrate 1, and the metal magnetic film 21 ', the interlayer film 3',
The partial magnetic layers of the metal magnetic film 2 2 ′ are formed on the nonmagnetic substrate 1 ′ by a sputtering method, etc., and the metal magnetic films 2 2 , 2 2 ′ are formed by a thin glass film 4 having a low melting point. It is glued. Interlayer film 3, 3'
is a non-magnetic insulating layer such as SiO, which prevents the generation of eddy currents in the magnetic layer. The glass thin film 4 also functions as an interlayer film together with the adhesive.

金属磁性膜21,22,21′,22′の厚さは10μm
以下に設定され。また、接着材がガラス薄膜4で
あるから、ガラス薄膜4も充分に薄くすることが
できて金属磁性膜21,22,21′,22′での応力
を極力抑制することができ、極性層に所定の磁気
特性を精度よくもたせることができる。そして、
ガラス薄膜4の厚さを薄くしても金属磁性膜22
2′の接着強度は充分に大きく、また、テープの
走行に格別不都合を生じない。
The thickness of the metal magnetic films 2 1 , 2 2 , 2 1 ′, 2 2 ′ is 10 μm
Set below. Furthermore, since the adhesive is the glass thin film 4, the glass thin film 4 can also be made sufficiently thin, and stress in the metal magnetic films 2 1 , 2 2 , 2 1 ′, 2 2 ′ can be suppressed as much as possible. , the polar layer can have predetermined magnetic properties with high precision. and,
Even if the thickness of the glass thin film 4 is reduced, the metal magnetic film 2 2 ,
The adhesive strength of 2 2 ' is sufficiently high and does not cause any particular inconvenience in running the tape.

第2図AないしDは第1図の薄膜磁気ヘツドの
製造方法の一実施例を示す工程図であつて、5′
はギヤツプスペーサであり、第1図に対応する部
分には同一符号をつけている。
2A to 2D are process diagrams showing an embodiment of the method for manufacturing the thin film magnetic head shown in FIG.
1 is a gear spacer, and parts corresponding to those in FIG. 1 are given the same reference numerals.

まず、たとえば、MnO−NiO系などの非磁性
基板1,1′の表面に、たとえば、センダスト薄
膜でなる金属磁性膜21,21′を形成する。一具
体例としては、DC4極スパツタリング装置を用
い、毎時3μmの速度で約6μmの厚さのセンダス
ト薄膜を形成した。次いで、金属磁性膜21,2
1′の上に、RFスパツタリング装置により、SiO2
をスパツタリングして約800Åの厚さの層間膜3,
3′を形成し、さらに、金属磁性膜21,21′の場
合と同様に、約6μmの厚さの金属磁性膜22,2
2′を形成した。そして、金属磁性膜22,22′上
に、RFスパツタリング装置により、低融点のガ
ラスをスパツタリングして約0.3μmのガラス薄膜
4を形成して基板a,bを得た(第2図A)。
First, metal magnetic films 2 1 , 2 1 ' made of sendust thin films, for example, are formed on the surfaces of nonmagnetic substrates 1, 1 ' made of, for example, MnO--NiO. In one specific example, a sendust thin film with a thickness of approximately 6 μm was formed using a DC 4-pole sputtering device at a rate of 3 μm per hour. Next, metal magnetic films 2 1 , 2
1 ′, SiO 2 is deposited by RF sputtering equipment.
An interlayer film 3 with a thickness of about 800 Å is formed by sputtering.
Similarly to the case of metal magnetic films 2 1 and 2 1 ', metal magnetic films 2 2 and 2 with a thickness of about 6 μm are formed.
2 ′ was formed. Then, on the metal magnetic films 2 2 and 2 2 ′, a glass thin film 4 of about 0.3 μm was formed by sputtering low-melting glass using an RF sputtering device to obtain substrates a and b (see Fig. 2A). ).

ガラス薄膜4は、コーニング社のPb系の低融
点ガラスである#1417ガラスを材料として用い、
該ガラスをターゲツトとして、RFスパツタリン
グ装置により、1W/cm2いのパワーを投入して形
成した。
The glass thin film 4 is made of #1417 glass, which is a Pb-based low melting point glass manufactured by Corning.
Using the glass as a target, it was formed by applying a power of 1 W/cm 2 using an RF sputtering device.

次に、基板a,bは、ガラス薄膜4が重なるよ
うに突き合わされ(第2図B)、非磁性基板1,
1′側から所定の圧力を加えながら620℃で10分間
保持し、コアブロツクを形成した(第2図C)。
そして、このコアブロツクを非磁性基板1,1′
間の磁性層の厚さ方向に切断し、夫々の切断面を
鏡面ラツプし、また、図示しないが、巻線窓を形
成した後、夫々の切断面に非磁性ギヤツプスペー
サ5′を形成し(第2図D)、しかる後、上記切断
面を突き合わせて接着ボンデイングし、ヘツドギ
ヤツプ5を形成して第1図の薄膜磁気ヘツドを得
た。
Next, the substrates a and b are butted together so that the glass thin films 4 overlap (FIG. 2B), and the nonmagnetic substrates 1 and
A core block was formed by holding at 620°C for 10 minutes while applying a predetermined pressure from the 1' side (Fig. 2C).
Then, this core block is attached to the non-magnetic substrates 1 and 1'.
After cutting the magnetic layer between them in the thickness direction, mirror-lapping each cut surface, and forming a winding window (not shown), a non-magnetic gear spacer 5' is formed on each cut surface. Thereafter, the cut surfaces were brought together and adhesive bonded to form a head gap 5 to obtain the thin film magnetic head shown in FIG. 1.

以上のようにして、トラツク幅が約24μmのヘ
ツドギヤツプを有する薄膜磁気ヘツドが得られた
わけであるが、第2図Aの工程において、非磁性
基板1,1′上に同時に、金属磁性膜21,22
層間膜3とからなる約12μmの厚さの部分磁性層
と、金属磁性膜21′,22′と層間膜3′とからなる
同じく約12μmの厚さの部分磁性層とが形成さ
れ、これらをガラス薄膜4で互いに接着するもの
であるから、製造に要する時間としては、金属磁
性膜21,22,21′,22′と層間膜3,3′,4を
順次形成してトラツク幅が約24μmのヘツドギヤ
ツプを有する薄膜磁気ヘツドの製造方法に比べ
て、約半分となつて短縮され、順次膜形成してト
ラツク幅12μmのヘツドギヤツプを有する薄膜磁
気ヘツドの製造方法の場合とほぼ等しくなる。
In the above manner, a thin film magnetic head having a head gap with a track width of about 24 μm was obtained. In the process shown in FIG . . _ _ are formed and these are bonded to each other with a glass thin film 4. Therefore, the time required for manufacturing is as follows: A method for manufacturing a thin film magnetic head having a head gap with a track width of about 24 μm by sequentially forming a film, which is about half the length of the head gap, and having a head gap with a track width of 12 μm by sequentially forming a film. It is almost the same as in the case of .

また、各金属磁性膜は10μm以下の厚さで形成
する上に、接着材としてガラスを薄膜形成するも
のであるから、バルクガラス流入法などに比べて
ガラス薄膜の膜厚を容易にコントロールすること
ができ、充分に薄くして各金属磁性膜における応
力を極力抑制することができて、得られる薄膜磁
気ヘツドの磁性層に磁気特性のバラツキがなくな
る。
In addition, since each metal magnetic film is formed to a thickness of 10 μm or less and a thin film of glass is formed as an adhesive, the thickness of the glass thin film can be easily controlled compared to the bulk glass inflow method. It is possible to suppress stress in each metal magnetic film as much as possible by making it sufficiently thin, and there is no variation in magnetic properties in the magnetic layer of the obtained thin film magnetic head.

第3図は本発明による薄膜磁気ヘツドの他の実
施例を示す正面図であつて、2,2′は金属磁性
膜であり、第1図に対応する部分には同一符号を
つけている。
FIG. 3 is a front view showing another embodiment of the thin film magnetic head according to the present invention, in which 2 and 2' are metal magnetic films, and parts corresponding to those in FIG. 1 are given the same reference numerals.

この実施例では、磁性層は金属磁性膜2,2′
とガラス薄膜4とからなり、金属磁性層2,2′
は夫々非磁性基板1,1′にスパツタリング法な
どによつて形成されてものであつて、ガラス薄膜
4は、金属磁性膜2,2′の接着材であるととも
に、層間膜としても機能している。金属磁性膜
2,2′の夫々の膜厚は10μm以下であつて、し
かるに、この実施例はトラツク幅が比較的狭いヘ
ツドギヤツプの薄膜磁気ヘツドであり、ガラス薄
膜4以外の格別の層間膜を必要としない。
In this embodiment, the magnetic layers are metal magnetic films 2, 2'.
and a glass thin film 4, and metal magnetic layers 2, 2'
are formed on the non-magnetic substrates 1, 1' by sputtering or the like, and the glass thin film 4 serves as an adhesive for the metal magnetic films 2, 2' and also functions as an interlayer film. There is. The thickness of each of the metal magnetic films 2 and 2' is 10 μm or less. However, this embodiment is a thin film magnetic head with a relatively narrow head gap and requires no special interlayer film other than the glass thin film 4. I don't.

第4図A,Bは第3図の薄膜磁気ヘツドの製造
方法の一実施例を示す工程図であつて、第3図に
対応する部分には同一符号をつけている。
4A and 4B are process diagrams showing one embodiment of the method for manufacturing the thin film magnetic head shown in FIG. 3, and parts corresponding to those in FIG. 3 are given the same reference numerals.

非磁性基板1,1′上に、厚さ6μmのセンダス
トの金属磁性膜2,2′を形成し、さらに、ガラ
ス薄膜4を形成して基板a,bを得た(第4図
A)。金属磁性膜2,2′およびガラス薄膜4の形
成方法、ガラス薄膜4の材料、厚さなどは、第2
図で示した実施例の場合と同様である。
On the non-magnetic substrates 1, 1', Sendust metal magnetic films 2, 2' having a thickness of 6 μm were formed, and a glass thin film 4 was further formed to obtain substrates a, b (FIG. 4A). The method of forming the metal magnetic films 2, 2' and the glass thin film 4, the material and thickness of the glass thin film 4, etc.
This is similar to the case of the embodiment shown in the figure.

基板a,bは、ガラス薄膜4が重なるように突
き合わされ、加圧、加熱してコアブロツクを得た
(第4図B)。このコアブロツクは、第2図D以下
で説明した加工処理を行なつてヘツドギヤツプを
形成し、第3図に示すトラツク幅が約12μmのヘ
ツドギヤツプの薄膜磁気ヘツドを得た。
The substrates a and b were butted against each other so that the glass thin films 4 overlapped, and were pressurized and heated to obtain a core block (FIG. 4B). This core block was processed to form a head gap as explained in FIG.

かかる薄膜磁気ヘツドは、トラツク幅が約6μ
mの薄膜磁気ヘツドを得るにほぼ等しい時間で得
ることができ、製造時間が短縮され、また、第3
図の実施例と同様の効果を得ることができた。
Such a thin film magnetic head has a track width of approximately 6μ.
m thin-film magnetic heads can be obtained in approximately the same time as that of the previous one, reducing manufacturing time and also reducing the
The same effect as the embodiment shown in the figure could be obtained.

第5図は本発明により薄膜磁気ヘツドのさらに
他の実施例を示す正面図であつて、41,42,4
はガラス薄膜であり、第1図に対応する部分に
は同一符号をつけている。
FIG. 5 is a front view showing still another embodiment of the thin film magnetic head according to the present invention, in which 4 1 , 4 2 , 4
3 is a glass thin film, and parts corresponding to those in FIG. 1 are given the same reference numerals.

この実施例では、磁性層は金属磁性膜21,2
,21′,22′とガラス薄膜41,42,43とが積層
された多層構造をなし、ガラス薄膜41,42,4
は金属磁性膜21,22,21′,22′を接着すると
ともに、層間膜としても機能している。
In this embodiment, the magnetic layers are metal magnetic films 2 1 , 2
2 , 2 1 ′, 2 2 ′ and glass thin films 4 1 , 4 2 , 4 3 are laminated to form a multilayer structure, and the glass thin films 4 1 , 4 2 , 4
3 adheres the metal magnetic films 2 1 , 2 2 , 2 1 ', 2 2 ' and also functions as an interlayer film.

第6図は第5図の薄膜磁気ヘツドの製造方法の
一実施例を示す工程図であつて、第5図に対応す
る部分には同一符号をつけている。
FIG. 6 is a process diagram showing one embodiment of the method for manufacturing the thin film magnetic head shown in FIG. 5, and parts corresponding to those in FIG. 5 are given the same reference numerals.

非磁性基板1,1′上に、厚さ6μmのセンダス
トの磁性膜21,21′を形成し、RFスパツタリン
グ装置により、約1000Åの厚さにガラス薄膜41
3を形成した。次に、厚さ6μmのセンダストの
磁性膜22,22′を形成し、さらに、上記と同様
にして、厚さ約2500Åのガラス薄膜42を形成し
て基板a,bを得た。以下、先に述べたように、
基板a,bを接着し、加工処理してトラツク幅が
約24μmのヘツドギヤツプを有する第5図の薄膜
磁気ヘツドを得た。センダストの磁性膜の形成方
法、ガラス薄膜の材料などは、先に述べた実施例
と同様である。
Sendust magnetic films 2 1 , 2 1 ′ with a thickness of 6 μm are formed on the nonmagnetic substrates 1 , 1 ′, and glass thin films 4 1 , 2 1 ′ with a thickness of about 1000 Å are formed using an RF sputtering device.
4 3 was formed. Next, sendust magnetic films 2 2 and 2 2 ' having a thickness of 6 μm were formed, and then a glass thin film 4 2 having a thickness of about 2500 Å was formed in the same manner as above to obtain substrates a and b. Below, as mentioned earlier,
Substrates a and b were bonded and processed to obtain the thin film magnetic head shown in FIG. 5 having a head gap with a track width of approximately 24 μm. The method of forming the Sendust magnetic film, the material of the glass thin film, etc. are the same as in the previous embodiment.

この実施例によれば、ガラス薄膜が層間膜と接
着材とを兼ね、かつ、層間膜は全て同じ材料であ
るから、RFスパツタリング装置のターゲツトを
交換する手間が省け、また、基板a,b(第6図)
を加圧、加熱状態に接着する場合、全てのガラス
薄膜41,42,43が同じ溶融状態となつて粘度
が低下し、磁性膜21,22,21′,22′に加わる
応力が緩和される。
According to this embodiment, since the glass thin film serves as both the interlayer film and the adhesive, and all the interlayer films are made of the same material, the trouble of replacing the target of the RF sputtering device can be saved, and the substrates a, b ( Figure 6)
When bonding under pressure and heat, all the glass thin films 4 1 , 4 2 , 4 3 are in the same molten state, the viscosity is reduced, and the magnetic films 2 1 , 2 2 , 2 1 ′, 2 2 ′ The stress applied to the area is alleviated.

以上、本発明の実施例について説明したが、製
造方法の各実施例において、必ずしも基板a,b
の夫々の表面にガラス薄膜を形成する必要はな
く、いずれか一方にのみ形成するようにしてもよ
く、また、各金属磁性膜の厚さも6μmに限定さ
れるのではない。さらに、非磁性基板1,1′上
に直接金属磁性膜が形成されるものとして説明し
たが、非磁性基板1,1′と金属磁性膜との接着
性を向上させるために、非磁性基板1,1′上に
他の適当な物質膜を形成し、その上に金属磁性膜
を形成するようにすることもできる。
The embodiments of the present invention have been described above, but in each embodiment of the manufacturing method, the substrates a, b
It is not necessary to form a glass thin film on each surface of the metal magnetic film, and it may be formed on only one of them, and the thickness of each metal magnetic film is not limited to 6 μm. Furthermore, although the description has been made assuming that the metal magnetic film is formed directly on the non-magnetic substrates 1, 1', in order to improve the adhesion between the non-magnetic substrates 1, 1' and the metal magnetic film, , 1' may be formed with another suitable material film, and a metal magnetic film may be formed thereon.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、非磁性
基板の夫々に部分磁性層が形成され、該部分磁性
層を互いにガラス薄膜により接着したものである
から、機械的強度が向上し、磁性層への応力も緩
和することができてバラツキのない磁気特性を有
し、さらに製造時間を大幅に短縮することがて生
産効率も向上し、上記従来技術の欠点を除いて優
れた機能の薄膜磁気ヘツドとその製造方法を提供
することができる。
As explained above, according to the present invention, a partial magnetic layer is formed on each of the nonmagnetic substrates, and the partial magnetic layers are bonded to each other with a glass thin film, so that the mechanical strength is improved and the magnetic layer It is a thin-film magnetic film that has excellent functions, except for the drawbacks of the above-mentioned conventional technology. A head and a method for manufacturing the same can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による薄膜磁気ヘツドの一実施
例を示す正面図、第2図AないしDは第1図の薄
膜磁気ヘツドの製造方法の一実施例を示す工程
図、第3図は本発明による薄膜磁気ヘツドの他の
実施例を示す正面図、第4図A,Bは第3図の薄
膜磁気ヘツドの製造方法の一実施例を示す工程
図、第5図は本発明による薄膜磁気ヘツドのさら
に他の実施例を示す正面図、第6図は第5図の薄
膜磁気ヘツドの製造方法の一実施例を示す工程図
である。 1,1′……非磁性基板、2,2′,21,22
1′,22′……金属磁性層、3,3′……層間材、
4,41,42,43……ガラス薄膜、5……ヘツ
ドギヤツプ、5′……ギヤツプスペーサ。
FIG. 1 is a front view showing an embodiment of the thin film magnetic head according to the present invention, FIGS. 2A to D are process diagrams showing an embodiment of the method for manufacturing the thin film magnetic head of FIG. 1, and FIG. A front view showing another embodiment of the thin film magnetic head according to the invention, FIGS. 4A and 4B are process diagrams showing an embodiment of the method for manufacturing the thin film magnetic head of FIG. 3, and FIG. 5 shows a thin film magnetic head according to the invention. FIG. 6 is a front view showing still another embodiment of the head, and FIG. 6 is a process diagram showing an embodiment of the method for manufacturing the thin film magnetic head of FIG. 1, 1'...Nonmagnetic substrate, 2, 2', 2 1 , 2 2 ,
2 1 ′, 2 2 ′...metal magnetic layer, 3, 3'... interlayer material,
4, 4 1 , 4 2 , 4 3 ... glass thin film, 5 ... head gap, 5' ... gear spacer.

Claims (1)

【特許請求の範囲】 1 2つの非磁性基板と磁性層とが積層してな
り、前記磁性層の厚み方向にヘツドギヤツプが形
成された薄膜磁気ヘツドにおいて、前記磁性層
は、前記ヘツドギヤツプに略直交する方向に配し
たガラス薄膜により分割された第1、第2の部分
磁性層からなり、前記ガラス薄膜により、前記第
1、第2の部分磁性層が接着されていることを特
徴とする薄膜磁気ヘツド。 2 特許請求の範囲第1項において、前記第1、
第2の部分磁性層は、単層の磁性薄膜であること
を特徴とする薄膜磁気ヘツド。 3 特許請求の範囲第1項において、前記第1、
第2の部分磁性層は、磁性薄膜と層間膜とが交互
に積層されてなり、前記層間膜が前記磁性薄膜間
に介在せることを特徴とする薄膜磁気ヘツド。 4 2つの非磁性基板と磁性層とが積層してな
り、前記磁性層の厚み方向にヘツドギヤツプが形
成された薄膜磁気ヘツドを製造方法において、前
記非磁性基板の夫々に第1、第2の部分磁性層を
形成し第1、第2の基板を得る第1の工程と、前
記第1、第2の部分磁性層の少なくともいずれか
一方にガラス薄膜を形成する第2の工程と、前記
ガラス薄膜を接着層とし前記第1、第2の基板を
接着する第3の工程と、前記ヘツドギヤツプを形
成する第4の工程とからなり、製造に要する時間
を短縮することができるように構成したことを特
徴とする薄膜磁気ヘツドの製造方法。 5 特許請求の範囲第4項において、前記第1、
第2の部分磁性層は、単層の磁性薄膜であること
を特徴とする薄膜磁気ヘツドの製造方法。 6 特許請求の範囲第4項において、前記第1の
工程は、磁性薄膜と層間膜とを交互に形成し、前
記層間膜が前記磁性薄膜間に介在せる前記第1、
第2の部分磁性層を形成することができるように
構成したことを特徴とする薄膜磁気ヘツドの製造
方法。
[Claims] 1. A thin film magnetic head in which two non-magnetic substrates and a magnetic layer are laminated, and a head gap is formed in the thickness direction of the magnetic layer, wherein the magnetic layer is substantially orthogonal to the head gap. A thin film magnetic head comprising first and second partial magnetic layers separated by a thin glass film arranged in the direction of the head, the first and second partial magnetic layers being bonded together by the glass thin film. . 2. In claim 1, the first,
A thin film magnetic head characterized in that the second partial magnetic layer is a single-layer magnetic thin film. 3 In claim 1, the first,
A thin film magnetic head characterized in that the second partial magnetic layer is formed by alternately laminating magnetic thin films and interlayer films, and the interlayer film is interposed between the magnetic thin films. 4. In a method for manufacturing a thin film magnetic head in which two nonmagnetic substrates and a magnetic layer are laminated, and a head gap is formed in the thickness direction of the magnetic layer, first and second portions are formed on each of the nonmagnetic substrates. a first step of forming a magnetic layer to obtain first and second substrates; a second step of forming a glass thin film on at least one of the first and second partial magnetic layers; and a second step of forming a glass thin film on at least one of the first and second partial magnetic layers. A third step of bonding the first and second substrates using an adhesive layer, and a fourth step of forming the head gap, and the manufacturing time can be shortened. A method for manufacturing a characteristic thin film magnetic head. 5 In claim 4, the first,
A method for manufacturing a thin-film magnetic head, wherein the second partial magnetic layer is a single-layer magnetic thin film. 6. In claim 4, the first step includes forming a magnetic thin film and an interlayer film alternately, and the interlayer film is interposed between the magnetic thin films.
1. A method of manufacturing a thin-film magnetic head, characterized in that the head is configured to form a second partial magnetic layer.
JP16096682A 1982-09-17 1982-09-17 Thin film magnetic head and its manufacture Granted JPS5952421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16096682A JPS5952421A (en) 1982-09-17 1982-09-17 Thin film magnetic head and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16096682A JPS5952421A (en) 1982-09-17 1982-09-17 Thin film magnetic head and its manufacture

Publications (2)

Publication Number Publication Date
JPS5952421A JPS5952421A (en) 1984-03-27
JPH0447367B2 true JPH0447367B2 (en) 1992-08-03

Family

ID=15726017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16096682A Granted JPS5952421A (en) 1982-09-17 1982-09-17 Thin film magnetic head and its manufacture

Country Status (1)

Country Link
JP (1) JPS5952421A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226917A (en) * 1985-07-26 1987-02-04 Tdk Corp Thin film magnetic head and its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107325A (en) * 1980-01-31 1981-08-26 Fujitsu Ltd Manufacture for magnetic recording head
JPS57141009A (en) * 1981-02-23 1982-09-01 Hitachi Ltd Thin film magnetic head and its production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55174730U (en) * 1979-05-31 1980-12-15

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107325A (en) * 1980-01-31 1981-08-26 Fujitsu Ltd Manufacture for magnetic recording head
JPS57141009A (en) * 1981-02-23 1982-09-01 Hitachi Ltd Thin film magnetic head and its production

Also Published As

Publication number Publication date
JPS5952421A (en) 1984-03-27

Similar Documents

Publication Publication Date Title
US4670972A (en) Method for making magnetic heads
JP2971891B2 (en) Magnetic head
JP2554041B2 (en) Method of manufacturing magnetic head core
JPH0447367B2 (en)
JPS6214313A (en) Magnetic head
JPH0585964B2 (en)
JPS5952420A (en) Thin-film magnetic head
JP2618860B2 (en) Magnetic head and method of manufacturing the same
JPH0465444B2 (en)
JPH0546603B2 (en)
JP2874787B2 (en) Manufacturing method of alloy magnetic thin film laminate
JPS62141609A (en) Manufacture of magnetic head
JPH0145138B2 (en)
JPS63239607A (en) Production of magnetic head core
JPS59203210A (en) Magnetic core and its production
JPH0240113A (en) Manufacture of magnetic head
JPS6038714A (en) Thin film video head and its production
JPH06338020A (en) Production of magnetic head
JPH04268202A (en) Magnetic head
JPS60195710A (en) Manufacture of magnetic head
JPS60150218A (en) Magnetic head
JPS5971113A (en) Core member for magnetic head
JPH02168406A (en) Manufacture of magnetic head
JPS62162208A (en) Magnetic head
JPS5952419A (en) Thin film magnetic head