JPH0447286B2 - - Google Patents

Info

Publication number
JPH0447286B2
JPH0447286B2 JP57037391A JP3739182A JPH0447286B2 JP H0447286 B2 JPH0447286 B2 JP H0447286B2 JP 57037391 A JP57037391 A JP 57037391A JP 3739182 A JP3739182 A JP 3739182A JP H0447286 B2 JPH0447286 B2 JP H0447286B2
Authority
JP
Japan
Prior art keywords
lens
scanning
plano
flat
lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57037391A
Other languages
Japanese (ja)
Other versions
JPS58153908A (en
Inventor
Yoshiaki Matsunaga
Akyoshi Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP3739182A priority Critical patent/JPS58153908A/en
Publication of JPS58153908A publication Critical patent/JPS58153908A/en
Publication of JPH0447286B2 publication Critical patent/JPH0447286B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明はレーザービームプリンタ等の走査光学
系に用いられる走査用レンズに関するものであ
る。 従来技術 第1図はレーザービームプリンタの走査光学系
の一従来例を示すものである。この図において半
導体レーザー発生装置1で発生されたレーザービ
ームは、回転多面鏡2で反射され走査用レンズ3
を通つて感光ドラム4に達する。そして、回転多
面鏡2の回転により偏向角度を変えられ感光ドラ
ム4上で矢印a方向の走査をおこない、これを繰
返えす。ここで走査用レンズ3は、回転多面鏡2
の回転特性に応じた歪曲収差をもたせたレンズで
あり、レーザービームの感光ドラム4上での走査
速度を等速にするものである。このような走査用
レンズは、偏向器が回転多面鏡の場合は理想像高
yをf・θとしたf・θレンズ、偏向器が正弦振
動鏡の場合は理想像高yをf・arcsinθとしたア
ークサインレンズである。これらレンズの歪曲収
差Disは実際の像高をy′として、 Dis=y′−y/y×100(%) であらわされる。 第1図に示すように従来の走査用レンズは、光
軸方向から見て円形のレンズで構成されており、
全体として載頭円錐形若しくは円筒形をしている
ものであつた。しかしながら、半導体レーザーの
使用等走査光学系の他の要素がコンパクト化され
るにつれ、このような形状の走査用レンズのスペ
ース占有率が大きくなり、走査用レンズのコンパ
クト化が望まれていた。 円形レンズで構成される走査用レンズにおいて
実際に光ビームが通過するのは、第2図Aにハツ
チングで示された光ビームの走査方向と平行な矩
形状部分のみであり、他の部分はレンズとしては
不要の部分である。それ故第3図に示すように、
走査用レンズ3′を光軸方向及び走査方向と直交
する方向に偏平化することが考えられる。即ち、
走査用レンズを第2図Aに実線で示すようなビー
ム通過領域(ハツチング部分)に沿つた形状とす
るのである。しかしながら、この偏平化を単純に
おこなうと次のような問題点を招来することにな
る。 即ち、従来の走査用レンズの位置決め固定は第
2図Bで示すように鏡胴内面との円周状の線接触
でおこなわれていたが、これを単純に偏平化して
従来通りの位置決め固定をおこなおうとすると、
第2図Cに示すように光軸方向から見て円弧状の
当り面Pをレンズ中心に対し正確な位置・形状に
加工しなければならず、このような加工は非常に
難しくまた工程が増加する。また、ある程度の精
度で加工できたとしても当り面が少ないので組立
てた走査用レンズの各レンズが偏芯し充分な性能
を得ることができない。第2図Dは鏡胴をフライ
ス加工した場合を示すが、この場合は数点の点支
持となり前記と同様に充分な性能を得ることがで
きない。 目的・要旨 本発明は、上記に鑑みてなされたものであり、
製作が容易で精度良く組み立てることができ、十
分なレンズ性能を得られる偏平状の走査用レンズ
の提供を目的とする。 上記目的は、光ビーム通過領域に沿つた偏平な
形状の複数のレンズから構成され、偏向器によつ
て偏向された光ビームを結像面上で等速走査させ
る走査用レンズにおいて、各構成レンズが、入射
側から順に、平凹レンズ、平凸レンズ、平凸レン
ズであり、各構成レンズの平面側レンズ面がそれ
ぞれ当接する複数の当り面を有するレンズ保持部
材を備え、条件 −0.14≦d2/f1≦−0.05 0.028≦d2/f≦0.19 d2:レンズ第2面と第3面の面間隔 f1:第1レンズの焦点距離 f:レンズ全系の焦点距離 を満足する走査用レンズによつて達成される。 実施例 第4図は一面を平面とした偏平単レンズLを示
す。このレンズLの平面の両端部分(ハツチング
部分P)が位置決め用の当り面として用いられ
る。レンズLの他の面は点又は線接触で支持され
る。 第5図はさらに改良された本発明の偏平単レン
ズL′を示す。このレンズL′は一方のレンズ面を平
面とされる他に走査方向側端Qも平面とされ(第
5図A)、さらに他方のレンズ面の走査方向両端
(ハツチング部分R)を面取り加工されている
(第5図B)。尚第5図Cは同様に加工された平凹
レンズを示す。両側端の平面化は光軸のまわりの
レンズの偏心を規制することができ、また、この
ようなレンズL′を加工製作する際直方体の一面を
レンズ面に加工するだけでよいので製作が非常に
容易になる。 曲面側レンズ面の走査方向両端部の面取り加工
は、レンズの保持を2つの平面でおこなえるので
保持位置決めをより精度よく確実におこなうこと
ができる利点をもつ。 尚、このようなレンズはプラスチツク成型によ
つても製作することもできる。 第6図は上述のレンズ面の一方が平面とされた
偏平単レンズを3個組合せた走査用レンズの組立
て例を示す。 第6図において、走査用レンズは入射側から平
凹レンズL1、平凸レンズL2、平凸レンズL3から
構成され、これらのレンズは保持部材10,1
1、バネ性の押え部材12a,12b,13a,
13b,14a,14b及び図示しない上下の蓋
部材で保持位置決めされる。即ち、前記レンズ
L1,L2,L3の平面側レンズ面は保持部材10,
11の当り面10−1,11−1,10−2,1
1−2,10−3,11−3に夫々当接され、曲
面側レンズ面は夫々押え部材12a,12b,1
3a,13b,14a,14bで押えられる。
尚、押え部材は図示の如く平面でもよいが凹形に
形成してレンズの曲面に対し少なくとも2点で押
えるようにしてもよい。さらに前記レンズをプラ
スチツク成型する場合はレンズ端部に貫通孔を設
けて当り面にねじ止めしてもよい。 このように構成される走査用レンズの組立ては
非常に簡単であり、充分な精度を得られるもので
ある。 この走査用レンズはレンズ面の一方を平面とす
るので充分なレンズ性能を得るためには2枚以上
のレンズ構成とすることが望ましい。しかし、あ
まり多数枚にすると収差補正上は有効であるが、
透過ビーム強度の減少・コスト高等不利な点も出
てくるので2枚又は3枚のレンズ構成が実際的で
ある。 また、このような走査用レンズは平面を多く含
むため収差補正の自由度が減り、走査速度の等速
性とレーザービームのくずれの主な原因となる収
差、即ち、歪曲収差と非点収差をバランスよくコ
ントロールするにはある条件を満足しなければな
らない。 物体側から平凹・平凸・平凸の3枚構成のf・
θレンズの場合次の条件が必要である。 −0.14≦d2/f1≦−0.05 ……(1) 0.028≦d2/f≦0.19 ……(2) d2:レンズ第2面と第3面との面間隔 f1:第1レンズの焦点距離 f:レンズ全体の焦点距離 ここで、d2が小さすぎると歪曲・非点収差が共
にアンダーになり、大きすぎると共にオーバーに
なり、f1についても同じことが言える。しかしな
がら、d2とf1は互いに関係するため、これらを全
く別々に規定すると広範な条件となつてしまう。
そこで、互いに関係するd2とf1の比を条件(1)のよ
うに規定することによつて、歪曲・非点収差をバ
ランスよく補正することができる。この条件(1)の
上限又は下限を越えると、歪曲収差又は非点収差
の一方は補正できたとしても他方を補正しきれな
くなる。 一方、条件(2)の下限を越えると、d2が小さすぎ
ることになるので前述したように歪曲・非点収差
が共にアンダーになる。また、条件(2)の上限は、
収差補正上の許容値よりも狭い範囲を規定するも
のであり、これはレンズ加工上の問題を考慮して
設定されている。つまり、この上限を越えると、
d2が大きすぎるので、第2・第3レンズを大きく
しなければならずレンズ加工上不利になる。 以下、本発明を適用したf・θレンズの構成例
を示す。各構成例において、レンズ全体の焦点距
離は100mm、FNOは80であり、波長780mmの半導体
レーザーを光源に用いたものである。
TECHNICAL FIELD The present invention relates to a scanning lens used in a scanning optical system such as a laser beam printer. Prior Art FIG. 1 shows a conventional example of a scanning optical system for a laser beam printer. In this figure, a laser beam generated by a semiconductor laser generator 1 is reflected by a rotating polygon mirror 2 and is reflected by a scanning lens 3.
The photosensitive drum 4 is reached through the photosensitive drum 4. Then, the deflection angle is changed by the rotation of the rotating polygon mirror 2, and the photosensitive drum 4 is scanned in the direction of the arrow a, and this is repeated. Here, the scanning lens 3 is a rotating polygon mirror 2.
This lens has a distortion aberration corresponding to the rotational characteristics of the laser beam, and makes the scanning speed of the laser beam on the photosensitive drum 4 constant. When the deflector is a rotating polygon mirror, such a scanning lens is an f-θ lens with the ideal height y as f·θ, and when the deflector is a sinusoidal oscillating mirror, the ideal height y is f·arcsinθ. This is an arcsine lens. Distortion aberration Dis of these lenses is expressed as Dis = y' - y/y x 100 (%), where y' is the actual image height. As shown in Fig. 1, the conventional scanning lens consists of a circular lens when viewed from the optical axis direction.
It had a truncated conical or cylindrical shape as a whole. However, as other elements of the scanning optical system, such as the use of semiconductor lasers, have become more compact, the space occupancy of such a shaped scanning lens has increased, and it has been desired to make the scanning lens more compact. In a scanning lens composed of a circular lens, the light beam actually passes only through the rectangular portion parallel to the scanning direction of the light beam, indicated by hatching in Figure 2A, and the other portions are covered by the lens. This is an unnecessary part. Therefore, as shown in Figure 3,
It is conceivable to flatten the scanning lens 3' in a direction perpendicular to the optical axis direction and the scanning direction. That is,
The scanning lens is shaped along the beam passage area (hatched area) as shown by the solid line in FIG. 2A. However, if this flattening is simply carried out, the following problems will arise. In other words, conventional scanning lenses were positioned and fixed by making circumferential line contact with the inner surface of the lens barrel, as shown in Figure 2B. When you try to do this,
As shown in Figure 2C, the arc-shaped abutting surface P when viewed from the optical axis direction must be machined to an accurate position and shape with respect to the center of the lens, and such processing is extremely difficult and increases the number of steps. do. Further, even if processing can be performed with a certain degree of accuracy, the contact surface is small, so each lens of the assembled scanning lens will be decentered, making it impossible to obtain sufficient performance. FIG. 2D shows a case where the lens barrel is milled, but in this case, it is supported at several points, making it impossible to obtain sufficient performance as in the above case. Purpose/Summary The present invention has been made in view of the above,
The purpose of the present invention is to provide a flat scanning lens that is easy to manufacture, can be assembled with high precision, and has sufficient lens performance. The above purpose is to provide a scanning lens that is composed of a plurality of lenses having a flat shape along the light beam passage area and scans the light beam deflected by a deflector at a constant speed on the imaging plane. are, in order from the incident side, a plano-concave lens, a plano-convex lens, and a plano-convex lens, and are provided with a lens holding member having a plurality of abutment surfaces against which the planar side lens surfaces of each constituent lens abut, respectively, and the condition -0.14≦d 2 /f 1 ≦−0.05 0.028≦d 2 /f≦0.19 d 2 : Distance between the second and third lens surfaces f 1 : Focal length of the first lens f : A scanning lens that satisfies the focal length of the entire lens system. It is achieved by doing so. Embodiment FIG. 4 shows a flat single lens L whose one surface is flat. Both end portions (hatched portions P) of the plane of this lens L are used as contact surfaces for positioning. The other surface of the lens L is supported in point or line contact. FIG. 5 shows a further improved flat single lens L' of the present invention. This lens L' has one lens surface that is flat, and the side edge Q in the scanning direction that is also flat (Fig. 5A), and both ends (hatched portion R) of the other lens surface in the scanning direction are chamfered. (Figure 5B). Incidentally, FIG. 5C shows a plano-concave lens processed in the same manner. Flattening both ends can control the eccentricity of the lens around the optical axis, and when manufacturing such a lens L′, it is very easy to manufacture because it is only necessary to process one side of the rectangular parallelepiped to the lens surface. becomes easier. Chamfering both ends of the curved lens surface in the scanning direction has the advantage that the lens can be held on two planes, making it possible to more accurately and reliably position the lens. Incidentally, such a lens can also be manufactured by plastic molding. FIG. 6 shows an example of an assembly of a scanning lens in which three flat single lenses each having one of the lens surfaces described above are combined. In FIG. 6, the scanning lens is composed of a plano-concave lens L 1 , a plano-convex lens L 2 , and a plano-convex lens L 3 from the incident side, and these lenses are attached to holding members 10 and 1.
1. Spring holding members 12a, 12b, 13a,
It is held and positioned by 13b, 14a, 14b and upper and lower lid members (not shown). That is, the lens
The plane side lens surfaces of L 1 , L 2 , and L 3 are held by the holding member 10,
11 contact surface 10-1, 11-1, 10-2, 1
1-2, 10-3, 11-3, respectively, and the curved lens surface is pressed by pressing members 12a, 12b, 1, respectively.
It is held down by 3a, 13b, 14a, and 14b.
The pressing member may be flat as shown, but it may also be formed into a concave shape so that it can press against the curved surface of the lens at at least two points. Furthermore, when the lens is molded from plastic, a through hole may be provided at the end of the lens and screwed onto the contact surface. The scanning lens constructed in this manner is very easy to assemble and can provide sufficient accuracy. Since one of the lens surfaces of this scanning lens is flat, it is desirable to have a configuration of two or more lenses in order to obtain sufficient lens performance. However, using too many lenses is effective in correcting aberrations, but
Since there are disadvantages of reduced transmitted beam intensity and high cost, a two or three lens configuration is practical. In addition, since such a scanning lens includes many flat surfaces, the degree of freedom in correcting aberrations is reduced, and it is difficult to maintain uniform scanning speed and correct aberrations that are the main causes of laser beam distortion, namely distortion and astigmatism. Certain conditions must be met in order to achieve well-balanced control. From the object side, the f.
In the case of a θ lens, the following conditions are required. −0.14≦d 2 /f 1 ≦−0.05 …(1) 0.028≦d 2 /f≦0.19 …(2) d 2 : Distance between the second and third lens surfaces f 1 : First lens f: Focal length of the entire lens Here, if d2 is too small, distortion and astigmatism will both be under, and if d2 is too large, they will be over, and the same can be said for f1 . However, since d 2 and f 1 are related to each other, defining them completely separately would result in extensive conditions.
Therefore, by defining the ratio of d 2 and f 1 , which are related to each other, as in condition (1), distortion and astigmatism can be corrected in a well-balanced manner. If the upper or lower limit of this condition (1) is exceeded, even if one of distortion aberration or astigmatism can be corrected, the other cannot be completely corrected. On the other hand, if the lower limit of condition (2) is exceeded, d 2 will be too small, so that both distortion and astigmatism will be undervalued as described above. Also, the upper limit of condition (2) is
This defines a range narrower than the allowable value for aberration correction, and is set in consideration of problems in lens processing. In other words, if this upper limit is exceeded,
Since d 2 is too large, the second and third lenses must be made large, which is disadvantageous in lens processing. An example of the configuration of an f/θ lens to which the present invention is applied will be shown below. In each configuration example, the focal length of the entire lens is 100 mm, F NO is 80, and a semiconductor laser with a wavelength of 780 mm is used as a light source.

【表】【table】

【表】【table】

【表】 効 果 以上の説明から明らかなように、本発明によれ
ば、走査用レンズを偏平なレンズで構成しており
コンパクト化が図れるとともに、各構成レンズそ
精度良く保持・位置決めできる。また、本発明の
走査用レンズは、簡単な構成で歪曲収差と非点収
差がバランスよく補正されたものである。
[Table] Effects As is clear from the above description, according to the present invention, the scanning lens is composed of a flat lens, which makes it possible to make the scanning lens compact, and allows each component lens to be held and positioned with high precision. Further, the scanning lens of the present invention has a simple configuration and corrects distortion and astigmatism in a well-balanced manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレーザプリンタの走査光学系を
示す模式図、第2図は走査用レンズの偏平化の説
明図、第3図は偏平走査用レンズを用いた走査光
学系を示す模式図、第4図及び第5図は実施例に
おける偏平レンズの構成図、第6図は実施例にお
ける走査用レンズの組立例を示す図、第7図〜第
12図は構成例における走査用レンズのレンズ構
成および収差を示す図である。尚、第2図、第4
図、第5図Aにおいて、左側は光軸方向から見た
正面図、右側は走査方向と平行な方向から見た側
面図である。
Fig. 1 is a schematic diagram showing a scanning optical system of a conventional laser printer, Fig. 2 is an explanatory diagram of flattening a scanning lens, and Fig. 3 is a schematic diagram showing a scanning optical system using a flat scanning lens. 4 and 5 are configuration diagrams of the flat lens in the embodiment, FIG. 6 is a diagram showing an assembly example of the scanning lens in the embodiment, and FIGS. 7 to 12 are lenses of the scanning lens in the configuration example. It is a figure showing a composition and aberration. Furthermore, Figures 2 and 4
5A, the left side is a front view seen from the optical axis direction, and the right side is a side view seen from a direction parallel to the scanning direction.

Claims (1)

【特許請求の範囲】 1 光ビーム通過領域に沿つた偏平な形状の複数
のレンズから構成され、偏向器によつて偏向され
た光ビームを結像面上で等速走査させる走査用レ
ンズにおいて、 上記各構成レンズが、入射側から順に、平凹レ
ンズ、平凸レンズ、平凸レンズであり、各構成レ
ンズの平面側レンズ面がそれぞれ当接する複数の
当り面を有するレンズ保持部材を備え、条件 −0.14≦d2/f1≦−0.05 0.028≦d2/f≦0.19 d2:レンズ第2面と第3面の面間隔 f1:第1レンズの焦点距離 f:レンズ全系の焦点距離 を満足することを特徴とする走査用レンズ。
[Scope of Claims] 1. A scanning lens that is composed of a plurality of flat-shaped lenses along a light beam passage area and that scans a light beam deflected by a deflector at a constant speed on an imaging plane, The above-mentioned constituent lenses are, in order from the incident side, a plano-concave lens, a plano-convex lens, and a plano-convex lens, and are provided with a lens holding member having a plurality of abutment surfaces against which the plane-side lens surfaces of each constituent lens respectively abut, and the condition is -0.14≦ d 2 /f 1 ≦−0.05 0.028≦d 2 /f≦0.19 d 2 : Distance between the second and third lens surfaces f 1 : Focal length of the first lens f: Satisfy the focal length of the entire lens system A scanning lens characterized by:
JP3739182A 1982-03-09 1982-03-09 Lens for scanning Granted JPS58153908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3739182A JPS58153908A (en) 1982-03-09 1982-03-09 Lens for scanning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3739182A JPS58153908A (en) 1982-03-09 1982-03-09 Lens for scanning

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23658889A Division JPH07117646B2 (en) 1989-09-12 1989-09-12 Scanning lens

Publications (2)

Publication Number Publication Date
JPS58153908A JPS58153908A (en) 1983-09-13
JPH0447286B2 true JPH0447286B2 (en) 1992-08-03

Family

ID=12496224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3739182A Granted JPS58153908A (en) 1982-03-09 1982-03-09 Lens for scanning

Country Status (1)

Country Link
JP (1) JPS58153908A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597918A (en) * 1982-07-06 1984-01-17 Asahi Optical Co Ltd F-theta lens system
JP2511904B2 (en) * 1986-09-22 1996-07-03 松下電器産業株式会社 Optical beam scanning device
JP2840839B2 (en) * 1988-03-18 1998-12-24 富士写真フイルム株式会社 fθ lens
JP2660536B2 (en) * 1988-03-18 1997-10-08 富士写真フイルム株式会社 fθ lens
JP3109358B2 (en) * 1993-12-16 2000-11-13 富士ゼロックス株式会社 Mounting structure of scanning optical system
EP2636955B1 (en) 2012-03-08 2016-11-16 Electrolux Home Products Corporation N.V. A cooking oven provided for heat transfer by convection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428642A (en) * 1977-08-05 1979-03-03 Canon Inc Scanning optical system
JPS5543531A (en) * 1978-09-21 1980-03-27 Fuji Photo Optical Co Ltd Plastic lens
JPS56151902A (en) * 1980-04-25 1981-11-25 Konishiroku Photo Ind Co Ltd Plastic lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428642A (en) * 1977-08-05 1979-03-03 Canon Inc Scanning optical system
JPS5543531A (en) * 1978-09-21 1980-03-27 Fuji Photo Optical Co Ltd Plastic lens
JPS56151902A (en) * 1980-04-25 1981-11-25 Konishiroku Photo Ind Co Ltd Plastic lens

Also Published As

Publication number Publication date
JPS58153908A (en) 1983-09-13

Similar Documents

Publication Publication Date Title
JPH0627904B2 (en) Laser beam scanning optics
JPS6336482B2 (en)
JPH10142543A (en) Optical scanning device
US4818046A (en) Light beam scanning device
JP2563260B2 (en) Optical beam scanning device
JP2584640B2 (en) Scanning optical system such as laser beam printer
JP3117524B2 (en) Scanning optical system with surface tilt correction function
JPH0349408B2 (en)
JPH0447286B2 (en)
JPH04131812A (en) Light beam scanner
JPH0356449B2 (en)
JP3595640B2 (en) Scanning optical system and laser beam printer
JP2956169B2 (en) Scanning optical device
JPH1090620A (en) Optical scanner
EP0444603A2 (en) Optical beam scanning system
JP3943155B2 (en) Optical scanning device
JPH11281911A (en) Optical scanning optical system
JPH08122635A (en) Optical scanning optical system
US6570696B2 (en) Optical system for scanning and optical scanning apparatus
JP2553882B2 (en) Scanning optical system
JPH02191911A (en) Scanning lens
JPH0968664A (en) Optical system for light beam scanning
JPH112769A (en) Optical scanner
JP2698138B2 (en) Scanning optical device with surface tilt correction function
JP3381333B2 (en) Optical scanning device