JPH02191911A - Scanning lens - Google Patents

Scanning lens

Info

Publication number
JPH02191911A
JPH02191911A JP23658889A JP23658889A JPH02191911A JP H02191911 A JPH02191911 A JP H02191911A JP 23658889 A JP23658889 A JP 23658889A JP 23658889 A JP23658889 A JP 23658889A JP H02191911 A JPH02191911 A JP H02191911A
Authority
JP
Japan
Prior art keywords
lens
scanning
plano
lenses
scanning lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23658889A
Other languages
Japanese (ja)
Other versions
JPH07117646B2 (en
Inventor
Akiyoshi Hamada
浜田 明佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP23658889A priority Critical patent/JPH07117646B2/en
Publication of JPH02191911A publication Critical patent/JPH02191911A/en
Publication of JPH07117646B2 publication Critical patent/JPH07117646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To obtain a compact lens of good lens performance by constituting the lens of a plano-concave lens and plano-convex lenses in order from the incidence side and satisfying a prescribed condition. CONSTITUTION:This lens system consists of plural flat lenses L1, L2, and L3 in order from the incidence side, and the lens L1 is a plano-concave lens, and lenses L2 and L3 are plano-convex lenses. Holding members 10 and 11 are provided which have plural contact faces brought into contact with plane lens faces of respective constituting lenses. They satisfy the condition of an inequality I where d2 and f1 are the distance between the second face of the lens L1 and the third face of the lens L2 and the focal length of the first lens L1 respectively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザビームプリンタ等の走査光学系で用い
られる走査用レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a scanning lens used in a scanning optical system such as a laser beam printer.

従来の技術 第1図は、レーザビームプリンタの走査用光学系を示す
図である。この図において半導体レーザー発生装置(1
)で発生されたレーザービームは、回転多面鏡(2)で
反射され走査用レンズ(3)を通って感光ドラム(4)
に達する。そして、回転多面鏡(2)の回転により偏向
角度を変えられ感光ドラム(4)上で矢印a方向の走査
をおこない、これを繰返えす。ここで走査用レンズ(3
)は、回転多面鏡(2)の回転特性に応じた歪曲収差を
もたせたレンズであり、レーザービームの感光ドラム(
4)上での走査速度を等速にするものである。このよう
な走査用レンズは、偏向器が回転多面鏡の場合は理想像
高yをf・θとしたf・θレンズ、偏向器が正弦振動鏡
の場合は理想像高yをf−arcsinθとしたアーク
サインレンズである。これらレンズの歪曲収差Disは
実際の像高をy′として、 であられされる。
BACKGROUND OF THE INVENTION FIG. 1 is a diagram showing a scanning optical system of a laser beam printer. In this figure, a semiconductor laser generator (1
) is reflected by a rotating polygon mirror (2), passes through a scanning lens (3), and is directed to a photosensitive drum (4).
reach. Then, by rotating the rotating polygon mirror (2), the deflection angle is changed and scanning is performed on the photosensitive drum (4) in the direction of arrow a, and this is repeated. Here, scan lens (3
) is a lens with a distortion aberration corresponding to the rotational characteristics of the rotating polygon mirror (2), and the photosensitive drum (
4) The scanning speed above is made constant. When the deflector is a rotating polygon mirror, such a scanning lens is an f-θ lens with the ideal height y as f-θ, and when the deflector is a sine-oscillating mirror, the ideal height y is f-arcsinθ. This is an arcsine lens. Distortion aberration Dis of these lenses is expressed as follows, where the actual image height is y'.

一方、第1図に示すように、従来の走査用レンズは、光
軸方向からみて円形のレンズで構成されており、全体と
して戴頭円錐形もしくは円筒形をしているものであった
。しかしながら、このような形状の走査用レンズを走査
光学系に使用した場合、走査用レンズのスペース占有率
が大きくなるという問題点があり、走査用レンズのコン
パクト化が望まれていた。
On the other hand, as shown in FIG. 1, a conventional scanning lens is composed of a circular lens when viewed from the optical axis direction, and has a frustoconical or cylindrical shape as a whole. However, when a scanning lens having such a shape is used in a scanning optical system, there is a problem that the scanning lens occupies a large space, and it has been desired to make the scanning lens more compact.

円形レンズによって構成された走査用レンズにおいて、
実際にビームが通過するのは、第2図Aにハツチングで
示すように、ビームの走査方向と平行な矩形状部分だけ
であり、それ以外の部分はレンズとしては不要の部分で
ある。したがって、第3図に示すように、走査用レンズ
(3′)を光軸方向および走査方向と直交する方向に偏
平にしてコンパクト化を図ることが考えられる。すなわ
ち、走査用レンズを第2図AI:実線で示すビーム通過
領域(ハンチング部分)に沿った形状にする。
In a scanning lens composed of a circular lens,
The beam actually passes through only a rectangular portion parallel to the scanning direction of the beam, as shown by hatching in FIG. 2A, and the other portions are unnecessary as a lens. Therefore, as shown in FIG. 3, it is conceivable to flatten the scanning lens (3') in a direction orthogonal to the optical axis direction and the scanning direction to make it more compact. That is, the scanning lens is shaped along the beam passing region (hunting portion) shown by the solid line in FIG. 2 AI.

しかしながら、この走査用レンズの偏平化を単純に行う
と、次のような問題点を招来する。
However, simply flattening the scanning lens brings about the following problems.

すなわち、円形レンズによって構成された走査用レンズ
の保持は、第2図Bに示すように、レンズ外周と鏡筒内
面と線接触により行われていたが、走査用レンズを偏平
化した場合には、第2図Cに示すように、光軸方向から
みて円弧状の当り面Pをレンズ中心に対して正確な位置
・形状に加工しなければ精度良く保持することはできな
い。しかしながら、円弧状の当り面CP)をレンズ中心
に対して正確に加工することは、非常に難しくまた加工
工数が増大する。また、ある程度の精度で加工できたと
しても、当り面が少ないので組み立てた走査用レンズの
各構成レンズが偏心し十分な性能を得ることができなく
なる。更に、第2図りは鏡筒を7ライス加工した場合を
示すが、この場合は数点の点支持となり、前述の場合と
同様に十分な性能を得ることができない。
In other words, as shown in FIG. 2B, the scanning lens constituted by a circular lens was held by line contact between the outer periphery of the lens and the inner surface of the lens barrel. However, when the scanning lens is flattened, As shown in FIG. 2C, the contact surface P, which is arcuate when viewed from the optical axis direction, cannot be held with high precision unless it is machined into an accurate position and shape with respect to the center of the lens. However, it is very difficult to precisely process the arc-shaped contact surface CP with respect to the center of the lens, and the number of processing steps increases. Further, even if the scanning lens can be processed with a certain degree of precision, the contact surface is small, so each constituent lens of the assembled scanning lens will be decentered, making it impossible to obtain sufficient performance. Furthermore, the second diagram shows the case where the lens barrel is machined by 7 slices, but in this case, it is supported at several points, and as in the case described above, sufficient performance cannot be obtained.

本発明は、以上の課題を解決するとともに、簡単な構成
で十分なレンズ性能を得られる走査用レンズの提供を目
的とする。
The present invention aims to solve the above problems and provide a scanning lens that can obtain sufficient lens performance with a simple configuration.

課題を解決するための手段 本発明の走査用レンズは、前記目的を達成するため、偏
平な形状の複数のレンズから構成された走査用レンズで
あって、構成レンズが、入射側から順に、平凹レンズ、
平凸レンズであり、各構成レンズの平面側レンズ面とそ
れぞれ当接する複数の当り面を有する保持部材を備える
とともに、条件 −0.25≦ dr/L  ≦ −0.07d2:レン
ズ第2面と第3面の面間隔 f1:第1レンズの焦点距離 を満足することを特徴とする。
Means for Solving the Problems In order to achieve the above object, the scanning lens of the present invention is a scanning lens composed of a plurality of flat-shaped lenses, and the constituent lenses are arranged in order from the incident side. concave lens,
The lens is a plano-convex lens, and includes a holding member having a plurality of abutment surfaces that abut on the plane-side lens surfaces of each component lens, and the condition -0.25≦dr/L≦-0.07d2: The second surface of the lens and the second surface of the lens The feature is that the distance f1 between the three surfaces satisfies the focal length of the first lens.

実施例 第4図は一面を平面とした偏平単レンズ(L)を示す。Example FIG. 4 shows a flat single lens (L) with one surface being flat.

このレンズ(L)の平面の両端部分(ハツチング部分P
)が位置決め用の当り面として用いられる。レンズ(L
)の他の面は点又は線接触で支持される。
Both end portions of the plane of this lens (L) (hatched portion P
) is used as a contact surface for positioning. Lens (L
) are supported by point or line contact.

第5図はさらに改良された偏平単レンズ(L′)を示す
。このレンズ(L′)は一方のレンズmを平面とされる
他に走査方向両側(Q)も平面とされ(第5図A)、さ
らに他方のレンズ面の走査方向両端(ハツチング部分R
)を面取り加工されている(第5図B)。尚第5図Cは
同様に加工された平凹レンズを示す。両側端の平面化は
光軸のまわりのレンズの偏芯を規制することができ、ま
た、このようなレンズ(L′)を加工製作する際直方体
の一面をレンズ面に加工するだけでよいので製作が非常
に容易になる。
FIG. 5 shows a further improved flattened single lens (L'). In this lens (L'), in addition to one lens m being flat, both sides (Q) in the scanning direction are also flat (Fig. 5A), and both ends of the other lens surface in the scanning direction (hatched portion R
) is chamfered (Fig. 5B). Incidentally, FIG. 5C shows a plano-concave lens processed in the same manner. Flattening both ends can control eccentricity of the lens around the optical axis, and when manufacturing such a lens (L'), it is only necessary to process one side of the rectangular parallelepiped into a lens surface. Manufacturing becomes very easy.

曲面側レンズ面の走査方向両端部の面取り加工は、レン
ズの保持を2つの平面でおこなえるので保持位置決めを
より精度よく確実におこなうことができる利点をもつ。
Chamfering both ends of the curved lens surface in the scanning direction has the advantage that the lens can be held on two planes, making it possible to more accurately and reliably position the lens.

尚、このようなレンズはプラスチック成型によっても製
作することもできる。
Incidentally, such a lens can also be manufactured by plastic molding.

第6図は上述のレンズ面の一方が平面とされた偏平単レ
ンズを3個組合せた走査用レンズの組立て例を示す。
FIG. 6 shows an example of an assembly of a scanning lens in which three flat single lenses each having one of the lens surfaces described above are combined.

第6図において、走査用レンズは入射側がら平凹レンズ
(L+)、平凸レンズ(L、)、平凸レンズ(L、)か
ら構成され、これらのレンズは保持部材(10)  (
11) 、バネ性の押え部材(12a)(12b)  
(13a)  (13b)  (14a)  (14b
)及び図示しない上下の蓋部材で保持位置決めされる。
In FIG. 6, the scanning lens is composed of a plano-concave lens (L+), a plano-convex lens (L, ), and a plano-convex lens (L,) from the incident side, and these lenses are attached to a holding member (10) (
11) Spring holding members (12a) (12b)
(13a) (13b) (14a) (14b
) and upper and lower lid members (not shown) for holding and positioning.

即ち、前記レンズ(Ll)(Lり(Ll)の平面側レン
ズ面は保持部材(10)  (11)の当り面(10−
1)−3)に夫々当接され、曲面側レンズ面は夫々押え
部材(12a)  (12b)  (13a)  (1
3b)  (14a)(14b)で押えられる。尚、押
え部材は図示の如く平面でもよいが凹形に形成してレン
ズの曲面に対し少なくとも2点で押えるようにしてもよ
い。
That is, the plane side lens surface of the lens (Ll) (Ll) is the contact surface (10-) of the holding member (10) (11).
1) - 3), respectively, and the curved lens surface is pressed by pressing members (12a) (12b) (13a) (1), respectively.
3b) It is held down by (14a) (14b). The pressing member may be flat as shown, but it may also be formed into a concave shape so that it can press against the curved surface of the lens at at least two points.

さらに前記レンズをプラスチック成型する場合はレンズ
端部に貫通孔を設けて当り面にねじ止めしてもよい。
Furthermore, when the lens is molded from plastic, a through hole may be provided at the end of the lens and screwed onto the contact surface.

このように構成される走査用レンズの組立ては非常に簡
単であり、充分な精度を得られるものである。
The scanning lens constructed in this manner is very easy to assemble and can provide sufficient accuracy.

この走査用レンズはレンズ面の一方を平面とするので充
分なレンズ性能を得るためには2枚以上のレンズ構成と
することが望ましい。しかし、あまり多数枚にすると収
差補正上は有効であるが、透過ビーム強度の減少・コス
ト高等不利な点も出てくるので2枚又は3枚のレンズ構
成が実際的である。
Since one of the lens surfaces of this scanning lens is flat, it is desirable to have a configuration of two or more lenses in order to obtain sufficient lens performance. However, if the number of lenses is too large, it is effective in correcting aberrations, but there are disadvantages such as a decrease in transmitted beam intensity and high cost, so a two or three lens configuration is practical.

また、このような走査用レンズは平面を多く含むため収
差補正の自由度が減り、走査速度の等速性とレーザービ
ームのくずれの主な原因となる収差、即ち、歪曲収差と
非点収差をバランスよくコントロールするにはある条件
を満足しなければならない。
In addition, since such a scanning lens includes many flat surfaces, the degree of freedom in correcting aberrations is reduced, and it is difficult to maintain uniform scanning speed and correct aberrations that are the main causes of laser beam distortion, namely distortion and astigmatism. Certain conditions must be met in order to achieve well-balanced control.

物体側から平凹・平凸の3枚構成のf・θレンズの場合
次の条件が必要である。
In the case of an f/theta lens consisting of three plano-concave and plano-convex lenses from the object side, the following conditions are required.

−0.14≦d*/L≦−0.05・・・(1)0.0
28  ≦d、/ f  ≦ 0.19  ・・・(2
)d2:レンズ第2面と第3面との面間隔f1:第1レ
ンズの焦点距離 f:レンズ全体の焦点距離 ここで、d、が小さすぎると歪曲・非点収差ともアンダ
ーになり、大きすぎると共にオーバーになる。
-0.14≦d*/L≦-0.05...(1) 0.0
28 ≦d, / f ≦ 0.19 ... (2
) d2: Distance between the second and third surfaces of the lens f1: Focal length of the first lens f: Focal length of the entire lens Here, if d is too small, both distortion and astigmatism will be undervalued. As it gets too much, it becomes over.

またf、についても同じことが言える。従ってd2とf
、を条件(1)のように設定すると両面収差ともバラン
スよくコントロールすることができる。即ち、d2、f
、の組合せにより条件(1)の上限又は下限を越えると
歪曲収差又は非点収差の一方はコントロールできたとし
ても他方は大きな収差となる。
The same can be said about f. Therefore d2 and f
By setting , as in condition (1), both double-sided aberrations can be controlled in a well-balanced manner. That is, d2, f
If the upper or lower limit of condition (1) is exceeded due to the combination of , even if one of distortion or astigmatism can be controlled, the other becomes a large aberration.

条件(2)の下限は同様に収差補正上有利にするための
ものである。また上限はレンズの有効幅を規制するため
のものであり、レンズ加工上有利である。
The lower limit of condition (2) is also set to be advantageous in correcting aberrations. Further, the upper limit is for regulating the effective width of the lens, and is advantageous in processing the lens.

物体側から平凹・平凸の2枚構成のf・θレンズの場合
は次の条件(3)を満たす必要がある。
In the case of an f/theta lens consisting of two plano-concave and plano-convex lenses from the object side, the following condition (3) must be satisfied.

−0.25≦dよ/r+≦ −0.07・・・(3)こ
の条件(3)は3枚構成の条件(1)に相当するもので
ある。条件(2)のd、/ fについては特に限定する
必要はない。
−0.25≦d/r+≦−0.07 (3) This condition (3) corresponds to the condition (1) for the three-sheet configuration. There is no need to specifically limit d and /f in condition (2).

以下本発明を適用したf・θレンズの構成例を示す。各
構成例において、レンズ全体の焦点距離は100mm、
FNOは80であり、波長780mmの半導体レーザー
を光源に用いたものである。
An example of the configuration of an f/θ lens to which the present invention is applied will be shown below. In each configuration example, the focal length of the entire lens is 100 mm,
The FNO is 80, and a semiconductor laser with a wavelength of 780 mm is used as a light source.

構成例1(第7図) 曲率半径r   面間隔d    屈折率n構成例2(
第8図) 曲率半径r   面間隔d 屈折率n 構成例3(第9図) 曲率半径r   面間隔d 屈折率n r、−−46,899 構成例4(第10図) 曲率半径r   面間隔d 屈折率n 構成例7(第13図) 曲率半径r   面間隔d 屈折率n 構成例5(第11図) 曲率半径r   面間隔d 屈折率n 構成例8(第14図) 曲率半径r 面間隔d 屈折率n fl−−63,250 構成例6(第12図) 曲率半径r   面間隔d f、−−282,440 屈折率n 効   果 以上の説明から明らかなように、本発明によれば、走査
用レンズを偏平なレンズで構成しておりコンパクト化が
図れるとともに、各構成レンズを精度良く保持・位置決
めできる。また、簡単な構成でレンズ性能の良い走査用
レンズが得られる。
Configuration example 1 (Figure 7) Radius of curvature r Surface spacing d Refractive index n Configuration example 2 (
(Fig. 8) Radius of curvature r Surface spacing d Refractive index n Configuration example 3 (Fig. 9) Radius of curvature r Surface spacing d Refractive index n r, -46,899 Configuration example 4 (Fig. 10) Radius of curvature r Surface spacing d Refractive index n Configuration example 7 (Figure 13) Radius of curvature r Surface spacing d Refractive index n Configuration example 5 (Figure 11) Radius of curvature r Surface spacing d Refractive index n Configuration example 8 (Figure 14) Radius of curvature r Surface Spacing d Refractive index n fl--63,250 Configuration example 6 (Fig. 12) Radius of curvature r Surface spacing d f,--282,440 Refractive index n Effect As is clear from the above description, the present invention For example, since the scanning lens is composed of a flat lens, it can be made compact, and each constituent lens can be held and positioned with high precision. Furthermore, a scanning lens with a simple configuration and good lens performance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレーザプリンタの走査光学系を示す模式
図、第2図は走査用レンズの偏平化の説明図、第3図は
偏平走査用レンズを用いた走査光学系を示す模式図、第
4図及び第5図は実施例における偏平レンズの構成図、
第6図は実施例における走査用レンズの組立例を示す図
、第7図〜第14図は構成例における走査用レンズのレ
ンズ構成および収差を示す図である。 尚、第2図、第4図、第5図Aにおいて、左側は光軸方
向から見た正面図、右側は走査方向と並行な方向から見
た側面図である。 第 を 図 特許出願人 ミノルタカメラ株式会社 第 図 第 図8 第 図 第 図A 第 図8 第 図A 第 図8 第 り 図 第 図B 第70図A 、l io図B ル゛面LIzL 4閣、酸基 玉φ収り 第11 図A ′!PI12 図A 第11 図8 第 図B
Fig. 1 is a schematic diagram showing a scanning optical system of a conventional laser printer, Fig. 2 is an explanatory diagram of flattening a scanning lens, and Fig. 3 is a schematic diagram showing a scanning optical system using a flat scanning lens. FIG. 4 and FIG. 5 are configuration diagrams of the flattened lens in the example,
FIG. 6 is a diagram showing an assembly example of the scanning lens in the embodiment, and FIGS. 7 to 14 are diagrams showing the lens configuration and aberration of the scanning lens in the configuration example. In FIG. 2, FIG. 4, and FIG. 5A, the left side is a front view viewed from the optical axis direction, and the right side is a side view viewed from a direction parallel to the scanning direction. Figure Patent Applicant: Minolta Camera Co., Ltd. Figure Figure A Figure 8 Figure A Figure 8 Figure 8 Figure B Figure 70 A, io Figure B , the acid base ball φ fits in Figure 11 A'! PI12 Figure A Figure 11 Figure 8 Figure B

Claims (1)

【特許請求の範囲】[Claims] (1)偏平な形状の複数のレンズから構成された走査用
レンズであって、 構成レンズが、入射側から順に、平凹レンズ、平凸レン
ズであり、各構成レンズの平面側レンズ面とそれぞれ当
接する複数の当り面を有する保持部材を備えるとともに
、条件 −0.25≦d_2/f_1≦−0.07 d_2:レンズ第2面と第3面の面間隔 f_1:第1レンズの焦点距離 を満足することを特徴とする走査用レンズ。
(1) A scanning lens composed of a plurality of flat-shaped lenses, where the constituent lenses are, in order from the incident side, a plano-concave lens and a plano-convex lens, and are in contact with the plane-side lens surface of each constituent lens, respectively. A holding member having a plurality of contact surfaces is provided, and the condition -0.25≦d_2/f_1≦-0.07 d_2: Distance between the second and third lens surfaces f_1: Focal length of the first lens is satisfied. A scanning lens characterized by:
JP23658889A 1989-09-12 1989-09-12 Scanning lens Expired - Lifetime JPH07117646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23658889A JPH07117646B2 (en) 1989-09-12 1989-09-12 Scanning lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23658889A JPH07117646B2 (en) 1989-09-12 1989-09-12 Scanning lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3739182A Division JPS58153908A (en) 1982-03-09 1982-03-09 Lens for scanning

Publications (2)

Publication Number Publication Date
JPH02191911A true JPH02191911A (en) 1990-07-27
JPH07117646B2 JPH07117646B2 (en) 1995-12-18

Family

ID=17002865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23658889A Expired - Lifetime JPH07117646B2 (en) 1989-09-12 1989-09-12 Scanning lens

Country Status (1)

Country Link
JP (1) JPH07117646B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511848A (en) * 2002-12-20 2006-04-06 グローバル イマジネーション Projection type display device having a three-dimensional convex display surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511848A (en) * 2002-12-20 2006-04-06 グローバル イマジネーション Projection type display device having a three-dimensional convex display surface

Also Published As

Publication number Publication date
JPH07117646B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
US4253724A (en) Recording optical system
JP3164232B2 (en) Flat field, telecentric optical system for scanning a light beam
JPS6336482B2 (en)
JPH0627904B2 (en) Laser beam scanning optics
JPH0338572B2 (en)
US4818046A (en) Light beam scanning device
JP2563260B2 (en) Optical beam scanning device
US5052767A (en) Optical beam scanning system
JP2584640B2 (en) Scanning optical system such as laser beam printer
JP3117524B2 (en) Scanning optical system with surface tilt correction function
JPH0727123B2 (en) Surface tilt correction scanning optical system
US4643516A (en) Laser beam scanning apparatus
JPH0349408B2 (en)
JPH0356449B2 (en)
JPH0447286B2 (en)
EP0629891B1 (en) Beam scanning apparatus
JPH07174997A (en) Optical scanner
US4882483A (en) Optical scanning apparatus with optical correction for scan mirror surface tilt
US5148304A (en) Optical beam scanning system
JPH02191911A (en) Scanning lens
JPH11281911A (en) Optical scanning optical system
JP2583716B2 (en) Optical system laser beam scanner
US6570696B2 (en) Optical system for scanning and optical scanning apparatus
JPH05127077A (en) Cylindrical lens system
JP2743176B2 (en) Optical scanning device