JPS58153908A - Lens for scanning - Google Patents

Lens for scanning

Info

Publication number
JPS58153908A
JPS58153908A JP3739182A JP3739182A JPS58153908A JP S58153908 A JPS58153908 A JP S58153908A JP 3739182 A JP3739182 A JP 3739182A JP 3739182 A JP3739182 A JP 3739182A JP S58153908 A JPS58153908 A JP S58153908A
Authority
JP
Japan
Prior art keywords
lens
scanning
flat
plano
lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3739182A
Other languages
Japanese (ja)
Other versions
JPH0447286B2 (en
Inventor
Yoshiaki Matsunaga
松永 佳昭
Akiyoshi Hamada
浜田 明佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP3739182A priority Critical patent/JPS58153908A/en
Publication of JPS58153908A publication Critical patent/JPS58153908A/en
Publication of JPH0447286B2 publication Critical patent/JPH0447286B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)
  • Lens Barrels (AREA)

Abstract

PURPOSE:To accurately assemble lenses into a scanning lens system, by changing the external shape of each of the lenses of a flat shape and by converting one surface of each of the lenses into a plane surface. CONSTITUTION:The constituent lenses L1-L3 of a scanning lens system are made flat in directions perpendicular to the direction of the optical axes and the direction of scanning, and one surface r2, r3, r5 of each of the lenses is converted into a plane surface. As a result, the lenses can be attached accurately to holding members 10, 11.

Description

【発明の詳細な説明】 技術分野 本発明はレーザービームプリン9夕等の走査光学系に用
いられる走査用レンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a scanning lens used in a scanning optical system such as a laser beam printer.

従来技術 第1図はレーザービームプリンタの走査光学系の一従来
例を示すものである。この図において半導体レーザー発
生装置(1)で発生されたレーザービームは、回転多面
鏡(2)で反射さ°れ走査用レンズ(3)を通って感光
ドラム(4)に達する。そして、回転多面鏡(2)の回
転により偏向角度を変えられ感光ドラム(4)上で矢印
a方向の走査をおこない、これを繰返えす。ここで走査
用レンズ(3)は、回転多面鏡(2)の回転特性に応じ
た歪曲収差をもたせたレンズであり、レーザービームの
感光ドラム(4)上での走査速度を等速にするものであ
る。このような走査用偲 レンズは、偏向器が回転多面鏡の場合は理棒像高yをf
・θとしたf・θレンズ、偏向器が正弦振動鏡の場合は
理想像高yを/−arcsin秒としたアークサインレ
′ンズである。これら126曲収差Disは実際の像高
をy#とじて、 であられされる。
BACKGROUND OF THE INVENTION FIG. 1 shows a conventional example of a scanning optical system for a laser beam printer. In this figure, a laser beam generated by a semiconductor laser generator (1) is reflected by a rotating polygon mirror (2), passes through a scanning lens (3), and reaches a photosensitive drum (4). Then, by rotating the rotating polygon mirror (2), the deflection angle is changed and scanning is performed on the photosensitive drum (4) in the direction of arrow a, and this is repeated. Here, the scanning lens (3) is a lens that has distortion according to the rotational characteristics of the rotating polygon mirror (2), and is a lens that makes the scanning speed of the laser beam on the photosensitive drum (4) constant. It is. In such a scanning lens, when the deflector is a rotating polygon mirror, the bar image height y is
- If the f/θ lens is set to θ and the deflector is a sine oscillation mirror, it is an arcsine lens with the ideal image height y set to /-arcsin seconds. These 126 aberrations Dis are calculated by dividing the actual image height by y#.

第1図に示すように従来の走査用レンズは、光軸方向か
ら見て円形のレンズで構成されており、全体として截頭
円錐形若しくは円筒形をしているものであった。【、か
じながら、半導体レーザーの使用等走査光学系の他の要
素がコンパクト化されるにつれ、このような形状の走査
用レンズのスペ・−ス占有率が大きくなり、走査用レン
ズのコンパクト化が望まれていた。
As shown in FIG. 1, a conventional scanning lens is composed of a circular lens when viewed from the optical axis direction, and has a truncated conical or cylindrical shape as a whole. [However, as other elements of scanning optical systems, such as the use of semiconductor lasers, become more compact, the space occupied by scanning lenses of this shape increases, and it becomes more and more compact. It was wanted.

円形レンズで構成される走査用レンズにおいて実際に光
ビームが通過するのは、第2図Aにハツチングで示され
た光ビームの走査方向と平行な矩形状部分のみであり、
他の部分はレンズとしては不要の部分である。それ故事
3゛図に示すように、走査用レンズ(3′)を光軸方向
及び走査方向と直交する方向に偏平化す□ることが考え
られる。即ち、走査用レンズを第2図Aに実線で示すよ
うなビーム通過領域(ハツチング部分)に沿った形状と
するのである。しかしながら、この偏平化を単純におこ
なうと次のような問題点を招来することになる。
In a scanning lens composed of a circular lens, the light beam actually passes only through a rectangular portion parallel to the scanning direction of the light beam, which is indicated by hatching in FIG. 2A.
The other parts are unnecessary parts for the lens. Therefore, as shown in Figure 3, it is conceivable to flatten the scanning lens (3') in a direction perpendicular to the optical axis direction and the scanning direction. That is, the scanning lens is shaped along the beam passage area (hatched portion) as shown by the solid line in FIG. 2A. However, if this flattening is simply carried out, the following problems will arise.

即ち、従来の走査用レンズの位置決め固定は第2図Bで
示すように鏡胴内価との円周状の線接触でおこなわれて
いたが、これを単純に偏平化して従来通りの位置決め固
定をおこなおうとすると、第2図Cに示すように光軸方
向から見て円弧状の当り而Pをレンズ中心に対し正確な
位置・形状に加工しなければならず、このような加工は
非常に峻しくまた工程が増加する。また、ある程度の精
度で加工できたとしても当り面が少ないので組立てた走
査用レン・ズの各レンズが偏芯し充分な性能を得ること
ができない。第2図りは鏡胴をフライス加工した場合を
示すが、この場合は数点の点支持となり前記と同様に充
分な性能を得ることができない。
In other words, conventional scanning lenses were positioned and fixed by making circumferential line contact with the inner surface of the lens barrel, as shown in Figure 2B, but this can be simply flattened and fixed in the conventional manner. When attempting to do this, as shown in Figure 2C, the arc-shaped abutment P must be machined to an accurate position and shape with respect to the center of the lens when viewed from the optical axis direction, and such processing is extremely difficult. The number of processes increases sharply. Further, even if the machining can be performed with a certain degree of precision, the contact surface is small, so each lens of the assembled scanning lens will be decentered, making it impossible to obtain sufficient performance. The second diagram shows the case where the lens barrel is milled, but in this case, it is supported at several points, making it impossible to obtain sufficient performance as in the above case.

目的・要旨 本発明は上記に鑑みてなされたものであり、製作が容易
で精度良く組立てることのできる偏平状の走査用レンズ
を提供することを目的とする。
Objective/Summary The present invention has been made in view of the above, and an object of the present invention is to provide a flat scanning lens that is easy to manufacture and can be assembled with high precision.

上述の目的は走査用レンズを構成する各レンズの一面を
平面とし、この平面を位置決め保持用の当り面とするこ
とにより達成される。
The above object is achieved by making one surface of each lens constituting the scanning lens a flat surface, and using this flat surface as a contact surface for positioning and holding.

実施例 第4図は一面を平面とした偏平単レンズ(L)を示ンズ
(L)の他の面は点又は線接触で支持される。
Embodiment FIG. 4 shows a flat single lens (L) with one surface flat, and the other surface of the lens (L) is supported by point or line contact.

第5図はさらに改良された本発明の偏平単しン(第5図
B)。尚第5図Cは同様に加工された平凹レンズを示す
。両側端の平面化は光軸のまわりのレンズの偏芯を規制
することができ、また、このようなレンズ(L″)を加
工製作する際直方体の一面をレンズ面に加工するだけで
よいので製作が非常に沓易になる。
FIG. 5 shows a further improved flat unit of the present invention (FIG. 5B). Incidentally, FIG. 5C shows a plano-concave lens processed in the same manner. Flattening both ends can control eccentricity of the lens around the optical axis, and when manufacturing such a lens (L''), it is only necessary to process one side of the rectangular parallelepiped into a lens surface. Manufacturing becomes very easy.

曲面側レンズ面の走査方向両端部の面取り加工は、レン
ズの保持を2つの平面でおこなえるので保持位置決めを
より精度よく確実におこなうことができる利点をもつ。
Chamfering both ends of the curved lens surface in the scanning direction has the advantage that the lens can be held on two planes, making it possible to more accurately and reliably position the lens.

尚、このようなレンズはプラスチック成型によっても製
作することもできる。
Incidentally, such a lens can also be manufactured by plastic molding.

第6図は上述のレンズ面の一方が平面とされた偏平単レ
ンズを3個組合せ゛た走査用レンズの組立て例を示す。
FIG. 6 shows an example of an assembly of a scanning lens in which three flat single lenses each having one of the lens surfaces described above are combined.

第6図において、走査用レンズは、入射側から平凹レン
ズ(Ll)、平凸レンズ(L4)、平凸レンズaJ3)
から構成され、これらのレンズは保持部材(10)(1
1) 、バネ性の押え部材(12a) (12b) (
13a)(lab) (t4a) (14b)及び図示
しない上下の蓋部材で保持位置決めされる。即ち、前記
レンズ(Ll)(Lx) (L3)の平面側レンズ面は
保持部材(10)(11)の当り面(10−1) (1
l−1) (10−2) (11−2)(10−3) 
(11−3)に夫々当接され一画面側レンズ向は夫々押
え部材(12a) (12b) (13a) (13b
)(14a) (14b)で押えられる。尚、押え部材
は図示の如く平面でもよいが凹形に形成してレンズの曲
面に対し少なくとも2点で押えるようにしてもよい。さ
らに前記レンズをプラスチック成型する場合はレンズ端
部に貫通孔を設けて当り面にねじ止めしてもよい。
In Fig. 6, the scanning lenses are plano-concave lens (Ll), plano-convex lens (L4), plano-convex lens aJ3) from the incident side.
These lenses are composed of holding members (10) (1
1) Spring holding members (12a) (12b) (
13a) (lab) (t4a) (14b) and are held and positioned by upper and lower lid members (not shown). That is, the plane side lens surfaces of the lenses (Ll) (Lx) (L3) are the contact surfaces (10-1) (1) of the holding members (10) (11).
l-1) (10-2) (11-2) (10-3)
(11-3), and the holding members (12a) (12b) (13a) (13b)
) (14a) (14b). The pressing member may be flat as shown, but it may also be formed into a concave shape so that it can press against the curved surface of the lens at at least two points. Furthermore, when the lens is molded from plastic, a through hole may be provided at the end of the lens and screwed onto the contact surface.

このように構成される走査用レンズの組立ては非常に簡
単で、あり、充分な精度を得られるものである。
The scanning lens constructed in this manner is very easy to assemble, and sufficient accuracy can be obtained.

本発明の走査用レンズはレンズ向の一方を平面とするの
で充分なレンズ性能を得るためには2枚以上のレンズ構
成とすることが望ましい。しかし、あまり多数枚にする
と収差補正上は有効であるが、透過ビーム強度の減少・
コスト高等不利な点も出てくるので2枚又は3枚の5レ
ンズ構成が実際的である。
Since the scanning lens of the present invention has a flat surface in one direction, it is desirable to have a configuration of two or more lenses in order to obtain sufficient lens performance. However, if too many lenses are used, it is effective in correcting aberrations, but the intensity of the transmitted beam decreases.
Since there are disadvantages such as high cost, a five-lens configuration of two or three lenses is practical.

また、本発明の走査用レンズは平面を多く含むため収差
補正の自由席が減り、走査速度の等速性、!1 とレーザービームのくずれの主な原因となる収差、即ち
、歪曲収差と非点収差をバランスよくコントロールする
にはある条件を満足しなければならな物体側から平凹・
平凸・平凸の3枚構成のf・θレンズの場合衣の条件が
必要である。
In addition, since the scanning lens of the present invention includes many flat surfaces, the free seat for aberration correction is reduced, and the scanning speed is uniform. 1. In order to control the aberrations that are the main causes of laser beam distortion, namely distortion and astigmatism, in a well-balanced manner, certain conditions must be satisfied.
In the case of a plano-convex/plano-convex three-element f/theta lens, a uniform condition is required.

−0,14≦d2/ハ≦−0,05・・・・・・・・・
  (1)0.028≦dye ≦ 0.19  ・・
・・・・・・・  (2)d2:レンズ第2面と第3面
との面間隔f1:第ルンズの焦点距離 f:レンズ全体の焦点距離。
−0,14≦d2/c≦−0,05・・・・・・・・・
(1) 0.028≦dye≦0.19...
(2) d2: Distance between the second and third surfaces of the lens f1: Focal length of the lens f: Focal length of the entire lens.

ここで、d2が小さすぎると歪曲・非点収差ともアンダ
ーになり、大きすぎると共にオーバーになる。またハに
ついても同じことが言える。従ってd2とハを条件(1
)のように設定すると両駅差ともバランスよくコントロ
ールすることができる。
Here, if d2 is too small, both distortion and astigmatism will be under, and if d2 is too large, it will be over. The same can be said about Ha. Therefore, the condition (1
), it is possible to control the difference between both stations in a well-balanced manner.

即ち、d2、ハの組合せにより条件(1)の上限又は下
限を越えると歪曲収差又は非点収差の一方はコントロー
ルできたとしても他方は大きな収差となる。
That is, if the upper or lower limit of condition (1) is exceeded due to the combination of d2 and c, even if one of distortion or astigmatism can be controlled, the other becomes a large aberration.

条件(2)の下限は同様に収差補正上有利にするた 。The lower limit of condition (2) is similarly advantageous in correcting aberrations.

めのものである。また上限はレンズの有効幅を規制する
ためのものであり、レンズ加工上有利である。
It's a special thing. Further, the upper limit is for regulating the effective width of the lens, and is advantageous in processing the lens.

物体側から平凹・平凸の2枚構成のf・θレンズの場合
は次の条件(3)を満たす必要がある。
In the case of an f/theta lens consisting of two plano-concave and plano-convex lenses from the object side, the following condition (3) must be satisfied.

−0,25≦d2/ハ≦−0,07・・・・・・・・・
  (3)この条件(3)は3枚構成の条件(1)に相
当するものである。条件(2)のdx7tについては特
に限定する必要はない。
−0,25≦d2/c≦−0,07・・・・・・・・・
(3) This condition (3) corresponds to the condition (1) for the three-sheet configuration. There is no particular need to limit dx7t in condition (2).

以下本発明を適用したf・θレンズの構成例を示す。各
構成例において、レンズ全体の焦点距離は100 al
l、 Fmは80であり、波長780 Mの半導体レー
ザーを光源に用いたものである。
An example of the configuration of an f/θ lens to which the present invention is applied will be shown below. In each configuration example, the focal length of the entire lens is 100 al
l and Fm are 80, and a semiconductor laser with a wavelength of 780 M is used as the light source.

構成例1 (137図) 曲率半径r  面間隔d   屈折率n/1 = −5
5,168 構成例2(第8図) 曲率半径r  面間隔d   屈折率nr1=  −4
0,816 d*=1.895  nA=1.48437f2== 
     00 (12=11.662  n0=l、Qr3=    
 o。
Configuration example 1 (Figure 137) Radius of curvature r Distance between surfaces d Refractive index n/1 = -5
5,168 Configuration example 2 (Fig. 8) Radius of curvature r Distance between surfaces d Refractive index nr1 = -4
0,816 d*=1.895 nA=1.48437f2==
00 (12=11.662 n0=l, Qr3=
o.

ds=4.373  nA=1.48437r4= −
32,824 d4= 2.332  n0=1.0 r5=      00 ds= 2.624  nA=1.48437rs=−
130,380 /1 = −84,268 構成例3(第9図) 曲率半径r  面間隔d   屈折率nrl=−22,
716 dl=1.895   nA−1,48437r2= 
    o口 d4−2.947   no−1,0 r3=     Ql:1 d4”2.332   n0=1.0 75g     00 /1−−46.899 構成例4(第10図) 曲率半径r  面間隔d   屈折率nr1=    
 o。
ds=4.373 nA=1.48437r4= −
32,824 d4= 2.332 n0=1.0 r5= 00 ds= 2.624 nA=1.48437rs=-
130,380 /1 = -84,268 Configuration example 3 (Fig. 9) Radius of curvature r Distance between surfaces d Refractive index nrl = -22,
716 dl=1.895 nA-1,48437r2=
o mouth d4-2.947 no-1,0 r3= Ql:1 d4"2.332 n0=1.0 75g 00 /1--46.899 Configuration example 4 (Fig. 10) Radius of curvature r Surface spacing d Refractive index nr1=
o.

dl−1,370nB=1.51118r2= 46.
032 d2=6.240   n0=1.0 r3−80.838 da=1.634   nB−1,51118r4− 
   0O d4=2.693   n0=1.O rsツ    0口 ds=3.499   nB=1.51118r’=−
39,051 /1−−90.050 構成例5(第11図) 曲率半径r  面間隔d   屈折率nr神   00 ds−1,312nB=1.51118r2−”  9
7.585 dz=11.690  n0=1.0 r3=     o。
dl-1,370nB=1.51118r2=46.
032 d2=6.240 n0=1.0 r3-80.838 da=1.634 nB-1,51118r4-
0O d4=2.693 n0=1. O rs Tsu 0 ds=3.499 nB=1.51118r'=-
39,051 /1--90.050 Configuration example 5 (Fig. 11) Radius of curvature r Distance d Refractive index nr 00 ds-1,312nB=1.51118r2-" 9
7.585 dz=11.690 n0=1.0 r3=o.

ds=1.749  nB−1,51118ra=−1
70,616 d4=0.583  no−1,0 15m     00 f+ −−190,899 構成例6(第12図) 曲率半径r  面間隔d   屈折率nrl=    
  oa dl−1,020nB=1.51118r2=   1
44.379 da−14,140no−1,0 f3−=      00 da−2,073nB=1.51118r4=−299
6,661 d4=4.373  no=1.0 r5”      00゜ dli−4,082nC−1,76241r6=  −
61,481 /1−−282.440 構成例7(iJ13図) 曲率半径r  面間隔d   屈折率nr1=    
 0O ji−1,020nB=1.51118r!−149,
722 d鵞=19.864  n0=1.O r3富     00 ds−4,373nc=1.76241r4−−61.
140 バー292.894 構成例8(第14図) 曲率半径r  面間隔d   屈折率nrl=    
 o。
ds=1.749 nB-1, 51118ra=-1
70,616 d4=0.583 no-1,0 15m 00 f+ --190,899 Configuration example 6 (Fig. 12) Radius of curvature r Distance d Refractive index nrl=
oa dl-1,020nB=1.51118r2=1
44.379 da-14,140no-1,0 f3-= 00 da-2,073nB=1.51118r4=-299
6,661 d4=4.373 no=1.0 r5” 00°dli-4,082nC-1,76241r6=-
61,481 /1--282.440 Configuration example 7 (Figure iJ13) Radius of curvature r Distance between surfaces d Refractive index nr1=
0Oji−1,020nB=1.51118r! -149,
722 d goose=19.864 n0=1. Or3 wealth 00 ds-4,373nc=1.76241r4--61.
140 bar 292.894 Configuration example 8 (Fig. 14) Radius of curvature r Surface spacing d Refractive index nrl=
o.

dz−16,786n0=1.0 r@m     00 da=5.453    nB=1.51118r4−
−26.753 八−63,250 構成例1〜8において曲率半径の正負は第1面。
dz-16,786n0=1.0 r@m 00 da=5.453 nB=1.51118r4-
-26.753 8-63,250 In configuration examples 1 to 8, the sign of the radius of curvature is the first surface.

の曲率半径r1の中心を規準として各曲率半径の中心が
規準より物体側(図で左側)にあれば正、像側にあれば
負としている。
With the center of the radius of curvature r1 as a reference, if the center of each radius of curvature is on the object side (left side in the figure) from the reference, it is considered positive, and if it is on the image side, it is negative.

効  果 上述の通り本発明は、走査用レンズを構成する各レンズ
を光軸方向と走査方向とに直交する方向に偏平な形状に
かつレンズ面の一面を平面に形成【7たので、各レンズ
の位置決め保持良好におこな゛うことができ、走査用レ
ンズの製作組立てを簡単におこなうことができるもので
ある。
Effects As mentioned above, in the present invention, each lens constituting the scanning lens has a flat shape in a direction perpendicular to the optical axis direction and the scanning direction, and one lens surface is formed into a flat surface. The scanning lens can be well positioned and maintained, and the scanning lens can be manufactured and assembled easily.

さらに、各レンズの走査方向両側端部を平面とすると各
し淳横を直方体の硝子材から形成することができレンズ
加工上有利であるとともに、レンズの光軸のまわりの偏
芯を規制できるものである。
Furthermore, if both ends of each lens in the scanning direction are made flat, each side can be formed from a rectangular parallelepiped glass material, which is advantageous in lens processing, and can also control eccentricity around the optical axis of the lens. It is.

さらにまた、各レンズの曲面側レンズ面の走査方向両端
部に平面部分を形成すると保持がさらに一実におこなえ
るものである。
Furthermore, if flat portions are formed at both ends in the scanning direction of the curved lens surface of each lens, the holding can be carried out even more securely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレーザービームプリンタの走査いた走査
光学系を示す図、第4・5図は本発明の走査用レンズの
偏平化を説明する図、第6図は本発明の走査用レンズの
組立て例を示す図、第7図乃至第14図は本発明走査用
レンズの構成例1〜8のレンズ構成と収差を示す図であ
る。 1・・・レーザービーム発生装置 出願人  ミノルタカメラ株式会社 第1F71 ′IJI5@B  第5図C 第61図 12a 第7図A   第7図8 1PJ3図A    第8図8 第q図A     ’ip、l1図B IJsto@A    第10図B 妹珈1.L41収L を曲成り 第1f図A   第11図B %1z@A     第12図B 手続補正書 1.事件の表示 昭和57年特許願第37391号 2、発明の名称 走査用レンズ 3、補正をする者 事件との関係  出 願 人 住所 大阪市東区安土町2丁目80番地 大阪国際ビル
名称 (607)  ミノルタカメラ株式会社昭和57
年6月11日 (発送日  昭和57年 6月29日〕5、補正の対象 明細書の図面の簡単な説明の欄及び図面6、補正の内容 (1)明細書の図面の簡単な説明の欄第15頁15行目
「〜示す図である。」のあとに下文を挿入する。 「尚、第2図第4図第5図Aにおいて、左側は光軸方向
から見た正面図、右側は熾、・前方向と平行な方向から
見た側面図である。」 (2)図面のW、2図、第4図及び第5図を別紙の通り
に補正する。 以上 く        ω 区      区 N         (。 *       @ N             N *        @ 区         区 一#           0 111         味 味
Fig. 1 is a diagram showing the scanning optical system of a conventional laser beam printer, Figs. 4 and 5 are diagrams explaining the flattening of the scanning lens of the present invention, and Fig. 6 is a diagram showing the scanning lens of the present invention. FIGS. 7 to 14 are diagrams illustrating assembly examples, and are diagrams showing lens configurations and aberrations of configuration examples 1 to 8 of the scanning lens of the present invention. 1... Laser beam generator applicant Minolta Camera Co., Ltd. No. 1F71 'IJI5@B Fig. 5 C Fig. 61 12a Fig. 7 A Fig. 7 8 1PJ3 Fig. A Fig. 8 8 Fig. q A 'ip, Figure l1B IJsto@A Figure 10B Imouto 1. L41 Collection L Figure 1f A Figure 11B %1z@A Figure 12B Procedural amendment 1. Display of the case 1982 Patent Application No. 37391 2, Name of the invention Scanning lens 3, Person making the correction Relationship to the case Applicant Address 2-80 Azuchi-cho, Higashi-ku, Osaka City Osaka Kokusai Building name (607) Minolta Camera Co., Ltd. 1982
June 11, 2016 (Delivery date: June 29, 1982) 5. Column for brief explanation of drawings in the specification subject to amendment and drawings 6. Contents of amendment (1) Brief explanation of drawings in the specification Column, page 15, line 15, insert the following text after "This is a diagram showing...". "In addition, in Figure 2, Figure 4, and Figure 5 A, the left side is a front view as seen from the optical axis direction, and the right side is a front view as seen from the optical axis direction. is a side view seen from a direction parallel to the front direction.'' (2) Correct the drawings W, 2, 4, and 5 as shown in the attached sheet. (. * @ N N * @ Ward Ward 1# 0 111 Taste

Claims (1)

【特許請求の範囲】 1、 光源からのビームを偏向器によって結像面上で等
速走査させるための走査用レンズにおいて、該走査用レ
ンズを構成する各レンズを光軸方向と走査方向とに直交
する方向に偏゛平な形状にかつレンズ面の一面を平面に
形成し、各レンズの平面側レンズ面をレンズ保持部材の
当り面に当接させて保持することを特徴とする走査用レ
ンズ。 2 前記各レンズの走査方向両側端部を平面とすること
を特徴とする特許請求の範囲第1項記載の走査用レンズ
。 a 前記各レンズの曲面側レンズ面の走査方向両端部に
平面部分を形成し、各レンズを平面側レンズ面と曲面側
レンズ面の平面部分とで保持することを特徴とする特許
請求の範囲第1項又は第2項記載の走査用レンズ。 4 前記走査用レンズ−5< /・θレンズであること
を特徴とする特許請求の範囲第1項乃至第3項のいずれ
かに記載の走査用レンズ。 δ 走査用レンズを構成する各レンズが入射側から順に
平凹レンズ、平凸レンズ、平凸レンズであり、条件 −0,14≦”//、 ’< −0,050,028≦
d 17t≦0,19 d!:レンズ第2面と第3面との面間隔f1:第ルンズ
の焦点距離 f :レンズ全体の焦点距離 を満足することを特徴とする特許請求の範囲第4項記載
の走査用レンズ。 6 定量用レンズを構成する各レンズが入射側奢 から平凹レンズ平凸レンズであり、条件−0,25≦d
 R7t≦−0,07 d2:レンズ第2面と′s3面との面間隔fl:第ルン
ズの焦点距離 を満足することを特徴とする特許請求の範囲第4項記載
の走査用レンズ。
[Claims] 1. In a scanning lens for scanning a beam from a light source at a constant speed on an image forming plane by a deflector, each lens constituting the scanning lens is arranged in the optical axis direction and in the scanning direction. A scanning lens characterized in that it has a flat shape in an orthogonal direction and one lens surface is formed as a flat surface, and that each lens is held by bringing the flat lens surface of each lens into contact with the contact surface of a lens holding member. . 2. The scanning lens according to claim 1, wherein both ends of each lens in the scanning direction are flat. (a) A flat portion is formed at both ends in the scanning direction of the curved lens surface of each lens, and each lens is held by the flat lens surface and the flat portion of the curved lens surface. The scanning lens according to item 1 or 2. 4. The scanning lens according to any one of claims 1 to 3, characterized in that the scanning lens is -5</.theta. Each lens constituting the δ scanning lens is a plano-concave lens, a plano-convex lens, and a plano-convex lens in order from the incident side, and the conditions are −0,14≦”//, '< −0,050,028≦
d 17t≦0,19 d! 5. The scanning lens according to claim 4, wherein: distance f1 between the second and third surfaces of the lens: focal length f of the lens: focal length of the entire lens. 6 Each lens constituting the quantitative lens is a plano-concave lens or a plano-convex lens from the entrance side, and the conditions -0,25≦d
The scanning lens according to claim 4, characterized in that R7t≦-0,07 d2: distance between the second lens surface and 's3 surface fl: focal length of the lens.
JP3739182A 1982-03-09 1982-03-09 Lens for scanning Granted JPS58153908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3739182A JPS58153908A (en) 1982-03-09 1982-03-09 Lens for scanning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3739182A JPS58153908A (en) 1982-03-09 1982-03-09 Lens for scanning

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23658889A Division JPH07117646B2 (en) 1989-09-12 1989-09-12 Scanning lens

Publications (2)

Publication Number Publication Date
JPS58153908A true JPS58153908A (en) 1983-09-13
JPH0447286B2 JPH0447286B2 (en) 1992-08-03

Family

ID=12496224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3739182A Granted JPS58153908A (en) 1982-03-09 1982-03-09 Lens for scanning

Country Status (1)

Country Link
JP (1) JPS58153908A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597918A (en) * 1982-07-06 1984-01-17 Asahi Optical Co Ltd F-theta lens system
JPS6378120A (en) * 1986-09-22 1988-04-08 Matsushita Electric Ind Co Ltd Light beam scanning device
JPH01237616A (en) * 1988-03-18 1989-09-22 Fuji Photo Film Co Ltd Ftheta lens
JPH01237617A (en) * 1988-03-18 1989-09-22 Fuji Photo Film Co Ltd Ftheta lens
EP0658789A2 (en) * 1993-12-16 1995-06-21 Fuji Xerox Co., Ltd. Structure for attaching scanning optical system
US10371391B2 (en) 2012-03-08 2019-08-06 Electolux Home Products Corporation N.V. Cooking oven provided for heat transfer by convection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428642A (en) * 1977-08-05 1979-03-03 Canon Inc Scanning optical system
JPS5543531A (en) * 1978-09-21 1980-03-27 Fuji Photo Optical Co Ltd Plastic lens
JPS56151902A (en) * 1980-04-25 1981-11-25 Konishiroku Photo Ind Co Ltd Plastic lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428642A (en) * 1977-08-05 1979-03-03 Canon Inc Scanning optical system
JPS5543531A (en) * 1978-09-21 1980-03-27 Fuji Photo Optical Co Ltd Plastic lens
JPS56151902A (en) * 1980-04-25 1981-11-25 Konishiroku Photo Ind Co Ltd Plastic lens

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597918A (en) * 1982-07-06 1984-01-17 Asahi Optical Co Ltd F-theta lens system
JPS6151289B2 (en) * 1982-07-06 1986-11-08 Asahi Optical Co Ltd
JPS6378120A (en) * 1986-09-22 1988-04-08 Matsushita Electric Ind Co Ltd Light beam scanning device
JPH01237616A (en) * 1988-03-18 1989-09-22 Fuji Photo Film Co Ltd Ftheta lens
JPH01237617A (en) * 1988-03-18 1989-09-22 Fuji Photo Film Co Ltd Ftheta lens
EP0658789A2 (en) * 1993-12-16 1995-06-21 Fuji Xerox Co., Ltd. Structure for attaching scanning optical system
EP0658789A3 (en) * 1993-12-16 1997-04-09 Fuji Xerox Co Ltd Structure for attaching scanning optical system.
US10371391B2 (en) 2012-03-08 2019-08-06 Electolux Home Products Corporation N.V. Cooking oven provided for heat transfer by convection

Also Published As

Publication number Publication date
JPH0447286B2 (en) 1992-08-03

Similar Documents

Publication Publication Date Title
US6169637B1 (en) Catadioptric lens
JP2566405B2 (en) f / θ lens
JPS6336482B2 (en)
JPS6226444B2 (en)
JPS6173910A (en) Diverging laser light focusing lens system and photocoupler using the same
EP0096193B1 (en) Integrated optical beam expander
US5087987A (en) Color-corrected telecentric scan lens
US4432596A (en) Infra-red optical systems
US5159491A (en) Combination collimating lens and correcting prism
JP2584640B2 (en) Scanning optical system such as laser beam printer
JPS58153908A (en) Lens for scanning
US6280058B1 (en) Illumination system
JPH0349408B2 (en)
JP5268988B2 (en) Two-dimensional scanning device
JPS58153907A (en) Lens for scanning
EP0441350A2 (en) Optical system for light beam scanning
JP2945097B2 (en) Telecentric fθ lens
US2916966A (en) Catadioptric objectives
JPH02181712A (en) Achromatic optical system for laser scanning
EP0444603A2 (en) Optical beam scanning system
JP2860221B2 (en) Stereoscopic projection lens
JP3034565B2 (en) Telecentric fθ lens
Wippermann et al. Applications of chirped microlens arrays for aberration compensation and improved system integration
JPH07117646B2 (en) Scanning lens
CN213764515U (en) Laser micro-machining long-working-distance objective lens group