JP2840839B2 - fθ lens - Google Patents

fθ lens

Info

Publication number
JP2840839B2
JP2840839B2 JP63064921A JP6492188A JP2840839B2 JP 2840839 B2 JP2840839 B2 JP 2840839B2 JP 63064921 A JP63064921 A JP 63064921A JP 6492188 A JP6492188 A JP 6492188A JP 2840839 B2 JP2840839 B2 JP 2840839B2
Authority
JP
Japan
Prior art keywords
lens
scanned
lenses
light beam
optical deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63064921A
Other languages
Japanese (ja)
Other versions
JPH01237616A (en
Inventor
将史 山本
純弘 西畑
勝 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP63064921A priority Critical patent/JP2840839B2/en
Publication of JPH01237616A publication Critical patent/JPH01237616A/en
Application granted granted Critical
Publication of JP2840839B2 publication Critical patent/JP2840839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 (発明の分野) 本発明は光ビームを光偏向器により偏向して被走査面
上を走査させる光走査装置において用いられるfθレン
ズに関し、特に詳細には製造,組立てが容易であり、か
つ高性能なfθレンズに関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an fθ lens used in an optical scanning device that scans a surface to be scanned by deflecting a light beam by an optical deflector. The present invention relates to an easy and high-performance fθ lens.

(従来の技術) 従来より、光ビームを光偏向器により偏向して被走査
面上を走査させる光走査装置においては走査レンズとし
てfθレンズが用いられている。すなわち、回転多面
鏡、ガルバノメータミラーといった光偏向器により、光
ビームは等角速度で反射偏向されるが、被走査面は、回
転軸が偏向方向と平行なドラム上に配されたり、偏向方
向と垂直な方向に搬送される平坦なシート状物であった
りするのが一般的であり、いずれも偏向方向については
平坦となっているので、偏向器の偏向速度(偏向角速
度)と被走査面上での光ビームの走査速度を比例させる
ためには、上記光ビームの被走査面上での移動量を偏向
角θに比例させる特性を有するfθレンズを光偏向器と
被走査面との間に設ける必要がある。
(Prior Art) Conventionally, an fθ lens has been used as a scanning lens in an optical scanning device that scans a surface to be scanned by deflecting a light beam by an optical deflector. That is, the light beam is reflected and deflected at an equal angular velocity by an optical deflector such as a rotary polygon mirror or a galvanometer mirror. In general, the sheet may be a flat sheet conveyed in any direction, and in any case, the deflecting direction is flat. Therefore, the deflection speed (deflection angular velocity) of the deflector and the scanning surface In order to make the scanning speed of the light beam proportional, an fθ lens having a characteristic of making the amount of movement of the light beam on the surface to be scanned proportional to the deflection angle θ is provided between the optical deflector and the surface to be scanned. There is a need.

上記fθレンズは、通常複数のレンズが組み合わせら
れてなり、従来よりできるだけレンズの枚数を少なくし
かつ性能を向上させることを目的として種々のfθレン
ズが提案されている。例えば特開昭53−137631号には2
枚のレンズからなるfθレンズが開示されている。
The fθ lens is usually a combination of a plurality of lenses, and various fθ lenses have been proposed for the purpose of minimizing the number of lenses and improving the performance as much as ever. For example, Japanese Patent Application Laid-Open No.
An fθ lens composed of two lenses is disclosed.

(発明が解決しようとする課題) ところで実用上好ましいfθレンズを得るためには、
その製造,組立ての容易さも考慮にいれる必要がある。
従来、レンズは鏡胴に組入れる構造で組立てる事によ
り、比較的容易に組立精度を出せた。しかし最近、装置
の小型化の要求のためにレンズを短冊型にカットし、レ
ンズ本体をコンパクト化するのが通例になっている。そ
の場合、fθレンズは、fθレンズを構成する各レンズ
がそれぞれマウントに固定されるようになっているの
で、レンズの両面が曲率を有していると、レンズの加工
が難しくなるのに加えてマウントもレンズの曲率に合わ
せた加工を施される必要が生じ、レンズ、マウント共に
加工に手間がかかり、コストアップになるという問題が
ある。さらに曲率を有する面をマウントの平面に押し当
てるなどして取り付ける場合には、取付け位置の精度を
高めることが難しく、組立誤差が大きくなって、fθレ
ンズとしての性能を低下させるという問題がある。上述
したようにfθレンズを2枚のレンズからなるものとし
た場合には、両面に曲率を有するレンズが必要になるの
で、レンズの加工、取付けを行なう上で上記の不都合が
予想される。
(Problems to be Solved by the Invention) By the way, in order to obtain a practically preferable fθ lens,
It is necessary to consider the ease of manufacture and assembly.
Heretofore, assembling the lens in a structure to be incorporated into the lens barrel has made it possible to relatively easily assemble the lens with high accuracy. However, in recent years, it is customary to cut the lens into a strip shape in order to reduce the size of the apparatus, thereby reducing the size of the lens body. In that case, the fθ lens is configured such that each lens constituting the fθ lens is fixed to the mount, so that if both surfaces of the lens have a curvature, it becomes difficult to process the lens. The mount also needs to be processed in accordance with the curvature of the lens, and there is a problem that the processing of both the lens and the mount takes time and costs increase. Further, in the case of mounting by pressing a surface having a curvature against the plane of the mount or the like, it is difficult to increase the accuracy of the mounting position, and there is a problem that an assembling error increases and the performance as an fθ lens deteriorates. If the fθ lens is composed of two lenses as described above, a lens having a curvature on both sides is required, and the above-mentioned inconvenience is expected in processing and mounting the lens.

本発明は上記の問題に鑑みてなされたものであり、レ
ンズの加工、取付け等が容易に行なえるとともに性能も
良好なfθレンズを提供することを目的とするものであ
る。
The present invention has been made in view of the above-described problems, and has as its object to provide an fθ lens that can be easily processed and attached, and has good performance.

(課題を解決するための手段) 本発明は上記目的に基づいて鋭意研究を重ねた結果、
レンズを3枚用いれば、すべてのレンズについて一方の
面だけに曲率を設け、他方の面を平坦にすることが可能
であり、さらにその場合のレンズの屈折力は、光偏向器
側から順に負、負、正の順とすればよいことを見出すに
至った。また、上記各レンズの平坦な面がそれぞれ光偏
向器側と被走査面側のどちら側に向けられるかによっ
て、レンズ系の配置の仕方は8通りあり、これら8通り
のそれぞれの場合についてfθレンズ全体のレンズ特性
を調べたところ、表1に示す結果となった。
(Means for Solving the Problems) As a result of intensive studies based on the above objects, the present invention has
If three lenses are used, it is possible to provide a curvature on only one surface and flatten the other surface for all the lenses, and in this case, the refractive power of the lens becomes negative in order from the optical deflector side. I came to find that it would be better if the order was negative, then positive. There are eight ways of arranging the lens system depending on whether the flat surface of each lens is directed to the optical deflector side or the surface to be scanned, and the fθ lens is used in each of these eight cases. When the overall lens characteristics were examined, the results shown in Table 1 were obtained.

なお、各レンズタイプとも、そのタイプの中で最も性
能が良好であると思われるレンズを何通りか適宜組合わ
せて評価を行ない、その中でも最も結果の良好であった
ものの値を示してある。また像面わん曲は主走査主方
向、副走査方向とも基準位置からの最大わん曲量を示
し、fθ性とは (Hは像面上で振れ角θの時の高さ)で定義される値の
最大値を示す。また像面わん曲の値のうち*で示されて
いるのは値があまりにも大きいことを示す。なお、いず
れもレンズ系の左側に光偏向器が、右側に被走査面が配
される。
Each lens type is evaluated by appropriately combining several types of lenses that are considered to have the best performance among the lens types, and the value of the lens with the best result is shown. The image surface curvature indicates the maximum amount of curvature from the reference position in both the main scanning main direction and the sub-scanning direction. (H is the height at the shake angle θ on the image plane) indicates the maximum value of the values defined. In addition, the value of * of the curvature of the image surface indicates that the value is too large. In each case, an optical deflector is disposed on the left side of the lens system, and a surface to be scanned is disposed on the right side.

表1に示す通り、レンズタイプが(2),(4),
(5),(6),(7),(8)の場合には像面わん曲
が大きくなるためfθレンズとして用いるのは好ましく
ない。従って片面が平坦な3枚のレンズはレンズタイプ
(1)または(3)のように配されることが必要であ
り、本発明のfθレンズは、光偏向器側から順に配され
た、負の屈折力を有し被走査面側の面が平坦な第1のレ
ンズ、負の屈折力を有し被走査面側の面または偏向器側
の面が平坦な第2のレンズ、および正の屈折力を有し光
偏向器側の面が平坦な第3レンズからなることを特徴と
するものである。
As shown in Table 1, the lens types are (2), (4),
In the cases of (5), (6), (7), and (8), the curvature of the image plane becomes large, so that it is not preferable to use the fθ lens. Therefore, it is necessary to arrange the three lenses having one flat surface as lens type (1) or (3), and the fθ lens of the present invention is a negative lens arranged in order from the optical deflector side. A first lens having a refractive power and a flat surface on the scanned surface side, a second lens having a negative refractive power and a flat surface on the scanned surface side or the deflector side, and a positive refraction; It is characterized by comprising a third lens having a force and a flat surface on the optical deflector side.

(作用) 本発明のfθレンズによれば、良好なレンズ特性を有
するとともに、各レンズの片面がすべて平坦な面となっ
ているので、レンズの加工が容易であり製造コストを下
げることができ、レンズマウントの加工およびマウント
への高精度な取り付けも容易になる。
(Function) According to the fθ lens of the present invention, the lens has good lens characteristics, and all the surfaces of each lens are flat, so that the lens can be easily processed and the manufacturing cost can be reduced. Processing of the lens mount and highly accurate mounting on the mount are also facilitated.

(実 施 例) 以下、図面を参照して本発明の実施例について説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例によるfθレンズを備えた
光走査装置の斜視図であり、第2図はその側面図であ
る。
FIG. 1 is a perspective view of an optical scanning device provided with an fθ lens according to one embodiment of the present invention, and FIG. 2 is a side view thereof.

光源1から発せられた光ビーム2は、ビームエキスパ
ンダ3により所望のビーム径に拡大された後、矢印A方
向に回転する回転他面鏡4に平行な光束として入射す
る。回転多面鏡4により反射偏向された光ビーム2は光
路上に配されたfθレンズ8を通過した後矢印C方向に
一定速度で搬送される(副走査される)被走査面9上を
矢印B方向に主走査する。上記fθレンズ8は回転多面
鏡4により等角速度で偏向される光ビーム2を平坦な被
走行面9上で集束させて等速で走査させるレンズであ
り、負の屈折力を有し被走査面9側が平坦な第1のレン
ズ5、負の屈折力を有し被走査面9側が平坦な第2のレ
ンズ6、および正の屈折力を有し回転多面鏡4側の面が
平坦な第3のレンズ7からなっている。
The light beam 2 emitted from the light source 1 is expanded to a desired beam diameter by a beam expander 3 and then incident as a parallel light beam on a rotating other-surface mirror 4 rotating in the direction of arrow A. The light beam 2 reflected and deflected by the rotary polygon mirror 4 passes through an fθ lens 8 arranged on the optical path, and is then conveyed (sub-scanned) at a constant speed in the direction of arrow C (sub-scanning). Main scan in the direction. The fθ lens 8 is a lens that converges the light beam 2 deflected at an equal angular velocity by the rotary polygon mirror 4 on a flat running surface 9 and scans the light beam 2 at a constant speed, and has a negative refractive power and has a negative refractive power. A first lens 5 having a flat surface 9, a second lens 6 having a negative refractive power and a flat surface to be scanned 9, and a third lens 6 having a positive refractive power and having a flat surface on the side of the rotary polygon mirror 4. Lens 7.

上記のような屈折力を有し、平坦な面をそれぞれ上記
方向に向けて配された3枚のレンズからなるfθレンズ
を用いれば、光ビームを被走査面9上で等速で走査さ
せ、高精度な2次元走査を実現することができる。以下
に上記fθレンズの各レンズの実施例を示す。なお、r1
〜r6は、第2図に示す、fθレンズの各レンズのレンズ
面の曲率半径、d1,d3,d5はそれぞれ第1,第2,第3のレン
ズ5,6,7の軸上肉厚、d2,d4は、各レンズ間の軸上におけ
る空気間隔、d0は偏向点からr1のレンズ面までの間隔、
d6はr6のレンズ面から走査点までの間隔(いずれも単位
はmm)、n1,n2,n3それぞれ第1,第2および第3のレンズ
の屈折率である。また光ビームの波長は632.8nm、回転
多面鏡によるビーム偏向角は±15゜、fθレンズ全体の
焦点距離は100mmとなっている。
Using the fθ lens having the above-described refractive power and three lenses each having a flat surface oriented in the above-described direction, the light beam is scanned on the scanned surface 9 at a constant speed, High-accuracy two-dimensional scanning can be realized. Examples of each lens of the fθ lens will be described below. Note that r 1
~r 6 is shown in FIG. 2, the radius of curvature of the lens surface of each lens of the fθ lens, d 1, d 3, d 5 is the first respectively the axis of the second, third lens 5, 6 and 7 The upper wall thickness, d 2 and d 4 are the air intervals on the axis between the lenses, d 0 is the interval from the deflection point to the lens surface of r 1 ,
d 6 is the distance from the lens surface of r 6 to the scanning point (in mm), and n 1 , n 2 , and n 3 are the refractive indices of the first, second, and third lenses, respectively. The wavelength of the light beam is 632.8 nm, the beam deflection angle by the rotary polygon mirror is ± 15 °, and the focal length of the entire fθ lens is 100 mm.

なお、第2図に示すfθレンズの各レンズは上記r1
r6,d0〜d6を説明するために便宜的に図示したものであ
り、以下に示す第1〜第9実施例のfθレンズにおける
具体的なレンズの形状は、それぞれ第3図(a)〜第14
図(a)に示す。また第1〜第12実施例のfθレンズの
収差図は、それぞれ第3図(b)〜第14図(b)に示
す。
Each lens of the fθ lens shown in FIG. 2 the r 1 ~
r 6 , d 0 to d 6 are shown for the sake of convenience, and the specific lens shapes of the fθ lenses of the first to ninth embodiments described below are shown in FIG. ) To 14th
It is shown in FIG. FIGS. 3 (b) to 14 (b) show aberration diagrams of the fθ lenses of the first to twelfth examples, respectively.

第1実施例 d0=4.4118 r1=−22.0588 d1=0.5882 n1=1.5151 r2=∞ d2=2.1622 r3=−218.8953 d3=0.6195 n2=1.5667 r4=∞ d4=2.1434 r5=∞ d5=0.8912 n3=1.7786 r6=−24.5680 d6=113.8701 第2実施例 d0=4.4118 r1=−29.4118 d1=1.5986 n1=1.5151 r2=∞ d2=7.4718 r3=−1850.6882 d3=0.4960 n2=1.5667 r4=∞ d4=1.9412 r5=∞ d5=2.2059 n3=1.7786 r6=−33.8616 d6=121.1452 第3実施例 d0=4.4118 r1=−14.7059 d1=0.5882 n1=1.5151 r2=∞ d2=0.2941 r3=−124.2074 d3=1.0504 n2=1.5667 r4=∞ d4=1.9412 r5=∞ d5=0.5882 n3=1.7786 r6=−17.8716 d6=114.1307 第4実施例 d0=4.4118 r1=−44.1177 d1=0.5882 n1=1.5151 r2=∞ d2=0.2941 r3=−52.6042 d3=1.0504 n2=1.5667 r4=∞ d4=1.9412 r5=∞ d5=0.5882 n3=1.7786 r6=−25.7099 d6=107.3483 第5実施例 d0=4.4118 r1=−51.4706 d1=0.5882 n1=1.5151 r2=∞ d2=0.2941 r3=−35.8532 d3=0.5882 n2=1.5667 r4=∞ d4=1.3468 r5=∞ d5=0.5882 n3=1.7786 r6=−22.9771 d6=105.9313 第6実施例 d0=4.4118 r1=−58.8235 d1=0.5882 n1=1.5151 r2=∞ d2=0.2941 r3=−31.9188 d3=0.9034 n2=1.5151 r4=∞ d4=1.9412 r5=∞ d5=0.5882 n3=1.7786 r6=−23.9803 d6=107.7183 第7実施例 d0=4.4118 r1=−14.7059 d1=0.5882 n1=1.5151 r2=∞ d2=0.2941 r3=−122.6857 d3=1.0000 n2=1.5667 r4=∞ d4=1.9412 r5=∞ d5=0.5882 n3=1.7786 r6=−17.8334 d6=114.0192 第8実施例 d0=4.4118 r1=−29.4122 d1=0.5882 n1=1.5151 r2=∞ d2=14.9938 r3=−48.7320 d3=0.5882 n2=1.5151 r4=∞ d4=1.9412 r5=∞ d5=1.2232 n3=1.7786 r6=−25.9230 d6=136.3936 第9実施例 d0=4.4118 r1=−23.5294 d1=0.5882 n1=1.5151 r2=∞ d2=3.1897 r3=−296.1479 d3=0.5882 n2=1.5151 r4=∞ d4=1.9412 r5=∞ d5=1.4596 n3=1.7786 r6=−26.5912 d6=115.2886 第10実施例 d0=4.4118 r1=−21.47059 d1=1.64860 n1=1.5151 r2=∞ d2=0.897059 r3=∞ d3=0.588235 n2=1.566704 r4=261.89510 d4=1.941176 r5=∞ d5=1.176471 n3=1.7786 r6=−24.14667 d6=112.474114 第11実施例 d0=4.4118 r1=−23.44727 d1=0.588235 n1=1.5151 r2=∞ d2=3.169007 r3=∞ d3=0.586182 n2=1.5151 r4=321.07367 d4=1.934400 r5=∞ d5=1.154459 n3=1.7786 r6=−26.51284 d6=114.774824 第12実施例 d0=4.4118 r1=−29.39958 d1=1.597941 n1=1.5151 r2=∞ d2=7.468756 r3=∞ d3=0.495822 n2=1.566704 r4=1849.92280 d4=1.940373 r5=∞ d5=2.204969 n3=1.7786 r6=−33.84757 d6=121.148132 (発明の効果) 以上説明したように本発明によれば、片面が平坦な3
枚のレンズを組み合わせることにより高性能なfθレン
ズを得ることができるので、加工の容易なレンズを用い
てコストダウンを図るこができるとともにレンズマウン
トの加工も簡単になり、レンズマウントへの取付けも容
易かつ高精度に行なうことができる。
First Example d 0 = 4.4118 r 1 = −22.0588 d 1 = 0.5882 n 1 = 1.5151 r 2 = ∞ d 2 = 2.1622 r 3 = −218.8953 d 3 = 0.6195 n 2 = 1.5667 r 4 = ∞ d 4 = 2.1434 r 5 = ∞ d 5 = 0.8912 n 3 = 1.7786 r 6 = -24.5680 d 6 = 113.8701 second embodiment d 0 = 4.4118 r 1 = -29.4118 d 1 = 1.5986 n 1 = 1.5151 r 2 = ∞ d 2 = 7.4718 r 3 = -1850.6882 d 3 = 0.4960 n 2 = 1.5667 r 4 = ∞ d 4 = 1.9412 r 5 = ∞ d 5 = 2.2059 n 3 = 1.7786 r 6 = -33.8616 d 6 = 121.1452 Third embodiment d 0 = 4.4118 r 1 = -14.7059 d 1 = 0.5882 n 1 = 1.5151 r 2 = ∞ d 2 = 0.2941 r 3 = −124.2074 d 3 = 1.0504 n 2 = 1.5667 r 4 = ∞ d 4 = 1.9412 r 5 = ∞ d 5 = 0.5882 n 3 = 1.7786 r 6 = −17.8716 d 6 = 114.1307 Fourth embodiment d 0 = 4.4118 r 1 = -44.1177 d 1 = 0.5882 n 1 = 1.5151 r 2 = ∞ d 2 = 0.2941 r 3 = −52.6042 d 3 = 1.0504 n 2 = 1.5667 r 4 = ∞ d 4 = 1.9412 r 5 = ∞ d 5 = 0.5882 n 3 = 1.7786 r 6 = −25.7099 d 6 = 107.3483 Fifth Embodiment d 0 = 4.4118 r 1 = -51.4706 d 1 = 0.5882 n 1 = 1.5151 r 2 = d 2 = 0.2941 r 3 = -35.8532 d 3 = 0.5882 n 2 = 1.5667 r 4 = ∞ d 4 = 1.3468 r 5 = ∞ d 5 = 0.5882 n 3 = 1.7786 r 6 = −22.9771 d 6 = 105.9313 Sixth embodiment d 0 = 4.4118 r 1 = −58.8235 d 1 = 0.5882 n 1 = 1.5151 r 2 = ∞ d 2 = 0.2941 r 3 = − 31.9188 d 3 = 0.9034 n 2 = 1.5151 r 4 = ∞ d 4 = 1.9412 r 5 = ∞ d 5 = 0.5882 n 3 = 1.7786 r 6 = -23.9803 d 6 = 107.7183 seventh embodiment d 0 = 4.4118 r 1 = - 14.7059 d 1 = 0.5882 n 1 = 1.5151 r 2 = ∞ d 2 = 0.2941 r 3 = -122.6857 d 3 = 1.0000 n 2 = 1.5667 r 4 = ∞ d 4 = 1.9412 r 5 = ∞ d 5 = 0.5882 n 3 = 1.7786 r 6 = −17.8334 d 6 = 114.0192 Eighth embodiment d 0 = 4.4118 r 1 = −29.4122 d 1 = 0.5882 n 1 = 1.5151 r 2 = ∞ d 2 = 14.9938 r 3 = −48.7320 d 3 = 0.5882 n 2 = 1.5151 r 4 = ∞ d 4 = 1.9412 r 5 = ∞ d 5 = 1.2232 n 3 = 1.7786 r 6 = -25.9230 d 6 = 136.3936 Ninth embodiment d 0 = 4.4118 r 1 = -23.5294 d 1 = 0.5882 n 1 = 1.5151 r 2 = ∞ d 2 = 3.1897 r 3 = -296.1479 d 3 = 0.5882 n 2 = 1.5151 r 4 = ∞ d 4 = 1.9412 r 5 = ∞ d 5 = 1.4596 n 3 = 1.7786 r 6 = -26.5912 d 6 = 115.2886 10th embodiment d 0 = 4.4118 r 1 = -21.47059 d 1 = 1.64860 n 1 = 1.5151 r 2 = ∞ d 2 = 0.897059 r 3 = ∞ d 3 = 0.588235 n 2 = 1.566704 r 4 = 261.89510 d 4 = 1.941176 r 5 = ∞d 5 = 1.176471 n 3 = 1.7786 r 6 = −24.14667 d 6 = 112.474114 11th embodiment d 0 = 4.4118 r 1 = −23.44727 d 1 = 0.588235 n 1 = 1.5151 r 2 = ∞ d 2 = 3.169007 r 3 = ∞ d 3 = 0.586182 n 2 = 1.5151 r 4 = 321.07367 d 4 = 1.934400 r 5 = ∞ d 5 = 1.154459 n 3 = 1.7786 r 6 = −26.51284 d 6 = 114.774824 12th Example d 0 = 4.4118 r 1 = −29.39958 d 1 = 1.597941 n 1 = 1.5151 r 2 = ∞ d 2 = 7.468756 r 3 = ∞ d 3 = 0.495822 n 2 = 1.566704 r 4 = 1849.92280 d 4 = 1.940373 r 5 = ∞ d 5 = 2.204969 n 3 = 1.7786 r 6 = -33.84757 d 6 = 121.148132 ( the invention According to the present invention as fruits) above description, one side is flat 3
A high-performance f-theta lens can be obtained by combining two lenses, so that it is possible to reduce costs by using easily processed lenses, simplify the processing of the lens mount, and attach it to the lens mount. It can be performed easily and with high precision.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例によるfθレンズを備えた光
走査装置の概要を示す斜視図、 第2図は上記装置の側面図、 第3図(a),(b)、第4図(a),(b)、第5図
(a),(b)、第6図(a),(b)、第7図
(a),(b)、第8図(a),(b)、第9図
(a),(b)、第10図(a),(b)、第11図
(a),(b)、第12図(a),(b)、第13図
(a),(b)、第14図(a),(b)は、それぞれ本
発明の実施例によるfθレンズの構成を示す概略図およ
び収差図である。 2……光ビーム、4……回転多面鏡 5……第1のレンズ、6……第2のレンズ 7……第3のレンズ、8……fθレンズ 9……被走査面
FIG. 1 is a perspective view showing an outline of an optical scanning device provided with an fθ lens according to one embodiment of the present invention, FIG. 2 is a side view of the above-mentioned device, FIGS. 3 (a), (b) and FIG. (A), (b), FIGS. 5 (a), (b), FIGS. 6 (a), (b), FIGS. 7 (a), (b), FIGS. 8 (a), (b) ), FIGS. 9 (a) and (b), FIGS. 10 (a) and (b), FIGS. 11 (a) and (b), FIGS. 12 (a), (b) and 13 ( 14 (a), 14 (b), and 14 (a), 14 (b) are a schematic diagram and an aberration diagram, respectively, showing the configuration of an fθ lens according to an embodiment of the present invention. 2 ... light beam, 4 ... rotary polygon mirror 5 ... first lens, 6 ... second lens 7 ... third lens, 8 ... fθ lens 9 ... scanning surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野口 勝 神奈川県足柄上郡開成町宮台798番地 富士写真フイルム株式会社内 (56)参考文献 特開 昭58−21711(JP,A) 特開 昭58−153908(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masaru Noguchi 798 Miyadai, Kaisei-cho, Ashigara-gun, Kanagawa Prefecture Fuji Photo Film Co., Ltd. (56) References JP-A-58-21711 (JP, A) JP-A-58- 153908 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光ビームを等角速度で偏向する光偏向器と
偏向方向において表面が平坦な被走査面の間に設けら
れ、前記光ビームを前記被走査面上で集束させて等速で
走査させるfθレンズにおいて、 前記光偏向器側から順に配された、負の屈折力を有し前
記被走査面側の面が平坦な第1のレンズ、負の屈折力を
有し前記被走査面側の面または前記光偏向器側の面が平
坦な第2のレンズ、および正の屈折力を有し前記光偏向
器側の面が平坦な第3のレンズからなることを特徴とす
るfθレンズ。
An optical deflector for deflecting a light beam at a constant angular velocity and a scanning surface having a flat surface in a deflecting direction are provided, and the light beam is focused on the scanning surface and scanned at a constant speed. Fθ lens, a first lens having a negative refractive power and a flat surface on the surface to be scanned, which is arranged in order from the optical deflector, and a surface having a negative refractive power and the surface to be scanned Or a second lens having a flat surface on the optical deflector side, and a third lens having a positive refractive power and a flat surface on the optical deflector side.
JP63064921A 1988-03-18 1988-03-18 fθ lens Expired - Fee Related JP2840839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63064921A JP2840839B2 (en) 1988-03-18 1988-03-18 fθ lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63064921A JP2840839B2 (en) 1988-03-18 1988-03-18 fθ lens

Publications (2)

Publication Number Publication Date
JPH01237616A JPH01237616A (en) 1989-09-22
JP2840839B2 true JP2840839B2 (en) 1998-12-24

Family

ID=13271993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63064921A Expired - Fee Related JP2840839B2 (en) 1988-03-18 1988-03-18 fθ lens

Country Status (1)

Country Link
JP (1) JP2840839B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821711A (en) * 1981-07-31 1983-02-08 Fujitsu Ltd Optical device
JPS58153908A (en) * 1982-03-09 1983-09-13 Minolta Camera Co Ltd Lens for scanning

Also Published As

Publication number Publication date
JPH01237616A (en) 1989-09-22

Similar Documents

Publication Publication Date Title
EP0386226B1 (en) Optical scanner
JPH0627904B2 (en) Laser beam scanning optics
JP3433070B2 (en) Light beam scanning device
US5237444A (en) Optical scanning system
US4081207A (en) Scanning lens system
JP3117524B2 (en) Scanning optical system with surface tilt correction function
JP3567408B2 (en) Scanning optical device and scanning optical lens for scanning optical device
JP2840839B2 (en) fθ lens
JP3363531B2 (en) Laser scanning device
JP3339934B2 (en) f / θ lens
JPH11142771A (en) Optical scanning device
JPH0990216A (en) Telecentric ftheta lens
JPS62265613A (en) Two-dimensional deflecting device for light beam
EP0018787A1 (en) Optical scanning apparatus
JP2702516B2 (en) fθ lens
JP2660536B2 (en) fθ lens
JP3943155B2 (en) Optical scanning device
JPH11281911A (en) Optical scanning optical system
JP3381333B2 (en) Optical scanning device
JP2511904B2 (en) Optical beam scanning device
JPH0417926Y2 (en)
JPH0543090B2 (en)
JPS61175607A (en) Scanning optical system
JP2626708B2 (en) Scanning optical system
JP2775434B2 (en) Scanning optical system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071023

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees