JPH0447115A - Exhaust disposal equipment of internal combustion engine - Google Patents

Exhaust disposal equipment of internal combustion engine

Info

Publication number
JPH0447115A
JPH0447115A JP2154293A JP15429390A JPH0447115A JP H0447115 A JPH0447115 A JP H0447115A JP 2154293 A JP2154293 A JP 2154293A JP 15429390 A JP15429390 A JP 15429390A JP H0447115 A JPH0447115 A JP H0447115A
Authority
JP
Japan
Prior art keywords
trap
fuel
exhaust
temperature
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2154293A
Other languages
Japanese (ja)
Inventor
Yoshiki Sekiya
関谷 芳樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2154293A priority Critical patent/JPH0447115A/en
Publication of JPH0447115A publication Critical patent/JPH0447115A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To enable regeneration for good fuel consumption efficiency when a trap is regenerated by injecting fuel into an engine combustion chamber at the end of engine expansion stroke or during exhaust stroke, and supplying very combustible activated fuel to the trap with a catalyst through an oxidation catalyst. CONSTITUTION:An oxidation catalyst 51 and a trap with a catalyst 52 to scavenge particulates are interposed serially in the exhaust passage 50 of an internal combustion engine, and further a bypass passage 53 that detours the trap 52 is provided. When the trap is regenerated, a bypass control means 56 whereinto the signal of a temperature detection means 55 is input controls so that a bypass valve 54 is closed when exhaust temperature is within a specified range of temperature lower than the trap regeneration temperature and higher than that, and opened at the time other than that. Also, fuel is injected by a fuel injection device 58 at the end of engine expansion stroke or during exhaust stroke when the exhaust temperature is within the specified range of temperature by a regenerated fuel control means 57, as well as its injection volume is controlled to increase or decrease in response to exhaust temperature.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は主としてディーゼル機関の排気処理装置に間す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is mainly applied to an exhaust treatment device for a diesel engine.

(従来の技術) ディーゼル機関の排気中の微粒子(パーティキュレイト
)等が大気中に放出されるのを防ぐため、排気通路に排
気微粒子を捕捉するトラップを設置する場合、トラップ
で捕集したパーティキュレイトの堆積量の増加にしたが
って排圧が上昇し、機関性能に及ぼす影響も大きくなる
ので、定期的にトラップで捕捉したカーボンを主成分と
するバーチニレイトを燃焼除去することによりトラップ
の再生を行っている。
(Prior art) When installing a trap to capture exhaust particulates in the exhaust passage in order to prevent particulates in the exhaust of a diesel engine from being released into the atmosphere, the particulates collected by the trap are As the amount of curate increases, the exhaust pressure increases and the effect on engine performance becomes greater. Therefore, the trap is regenerated by periodically burning and removing the vertinylate, which is mainly composed of carbon, captured in the trap. ing.

本出願人による実開昭61−173712号公報では、
排気通路にトラップの上流に位置してバイパス通路を設
け、このバイパス通路に酸化触媒を設置し、所定の再生
時期に達すると、酸化触媒の上流に燃料を供給し、この
触媒で排気中の未燃成分を酸化燃焼し、この反応熱を利
用して下流側トラップでのパーティキュレイトを燃焼さ
せ、再生を行うようになっている。
In Japanese Utility Model Application No. 61-173712 by the present applicant,
A bypass passage is provided in the exhaust passage upstream of the trap, and an oxidation catalyst is installed in this bypass passage. When a predetermined regeneration period is reached, fuel is supplied upstream of the oxidation catalyst, and this catalyst removes the unused substances in the exhaust gas. The fuel components are oxidized and burned, and the reaction heat is used to burn particulates in the downstream trap for regeneration.

パーティキュレイトは排気温度が例えば400℃以上の
再生温度になると自己着火して燃焼するが、それ以下で
は再生燃焼が難しく、そのため、再生時の排気温度を検
出して、自己着火しない領域では、低温活性度の高い触
媒の上流に燃料を供給して、その酸化反応熱により排気
温度を上昇させているのである。
Particulates self-ignite and burn when the exhaust temperature reaches a regeneration temperature of, for example, 400 degrees Celsius or higher, but regeneration combustion is difficult at temperatures below that, so the exhaust temperature during regeneration is detected, and in the region where self-ignition does not occur, Fuel is supplied upstream of the catalyst, which has high low-temperature activity, and the heat of the oxidation reaction raises the exhaust temperature.

(発明が解決しようとする課題) ところが、機関の運転条件によっては排気温度が低く、
触媒の上流に燃料を供給しても酸化反応が不十分で、ト
ラップのパーティキュレイトの燃焼が円滑に行えないこ
とがあり、このような場合には、トラップにパーティキ
ュレイトがさらに堆積していき、目詰まりにより排圧が
著しく増大して、運転性能を大きく低下させることがあ
る。
(Problem to be solved by the invention) However, depending on the operating conditions of the engine, the exhaust temperature may be low;
Even if fuel is supplied upstream of the catalyst, the oxidation reaction may be insufficient and the particulates in the trap may not burn smoothly. In such cases, more particulates may accumulate in the trap. The exhaust pressure may increase significantly due to clogging, which may significantly reduce operating performance.

もちろんこのときには、排気中に供給した燃料が完全に
燃焼せず、多くがそのまま白煙となって排出される。
Of course, at this time, the fuel supplied to the exhaust gas is not completely combusted, and much of it is emitted as white smoke.

またこの場合、酸化触媒に排気が流れるのは、再生時だ
けで通常運転時にはそのままトラップに流れ込み、した
がって、トラップに流入する排気温度は、酸化触媒を通
過して排気中の未燃成分を酸化反応させた場合に比較し
て相対的に低く、このため、トラップに捕集されたパー
ティキュレイトが自動的に燃焼するのは、排気温度がカ
ーボンの自己着火温度以上に高まるような例えば、継続
的な高負荷運転時などに限られてしまう。
Additionally, in this case, the exhaust gas flows to the oxidation catalyst only during regeneration, and during normal operation, it flows directly into the trap. Therefore, the temperature of the exhaust gas flowing into the trap passes through the oxidation catalyst, and the unburned components in the exhaust gas are oxidized. Therefore, automatic combustion of particulates collected in the trap is limited to continuous combustion, for example, when the exhaust temperature rises above the auto-ignition temperature of carbon. This is limited to situations such as high-load operation.

したがって、それだけ捕集パーティキュレイトの自己再
生の機会が少なく、再生時期のインターバルを延ばすこ
とができない。
Therefore, there are fewer opportunities for self-regeneration of the collected particulates, and the interval between regeneration periods cannot be extended.

また、排気中にはカーボンを主成分とするパーティキュ
レイトの他に、運転条件によっては比較的低温で燃焼す
るのだが、未燃成分(SOF)が多く含まれることがあ
り、これらをトラップで燃焼除去することは難しい。
Furthermore, in addition to particulates whose main component is carbon, exhaust gas may contain large amounts of unburned components (SOF), which burn at relatively low temperatures depending on the operating conditions, and these can be trapped. Difficult to remove by burning.

そこで本発明は、再生時に白煙を発生したりトラップの
耐久性を損なうことがなく、しかも通常運転時は未燃成
分の確実な浄化と自己再生の機会を高められる内燃機関
の排気処理装置を提供することを目的とする。
Therefore, the present invention provides an exhaust treatment device for an internal combustion engine that does not generate white smoke or impair the durability of the trap during regeneration, and that can reliably purify unburned components and increase the chances of self-regeneration during normal operation. The purpose is to provide.

(課題を解決するための手段) そこで本発明は、第1図に示すように、機関回転に同期
して燃焼室に燃料を噴射する燃料噴射装置58を備えた
内燃機関において、排気通路50に直列的に介装した酸
化触媒51及びその下流に位置するパーティキュレイト
捕集用の触媒付きトラップ52と、排気道Fr450の
トラップ52を迂回して排気を流すバイパス通路53と
、バイパス通路を開閉するバイパス弁54と、トラップ
下流の排気温度を検出する手段55と、トラップ再生時
に検出した排気温度がトラップ再生温度よりも低い所定
の温度範囲にあるとき並びにそれ以上のときはバイパス
弁54を閉じ、それ以外のときにバイパス弁54を開く
バイパス制振手段56と、同じく排気温度が前記所定の
温度範囲にあるときLこ前ニー燃料唱射奨i1”;RC
C上上根闇翻張行稈の終期もしくは排気行程中に燃料を
噴射させると共にその噴射量を排気温度に応じて増減制
御し、所定の温度範囲以外のときは燃料噴射を停止させ
る再生燃料制御手段57とを備える。
(Means for Solving the Problems) As shown in FIG. 1, the present invention provides an internal combustion engine equipped with a fuel injection device 58 that injects fuel into a combustion chamber in synchronization with engine rotation. An oxidation catalyst 51 interposed in series, a trap 52 with a catalyst for collecting particulates located downstream thereof, a bypass passage 53 through which exhaust gas flows bypassing the trap 52 of the exhaust path Fr450, and a bypass passage that opens and closes. a means 55 for detecting the exhaust gas temperature downstream of the trap, and a means 55 for closing the bypass valve 54 when the exhaust gas temperature detected during trap regeneration is within a predetermined temperature range lower than the trap regeneration temperature and when the temperature is higher than the trap regeneration temperature. , a bypass vibration damping means 56 which opens the bypass valve 54 at other times, and also a bypass damping means 56 that opens the bypass valve 54 when the exhaust temperature is within the predetermined temperature range.
Regeneration fuel control in which fuel is injected during the final stage of the C-kami-kami-ne-ya-dan-bari culm or during the exhaust stroke, and the amount of injection is controlled to increase or decrease according to the exhaust temperature, and fuel injection is stopped when the temperature is outside a predetermined temperature range. means 57.

(作用〉 したがって再生時に排気温度が所定の温度(触媒活性温
度)範囲にあるときは、そのときの排気温度に応じて燃
料噴射装置58により、機関m張行程の終期もしくは排
気行程中に噴射された未燃燃料を多く含む排気が酸化触
媒51に流入する。
(Operation) Therefore, when the exhaust gas temperature is within a predetermined temperature range (catalyst activation temperature) during regeneration, the fuel is injected by the fuel injection device 58 at the end of the engine tension stroke or during the exhaust stroke depending on the exhaust gas temperature at that time. Exhaust gas containing a large amount of unburned fuel flows into the oxidation catalyst 51.

この燃料は高温の機関燃焼室から排気ボート、排気通路
を通過するうちに微粒化、霧化等の活性化が促進され、
非常に酸化しやすい状態となる。
As this fuel passes from the high-temperature engine combustion chamber to the exhaust boat and exhaust passage, activation such as atomization and atomization is promoted.
It becomes very susceptible to oxidation.

したがってこれらは酸化触媒51で酸化し、さらに触媒
付きトランプ52において確実に燃焼し、その反応熱を
利用してトラップ52でのパーティキュレイトの燃焼が
円滑に行なわれ、かつ白煙の排出もない。このとき、再
生用燃料の供給量は、触媒の活性状態に応じて増減され
るので、燃料の鉦に#fr:なぐ 動床J)目し/LM
土かぐ千jス排気温度が前記温度範囲よりも高いときは
、燃料の供給が無くてもトラップ52に捕集されたパー
ティキュレイトは自己着火して燃焼するので、大量のパ
ーティキュレイトが一気に燃焼してトラップ52が異常
高温化するのを回避するため、このような場合は燃料の
供給を停止すると共に排気の全量をトラップ52に流入
させることにより燃焼熱を運び去り、トラップ52の焼
損を防止する。
Therefore, these are oxidized by the oxidation catalyst 51 and then reliably combusted in the catalyzed playing card 52, and the particulates are smoothly combusted in the trap 52 using the reaction heat, and no white smoke is emitted. . At this time, the amount of fuel supplied for regeneration is increased or decreased depending on the activation state of the catalyst, so the amount of regeneration fuel is increased or decreased depending on the activation state of the catalyst.
When the exhaust gas temperature is higher than the above temperature range, the particulates collected in the trap 52 will self-ignite and burn even if there is no fuel supply, so a large amount of particulates will be ignited at once. In order to prevent the trap 52 from becoming abnormally hot due to combustion, in such a case, the fuel supply is stopped and the entire amount of exhaust gas is allowed to flow into the trap 52 to carry away the combustion heat and prevent the trap 52 from burning out. To prevent.

排気温度が前記温度範囲よりも低いときは、燃料を供給
しても完全な酸化反応が得られず、白煙となって排出さ
れるため、燃料供給を停止すると共にバイパス弁54を
開くことにより、トラップ52へのそれ以上のパーティ
キュレイトの堆積を防いで排圧上昇による運転性の悪化
を回避する。
When the exhaust gas temperature is lower than the above temperature range, a complete oxidation reaction cannot be obtained even if fuel is supplied, and white smoke is emitted. Therefore, by stopping the fuel supply and opening the bypass valve 54. , further accumulation of particulates in the trap 52 is prevented, thereby avoiding deterioration of drivability due to an increase in exhaust pressure.

一方、通常運転時は排気中の未燃成分<SOF>は酸化
触媒51を通過する際に酸化され、また、この反応熱に
より排気温度を相対的に上昇させ、トラップ52に堆積
しているパーティキュレイトの自己着火による自動再生
の機会を増やし、機関の排圧を下げて燃費や運転性を良
好に維持すると共に、トラップ52の再生インターバル
を延ばして、再生に伴う燃費の悪化を低減する。
On the other hand, during normal operation, unburned components <SOF> in the exhaust gas are oxidized when passing through the oxidation catalyst 51, and the heat of this reaction relatively increases the exhaust temperature, causing the particles deposited in the trap 52 to become oxidized. Opportunities for automatic regeneration due to self-ignition of the curate are increased, exhaust pressure of the engine is lowered to maintain good fuel efficiency and drivability, and the regeneration interval of the trap 52 is extended to reduce deterioration in fuel efficiency due to regeneration.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第2図において、1は機関本体、2は吸気通路、3は排
気通路で、排気通路3には低温活性型のハニカム型酸化
触媒4と、その下流に位置して排気中のパーティキュレ
イトを捕捉する触媒付きのトラップ5が設けられる。
In Fig. 2, 1 is the engine body, 2 is an intake passage, and 3 is an exhaust passage.In the exhaust passage 3, there is a low-temperature activated honeycomb-type oxidation catalyst 4, and a particulate catalyst in the exhaust gas is located downstream of the honeycomb-type oxidation catalyst 4. A trap 5 with a trapping catalyst is provided.

トラップ5を迂回して排気を流すためにバイパス通路7
が設けられ、このバイパス通路7にはバイパス弁8が介
装される。
Bypass passage 7 to flow exhaust gas bypassing trap 5
A bypass valve 8 is interposed in the bypass passage 7.

なお、バイパス弁8は、ダイヤフラム装置8aに導入す
る圧力を三方電磁弁8bを介して切換作動することによ
り開閉される。
The bypass valve 8 is opened and closed by switching the pressure introduced into the diaphragm device 8a via the three-way solenoid valve 8b.

機関燃焼室に機関運転状態に応じて機関圧縮行程の終期
に燃料を噴射する燃料噴射ポンプ6が設けられ、この燃
料噴射ポンプ6は後述するように、トラップ5の再生用
に機関膨張行程の終期においても燃料を噴射する。
A fuel injection pump 6 is provided in the engine combustion chamber to inject fuel at the end of the engine compression stroke depending on the engine operating state, and as described later, this fuel injection pump 6 injects fuel at the end of the engine expansion stroke for regeneration of the trap 5. Fuel is also injected at

第3図に示すように燃料噴射ポンプ6は、ハウジング2
1の内部にドライブシャフト24により駆動される低圧
側フィードポンプ22と高圧側プランジャポンプ23が
配設され、図示しない燃料入口からフィードポンプ22
により吸引された燃料は、ハウジング21の内部のポン
プ室25に送出され、このポンプ室25に開口する吸込
通路26を経てプランジャポンプ23に導かれる。
As shown in FIG. 3, the fuel injection pump 6 has a housing 2
A low-pressure side feed pump 22 and a high-pressure side plunger pump 23 driven by a drive shaft 24 are disposed inside the fuel pump 1, and the feed pump 22 is connected to a fuel inlet (not shown) from a fuel inlet (not shown).
The fuel sucked in is delivered to a pump chamber 25 inside the housing 21 and guided to the plunger pump 23 through a suction passage 26 that opens into the pump chamber 25.

プランジャポンプ23のプランジャ27は先端部の周囲
に軸方向に延びる、気筒数と同数の吸込溝28が形成さ
れると共に、基端側には同じく同数のカム山をもつフェ
イスカム29が形成され、フェイスカム2つがドライブ
シャフト24と一体に回転しながらローラリング30に
配設されたローラ31を乗り越えつつリフトする。
The plunger 27 of the plunger pump 23 has suction grooves 28 extending in the axial direction around the tip, the same number as the number of cylinders, and a face cam 29 having the same number of cam ridges on the base end. The two face cams rotate together with the drive shaft 24 and lift while climbing over the rollers 31 disposed on the roller ring 30.

したがって、プランジャ27は回転しながら往復運動し
、この退出に伴って、吸込溝28がらプランジャ室32
に吸引された燃料が、プランジャ侵入時に、プランジャ
室32に通しる図示1−ない分配ボートからデリバリバ
ルブを通って各気筒の燃料噴射ノズルへと圧送される。
Therefore, the plunger 27 reciprocates while rotating, and as it exits, the plunger chamber 32 is removed from the suction groove 28.
When the plunger enters the plunger, the fuel sucked into the plunger chamber 32 is sent under pressure from a distribution boat (not shown) passing through the plunger chamber 32 to the fuel injection nozzle of each cylinder through a delivery valve.

そして、燃料の噴射時期、噴射量を制御するため、プラ
ンジャ室32から低圧のポンプ室25に燃料を戻す燃料
回路33の途中に高速型の電磁制御弁34が介装される
In order to control the injection timing and amount of fuel, a high-speed electromagnetic control valve 34 is interposed in the middle of a fuel circuit 33 that returns fuel from the plunger chamber 32 to the low-pressure pump chamber 25.

この電磁制御弁34の開閉によりプランジャ室32が選
択的に解放される。
By opening and closing the electromagnetic control valve 34, the plunger chamber 32 is selectively opened.

プランジャ27の圧縮行程で電磁制御弁34が閉じるこ
とにより、燃料の噴射が開始され、電磁制御弁34を開
く二とて噴射が終了し5したがって、電磁制御弁34の
閉弁時期により燃料噴射時期が、また、その閉弁期間に
応して噴射量が制御されるのである。
When the electromagnetic control valve 34 closes during the compression stroke of the plunger 27, fuel injection is started, and when the electromagnetic control valve 34 is opened, the injection ends. However, the injection amount is also controlled according to the valve closing period.

この燃fA、噴射ポンプ6を機関の圧縮行程終了付近て
作動させて主噴射を行うと共に、膨張行程の終期もしく
は排気行程中に作動させて再生用燃料の副噴射と行うた
めに、コントロールユニット10が備えられる。
The control unit 10 operates this fuel fA and the injection pump 6 near the end of the compression stroke of the engine to perform main injection, and also operates it at the end of the expansion stroke or during the exhaust stroke to perform sub-injection of regeneration fuel. will be provided.

1ソにロー化−7−、、、l−1(N+4 部皆二宙鮮
此小榊料制御と共に、トラップ5に捕集されたパーティ
キュレイトの堆積量が所定値に達すると、そのときの排
気温度に応じて再生用燃料の噴射量とバイパス弁8の作
動を制御しながらトラップ5の再生を行う。
-7-, l-1 (N+4) When the amount of particulates collected in the trap 5 reaches a predetermined value, then The trap 5 is regenerated while controlling the injection amount of regeneration fuel and the operation of the bypass valve 8 according to the exhaust temperature of the trap 5.

マイクロコンピュータで構成されるコントロールユニッ
ト10には、運転条件を代表する信号として、機関回転
数センサ11からの回転数信号Ne、燃料噴射ポンプ6
のレバー開度センサ13からの燃料噴射量信号Q、機関
冷却水温センサ14からの冷却水温信号T w 、前記
酸化触媒4とトラップ5との間の排気通路3に設置した
排気温度センサ15からの排気温度信号Tin、トラッ
プ5の下流に設置した排気温度センサ12からの排気温
度信号Tout、トラップ5の上流と下流の排気圧力差
を検出する差圧センサ16からの差圧信号ΔPが入力し
、これらに基づいて第4図のフローチャートに示すとこ
ろにしたかつてトラップ5の再生制御を実行する。
A control unit 10 composed of a microcomputer receives a rotation speed signal Ne from an engine rotation speed sensor 11 and a fuel injection pump 6 as signals representative of operating conditions.
The fuel injection amount signal Q from the lever opening sensor 13, the cooling water temperature signal Tw from the engine cooling water temperature sensor 14, and the exhaust temperature sensor 15 installed in the exhaust passage 3 between the oxidation catalyst 4 and the trap 5. The exhaust temperature signal Tin, the exhaust temperature signal Tout from the exhaust temperature sensor 12 installed downstream of the trap 5, and the differential pressure signal ΔP from the differential pressure sensor 16 that detects the difference in exhaust pressure between upstream and downstream of the trap 5 are input, Based on these, the regeneration control of the trap 5 as shown in the flowchart of FIG. 4 is executed.

第4図において、Slで各種検出信号Ne、Q、T−、
Tin、Tout、ΔPを読込み、まず再生中かどうか
を判定したのち、S3で再生時期に達したかどうかを、
パーティキュレイトの堆積量に伴って増加するΔPの許
容値に対する比較から判断する。
In FIG. 4, various detection signals Ne, Q, T-,
After reading Tin, Tout, and ΔP and first determining whether or not playback is in progress, S3 determines whether the playback time has been reached.
This is determined by comparing ΔP with the allowable value, which increases with the amount of particulates deposited.

パーティキュレイトが所定量堆積して再生時期にあると
きは、S4で再生中フラグをオンにして、S5で冷却水
温Twが60℃以上かどうかを判定する。60℃以上の
ときは機関の暖機が完了したものとして、S6に進み、
トラップ出口排気温度Toutが、自己再生温度の下限
値である500℃に達しているかどうかを判断する。
When a predetermined amount of particulates have accumulated and it is time for regeneration, the regeneration flag is turned on in S4, and it is determined in S5 whether the cooling water temperature Tw is 60° C. or higher. If the temperature is 60℃ or higher, it is assumed that the engine has warmed up and the process proceeds to S6.
It is determined whether the trap outlet exhaust gas temperature Tout has reached 500° C., which is the lower limit of the self-regeneration temperature.

500℃以下ならば、今度はトラップ入口−1気温度T
inを見て、まずS7でこれが300℃(下限値)以上
かどうか判断し、以上ならばバイパス弁8を閉じると共
に再生時間のカウントを行い、さらにSっで再生用燃料
供給の上限値に相当する500℃と比較する。
If it is below 500℃, then the trap inlet minus 1 air temperature T
In, first, S7 determines whether or not it is above 300°C (lower limit value), and if it is above, the bypass valve 8 is closed and the regeneration time is counted, and S7 corresponds to the upper limit value of fuel supply for regeneration. Compare with 500℃.

この上限値以下のとき、つまり第5図(a)のように、
トラップ入口排気温度が300’C〜500℃の範囲に
あるときは、SIO〜S12で、第6図(aHb)のマ
ツプにしたがって、そのときの回転数に基づいて燃f+
噴射量Qfの検索を行い、さらにトランプ出口排気温度
に基づいて燃料噴射量の補正係数KQを検索し、燃料噴
射量Q2=KQXQfとして算出する。
When it is below this upper limit, that is, as shown in Figure 5 (a),
When the trap inlet exhaust temperature is in the range of 300'C to 500°C, SIO to S12 adjust the fuel f+ based on the rotational speed at that time according to the map shown in Figure 6 (aHb).
The injection amount Qf is searched, and the fuel injection amount correction coefficient KQ is searched based on the Trump exit exhaust gas temperature, and the fuel injection amount Q2 is calculated as KQXQf.

燃料噴射量Qfは一回当たりの噴射量で、回転数にかか
わらず一定で、これに対して補正係数KQは、トラップ
出口排気温度が300〜400℃の範囲では、トラップ
5の触媒が十分に活性化しているために、再生用燃料と
して必要十分量を供給するように、KQ=1とするが、
200〜300℃の範囲では、トラップ5の触媒の転換
効率が低く、そのまJては白煙が発生するので、これを
防止するために、転換効率が高まるのに応じて係数が大
きくなる(1に近付く)ような、KQ= 1以下の値に
設定され、さらに、400〜500℃の範囲では、トラ
ップ5の焼損や触媒の劣化を防ぐように燃料の減量補正
を行うため、温度上昇にしt・がって(ふ数カf小へ〈
fJ−乙上らか KO=1171下の値に設定される。
The fuel injection amount Qf is the amount of injection per injection, and is constant regardless of the rotation speed.On the other hand, the correction coefficient KQ indicates that when the exhaust gas temperature at the trap exit is in the range of 300 to 400°C, the catalyst in the trap 5 is not sufficiently activated. Since it is activated, KQ is set to 1 to supply the necessary and sufficient amount of fuel for regeneration.
In the range of 200 to 300°C, the conversion efficiency of the catalyst in trap 5 is low and white smoke is generated, so in order to prevent this, the coefficient is increased as the conversion efficiency increases ( Furthermore, in the range of 400 to 500°C, fuel reduction is corrected to prevent burnout of the trap 5 and deterioration of the catalyst, so that KQ is set to a value of 1 or less, such that the temperature rises. t・gatte (fuka f small)
fJ-Raka Otsugami KO=1171 Set to a lower value.

一方、前記S5で冷却水温が設定値以下のときは5S1
4に進み、トラップ入口排気温度を燃料供給上限値(5
00℃)と比較し、これよりも低いときは、トラップ5
での燃焼ができないと判断して、S21に進み、バイパ
ス弁8を開く。同じく、冷却水温が設定値以上であって
も、トラップ入口排気温度が300℃(下限値)よりも
低いときは。
On the other hand, if the cooling water temperature is below the set value in S5, 5S1
Proceed to step 4, and set the trap inlet exhaust temperature to the fuel supply upper limit value (5
00℃), and when it is lower than this, Trap 5
It is determined that combustion cannot be carried out at this time, and the process proceeds to S21, where the bypass valve 8 is opened. Similarly, even if the cooling water temperature is above the set value, when the trap inlet exhaust temperature is lower than 300°C (lower limit).

S7から321に移行して、バイパス弁8を開き、パー
ティキュレイトがそれ以上トラ・ノブ5に堆積するのを
防ぐ。
Moving from S7 to 321, the bypass valve 8 is opened to prevent further accumulation of particulates on the tiger knob 5.

なお、S14でトラップ入口排気温度が上限値よりも高
いときは、燃料を供給しなくても再生が可能なため、S
15でバイパス弁8を閉しると共に、再生時間をカラン
1へして31Bに進む。
Note that when the trap inlet exhaust temperature is higher than the upper limit value in S14, regeneration is possible without supplying fuel, so the S
At 15, the bypass valve 8 is closed, and the regeneration time is set to 1, and the process proceeds to 31B.

また、S6てトラップ出口排気温度か500℃辺上のと
きは、S22でバイパス弁8を閉じると共に、再生時間
のカウントと行い、313に進み、同様にして、S9で
トラップ入口排気温度が50nでL″1トのときた、 
白−再生が可能なためそのまま燃料を供給することなく
、トラップらに排気の全量を流しつつ、S13へ進む。
In addition, when the trap outlet exhaust temperature is 500°C higher than the trap outlet exhaust temperature in S6, the bypass valve 8 is closed in S22 and the regeneration time is counted, and the process proceeds to 313. Similarly, in S9 the trap inlet exhaust temperature is 50N. When L″1t came,
White - Since regeneration is possible, proceed to S13 while flowing the entire amount of exhaust gas to the traps without directly supplying fuel.

そして、313では再生時間のカウント値が所定時間に
達したかどうかをみて、所定時間に達するまでの間、S
lに戻って上記した動作を繰り返す。
Then, in 313, it is checked whether the playback time count value has reached a predetermined time, and the S
Return to step 1 and repeat the above operation.

所定の再生時間が経過したときは、S16に進み、再生
時間のカウントを行うタイマをリセットすると共に、再
生中フラグをオフにして、S17以降の通常運転時の制
御に移行する。
When the predetermined regeneration time has elapsed, the process proceeds to S16, where the timer for counting the regeneration time is reset, the regeneration flag is turned off, and the process proceeds to normal operation control from S17 onwards.

これは前記S3で再生時期に達していないと判断された
ときと同じで、第5図(b)で示すマツプにしたがって
回転数Neと負荷(燃料噴射量Q)からどの運転領域に
あるか検索を行う。
This is the same as when it is determined in S3 that the regeneration time has not been reached, and the operating range is searched based on the rotation speed Ne and load (fuel injection amount Q) according to the map shown in Fig. 5(b). I do.

S18で領域Aかどうかを判定して、回転数、負荷が共
に高い領域Aのときは、S20に進み、バイパス弁8を
閉じ、これに対して回転数、負荷が小さい領域Bのとき
は、S19でトラップ出口排気温度を判断し、500℃
よりも高いとき−は、S20に移行してバイパス弁8を
閉じるが、低いときはS21に進み、バイパス弁8を開
く。
It is determined in S18 whether or not it is in region A, and if the rotation speed and load are both high in region A, the process proceeds to S20 and the bypass valve 8 is closed.On the other hand, if the rotation speed and load are in region B where the rotation speed and load are low, In S19, the trap outlet exhaust temperature is determined and set to 500℃.
When it is higher than -, the process moves to S20 and the bypass valve 8 is closed, but when it is lower, the process moves to S21 and the bypass valve 8 is opened.

高負荷時などバイパス弁8を閉じると排気は総てトラッ
プ5に流れ、パーティキュレイトの捕集が行なわれ、こ
れに対して未燃成分(SOF)は多いがカーボンの発生
がほとんどない低負荷時などバイパス弁8を開いて酸化
触媒4でSOFの酸化を行う、ただし、トラップ出口排
気温度の高いときは、トラップ5の焼損の恐れがあるの
で、バイパス弁8を閉じて、排気の全量をトラップ5に
流してトラップ5の熱を運び去る。
When the bypass valve 8 is closed, such as when the load is high, all exhaust gas flows to the trap 5 and particulates are collected.In contrast, at low loads where there is a large amount of unburned components (SOF) but little carbon generation. When the bypass valve 8 is opened, the SOF is oxidized by the oxidation catalyst 4. However, when the exhaust gas temperature at the trap exit is high, there is a risk of burnout of the trap 5, so the bypass valve 8 is closed and the entire amount of exhaust gas is oxidized. The heat from trap 5 is carried away by flowing into trap 5.

次に全体的な作用について説明する。Next, the overall effect will be explained.

まず、第7図に燃料噴射ポンプ6の噴射特性を示すが、
再生時には、圧縮上死点付近で行なわれる主噴射Q1と
は別に、膨張行程の終期(または排気行程中)に再生用
燃料としての副噴射Q2を行う。
First, FIG. 7 shows the injection characteristics of the fuel injection pump 6.
During regeneration, in addition to main injection Q1 performed near compression top dead center, sub-injection Q2 as regeneration fuel is performed at the end of the expansion stroke (or during the exhaust stroke).

これは前述したように、膨張行程の終期において電磁制
御弁14を閉じることにより行なわれ、この場合、副噴
射Q2による燃料は、燃焼室での燃焼がほぼ終了してい
るため、完全に燃焼することはなく、次の排気行程にお
いて排気弁が開くと、多くの未燃成分を含んだまま排気
通路3に排出されていく。
As described above, this is done by closing the electromagnetic control valve 14 at the end of the expansion stroke, and in this case, the fuel by the sub-injection Q2 is completely combusted because combustion in the combustion chamber is almost completed. When the exhaust valve opens in the next exhaust stroke, the gas is discharged into the exhaust passage 3 while containing many unburned components.

したがって、この未燃燃料が酸化触媒4に到達すると、
前記と同様に酸化反応が行なわれるが、この場合、高温
の燃焼室から排気ボートを通過するうちに燃料の微粒化
、霧化等の活性化が大幅に促進されるため、酸化触媒4
における反応はきわめて良好になり、排気温度の条件が
悪いときでも、白煙の発生が確実に回避できるのである
Therefore, when this unburned fuel reaches the oxidation catalyst 4,
The oxidation reaction takes place in the same way as above, but in this case, the activation of atomization, atomization, etc. of the fuel is greatly promoted as it passes through the exhaust boat from the high-temperature combustion chamber, so the oxidation catalyst 4
The reaction becomes extremely good, and even when the exhaust temperature conditions are poor, the generation of white smoke can be reliably avoided.

この副噴射の制御は、前述の第4図のフローチャートに
おいて、810〜S12で、排気温度に応じた燃料噴射
量Q2を演算し、このQ2をfi間膨張行程の終期に噴
射させるようにすればよい。
This sub-injection control is performed by calculating the fuel injection amount Q2 according to the exhaust temperature in steps 810 to S12 in the flowchart of FIG. 4 described above, and injecting this Q2 at the end of the fi expansion stroke. good.

次に、トラップ5に捕集されたパーティキュレイトの堆
積量が所定値に達したら、再生動作が行なわれるが、こ
の場合、機関の暖機後で、第5図(a)に示す斜線領域
、つまり、トラップ入口排気温度が300℃〜500℃
の範囲では、再生燃料を供給しながら再生を行う。
Next, when the amount of accumulated particulates collected in the trap 5 reaches a predetermined value, a regeneration operation is performed, but in this case, after warming up the engine, , that is, the trap inlet exhaust temperature is 300°C to 500°C.
In this range, regeneration is performed while supplying regenerated fuel.

この場合、燃料の供給量は、第6図<b>に示すように
、トラップ出口排気温度に応じて1曽減制御され、トラ
ップ5の触媒において最も安定して酸化燃焼する温度範
囲である300〜400℃の範囲では、パーティキュレ
イトを燃焼させるのに必要十分な燃料量となるが、それ
よりも低いにきは、燃料の酸化が不十分となるため、触
媒転換効率に応じて減量補正し、200℃以下では供給
を停止することにより、白煙の発生を防止する。
In this case, the amount of fuel supplied is controlled to decrease by 1 in accordance with the trap outlet exhaust temperature, as shown in FIG. In the range of ~400℃, the amount of fuel is necessary and sufficient to burn particulates, but if it is lower than that, the oxidation of the fuel will be insufficient, so the reduction should be corrected according to the catalyst conversion efficiency. However, by stopping the supply at temperatures below 200°C, the generation of white smoke is prevented.

また、400℃を越えるときは、トラップ5の温度が上
昇しすぎる危険があるため、焼損防止のために、燃料を
減量補正し、500°C以上ては燃料供給分停止する。
Furthermore, when the temperature exceeds 400°C, there is a danger that the temperature of the trap 5 will rise too much, so to prevent burnout, the amount of fuel is reduced, and when the temperature exceeds 500°C, the fuel supply is stopped.

第5図(c)に再生用燃料を供給したときの排気温度(
トラップ出口温度)の上昇特性を示すが、定量の燃料を
供給した場合は、点線で示すように非供給時に比較して
相対的に温度が上昇するのに対し、本発明のように、ト
ラップ出口排気温度に応じて燃料供給量を制御したとき
は、トラップ5での再生を行うのに必要最小限の温度上
昇にとどまり、不必要に温度が高くなったり、あるいは
燃料が無駄になったりすることがない。
Figure 5(c) shows the exhaust temperature when regeneration fuel is supplied (
However, when a fixed amount of fuel is supplied, the temperature increases relatively compared to when no fuel is supplied, as shown by the dotted line. When the fuel supply amount is controlled according to the exhaust temperature, the temperature rise is kept to the minimum necessary for regeneration in the trap 5, and the temperature may become unnecessarily high or fuel may be wasted. There is no.

このよう呻して排気中に導入された燃料は、低温活性型
の酸化触媒4で酸化された後、トラップ5に流入し、こ
こでさらに酸化反応し、その反応熱により捕集されたパ
ーティキュレイトを確実に燃焼除去するのであり、しか
も、再生用燃料の供給量はトラップ5の触媒の転換効率
を考慮してトラップ出口排気温度に応じて適正に制御さ
れるので、燃料消費効率の良好な再生が行える。
The fuel introduced into the exhaust gas in this way is oxidized by the low-temperature activated oxidation catalyst 4, and then flows into the trap 5, where it further undergoes an oxidation reaction, and the particulate matter collected by the reaction heat is In addition, the amount of regenerating fuel supplied is appropriately controlled according to the trap outlet exhaust temperature in consideration of the conversion efficiency of the trap 5 catalyst, resulting in good fuel consumption efficiency. Can be played.

また、トラップ入口排気温度や出口排気温度が500℃
を越えるときは、燃料を供給しなくても円滑に再生が行
なわれるが、この場合、バイパス弁8を閉じて排気の全
量をトラップ5に流すことにより、むしろ大量のパーテ
ィキュレイトが一気に燃焼するときに発生する高熱を、
排気によって運び去り、トラップ5の異常高温化による
焼損等を回避する。
In addition, the trap inlet exhaust temperature and outlet exhaust temperature are 500℃.
When the exhaust gas exceeds the limit, regeneration is carried out smoothly without supplying fuel, but in this case, by closing the bypass valve 8 and allowing the entire amount of exhaust gas to flow into the trap 5, a large amount of particulates are combusted all at once. The high fever that sometimes occurs,
It is carried away by exhaust gas to avoid burnout or the like due to abnormally high temperature of the trap 5.

他方、暖機が終了しなかったり、終了後でもトラップ入
口排気温度が300℃以下のとき等は、酸化触媒4の上
流に燃料を供給しても完全に酸化できず、白煙として排
出されるので、このような場合は、再生時期に達してい
ても、再生動作は行わない。
On the other hand, if warm-up is not completed or even after the warm-up is completed but the exhaust gas temperature at the trap inlet is below 300°C, the fuel cannot be completely oxidized even if the fuel is supplied upstream of the oxidation catalyst 4, and it is emitted as white smoke. Therefore, in such a case, no regeneration operation is performed even if the regeneration time has been reached.

ただし、そのままでは既に大量のパーティキュレイトが
堆積しているトラップ5がさらに目詰まりして、排圧の
過度の上昇により機関運転性を著しく阻害する恐れがあ
るため、バイパス弁8を開いて、とりあえず機関性能の
悪化を回避しつつ、酸化触媒4で未燃成分であるSOF
中心の低減を行いながら、排気温度が再生に適した温度
まで上昇するのを待つ。
However, if left as is, the trap 5, on which a large amount of particulates have already accumulated, may become further clogged and the engine operability may be significantly impaired due to an excessive increase in exhaust pressure, so the bypass valve 8 is opened. While avoiding the deterioration of engine performance for the time being, the oxidation catalyst
While reducing the center, wait for the exhaust temperature to rise to a temperature suitable for regeneration.

一方、機関の通常運転時、つまりトラップ5の非再生時
は、第5図(b)のように、高負荷域ではバイパス弁8
を閉じて、排気中のパーティキュレイトをトラップ5で
捕捉するが、排気中のパーティキュレイトが少なく、も
っばら未燃成分であるSOFが主成分となる低負荷域等
では、酸化触媒4を通過させることにより、これらの酸
化を確実に行い、バイパス弁8を開くことて、運転中の
排圧を下げ、燃費や運転性を良好に維持することができ
る。
On the other hand, during normal operation of the engine, that is, when the trap 5 is not regenerated, the bypass valve 8 is
The oxidation catalyst 4 is closed and the particulates in the exhaust are captured by the trap 5. However, in low load ranges where there are few particulates in the exhaust and the main component is SOF, which is an unburnt component, the oxidation catalyst 4 is closed. By allowing the fuel to pass through, these oxidation can be performed reliably, and by opening the bypass valve 8, the exhaust pressure during operation can be lowered, and fuel efficiency and drivability can be maintained favorably.

また、酸化触媒4はトラップ5の上流の排気温度の高温
部にあるので、良好な反応が維持でき、バイパス弁8が
閉じている運転時には、未燃成分の酸化反応熱によりト
ラップ5に流入する排気温度を相対的に高めて、堆積し
ているパーティキュレイトの自己着火を促すことができ
、したがって、再生時期に達しなくても、条件が良けれ
ば捕集されたパーティキュレイトは自動的に燃焼し、こ
のため、トラップ5の必要な再生インターバルが延び、
また排圧の低下により燃費や運転性の悪化も最小限にと
どめられる。
In addition, since the oxidation catalyst 4 is located at a high temperature part of the exhaust gas upstream of the trap 5, a good reaction can be maintained, and during operation with the bypass valve 8 closed, the oxidation reaction heat of unburned components flows into the trap 5. By relatively increasing the exhaust temperature, it is possible to promote self-ignition of the accumulated particulates. Therefore, even if the regeneration period has not been reached, the collected particulates will automatically ignite if the conditions are good. combusts, thus increasing the required regeneration interval of trap 5;
Furthermore, the reduction in exhaust pressure also minimizes deterioration in fuel efficiency and drivability.

(発明の効果) 以上のように本発明によれば、トラップの再生時には排
気温度に応じて機関膨張行程の終期もしくは排気行程中
に燃料が機関燃焼室に噴射され、非常に燃焼しやすい活
性化した燃料を酸化触媒を経由して触媒付きトラップに
供給するので、供給燃料を確実に触媒で酸化反応させら
れ、この酸化反応熱を利用して円滑に捕集パーティキュ
レイトを燃焼させることができ、しかも、この再生燃料
の供給量は排気温度に応じて、換言すると触媒活性状態
に応じて増減制御されるので、白煙等を発生させること
なく、最も燃料消費効率のよい再生が行なわれるのであ
る。
(Effects of the Invention) As described above, according to the present invention, when regenerating a trap, fuel is injected into the engine combustion chamber at the end of the engine expansion stroke or during the exhaust stroke depending on the exhaust gas temperature, and the fuel is activated to be easily combusted. Since the oxidized fuel is supplied to the catalytic trap via the oxidation catalyst, the supplied fuel can be reliably oxidized by the catalyst, and the heat of this oxidation reaction can be used to smoothly burn the collected particulates. Moreover, the amount of regenerated fuel supplied is controlled to increase or decrease according to the exhaust temperature, in other words, according to the catalyst activation state, so regeneration is performed with the most efficient fuel consumption without producing white smoke or the like. be.

他方、自己着火するほど排気温度の高いときは燃料の供
給を停止して過剰燃焼によるトラップの焼損を回避し、
また、排気温度が低く燃料を供給しても再生温度が確保
できないときは、燃料の供給を停止して白煙の発生を防
ぐと共に、トラップをバイパスして排気を流すことによ
り、トラップの目詰まりに起因しての機関運転性の悪化
を回避できる。
On the other hand, when the exhaust temperature is high enough to cause self-ignition, the fuel supply is stopped to avoid trap burnout due to excessive combustion.
In addition, when the exhaust temperature is low and the regeneration temperature cannot be secured even if fuel is supplied, the fuel supply is stopped to prevent the generation of white smoke, and by bypassing the trap and allowing the exhaust to flow, it is possible to prevent trap clogging. Deterioration of engine drivability due to this can be avoided.

また、通常の運転時には排気中に含まれる未燃成分を酸
化触媒で浄化すると共に、その反応熱を利用してトラッ
プに捕捉されたパーティキュレイトの自己着火を促すこ
とができ、これにより再生時期でなくてもトラップの自
己再生を図り、必要となる再生インターバルを延ばしつ
つ、燃費や運転性の悪化を防止できる。
In addition, during normal operation, the oxidation catalyst purifies the unburned components contained in the exhaust gas, and the reaction heat can be used to promote self-ignition of the particulates captured in the trap, which allows the regeneration timing to be Even if this is not the case, the trap can self-regenerate, extending the required regeneration interval and preventing deterioration in fuel efficiency and drivability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成図、第2図は同じくその実施例を
示す概略構成図、第3図は燃料噴射ポンプの断面図、第
4図はコントロールユニットで実行される制御動作のフ
ローチャート、第5図(a)は再生時に再生燃料を供給
する領域を示す特性図5第5図(b)はバイパス弁を作
動させる領域を示す特性図、第5図(e)は再生時に再
生燃料を供給したときの温度上昇を示す特性図、第6図
(a)は再生用燃料量の特性図、第6図(b)は温度に
よる補正係数を示す特性図、第7図は燃料噴射ポンプの
燃料噴射を示す作動特性図である。 1・・・機関本体、2・・・吸気通路、3・・・排気通
路、4・・・酸化触媒、5・・・トラップ、6・・・燃
料噴射ポンプ、7・・・バイパス通路、8・・・バイパ
ス弁、10・・・コントロールユニット、12.15・
・・排気温度センサ、16・・・差圧センサ、34・・
・電磁制御弁。 第 ■ 図 382図 e Ms6図 (a) 回乾畝 a (b) トラ・ノア出口梼気1J1
FIG. 1 is a configuration diagram of the present invention, FIG. 2 is a schematic configuration diagram showing an embodiment thereof, FIG. 3 is a sectional view of a fuel injection pump, and FIG. 4 is a flowchart of control operations executed by a control unit. Fig. 5(a) is a characteristic diagram showing the region in which recycled fuel is supplied during regeneration. Fig. 5(b) is a characteristic diagram showing the region in which the bypass valve is operated. Fig. 5(e) is a characteristic diagram showing the region in which recycled fuel is supplied during regeneration. A characteristic diagram showing the temperature rise when supplied, Figure 6 (a) is a characteristic diagram of the amount of fuel for regeneration, Figure 6 (b) is a characteristic diagram showing the correction coefficient depending on temperature, and Figure 7 is a characteristic diagram of the fuel injection pump. FIG. 3 is an operational characteristic diagram showing fuel injection. DESCRIPTION OF SYMBOLS 1... Engine body, 2... Intake passage, 3... Exhaust passage, 4... Oxidation catalyst, 5... Trap, 6... Fuel injection pump, 7... Bypass passage, 8 ...Bypass valve, 10...Control unit, 12.15.
...Exhaust temperature sensor, 16...Differential pressure sensor, 34...
・Solenoid control valve. Figure 382e Figure Ms6 (a) Double drying ridge a (b) Tora Noah exit water 1J1

Claims (1)

【特許請求の範囲】[Claims] 1.機関回転に同期して燃焼室に燃料を噴射する燃料噴
射装置を備えた内燃機関において、排気通路に直列的に
介装した酸化触媒及びその下流に位置するパーティキュ
レイト捕集用の触媒付きトラップと、排気通路のトラッ
プを迂回して排気を流すバイパス通路と、バイパス通路
を開閉するバイパス弁と、トラップ下流の排気温度を検
出する手段と、トラップ再生時に検出した排気温度がト
ラップ再生温度よりも低い所定の温度範囲にあるとき並
びにそれ以上のときはバイパス弁を閉じ、それ以外のと
きにバイパス弁を開くバイパス制御手段と、同じく排気
温度が前記所定の温度範囲にあるときに前記燃料噴射装
置により機関膨張行程の終期もしくは排気行程中に燃料
を噴射させると共にその噴射量を排気温度に応じて増減
制御し、所定の温度範囲以外のときは燃料噴射を停止さ
せる再生燃料制御手段とを備えたことを特徴とする内燃
機関の排気処理装置。
1. In an internal combustion engine equipped with a fuel injection device that injects fuel into a combustion chamber in synchronization with engine rotation, an oxidation catalyst is installed in series in the exhaust passage and a trap with a catalyst for collecting particulates is located downstream of the oxidation catalyst. a bypass passage that allows exhaust to flow around the trap in the exhaust passage; a bypass valve that opens and closes the bypass passage; a means for detecting the exhaust temperature downstream of the trap; bypass control means that closes a bypass valve when the temperature is within a low predetermined temperature range and when the temperature is higher than the predetermined temperature range; and a bypass control means that opens the bypass valve at other times; regenerated fuel control means for injecting fuel at the end of the engine expansion stroke or during the exhaust stroke, controlling the injection amount to increase or decrease according to the exhaust temperature, and stopping fuel injection when the temperature is outside a predetermined temperature range. An exhaust treatment device for an internal combustion engine, characterized by:
JP2154293A 1990-06-13 1990-06-13 Exhaust disposal equipment of internal combustion engine Pending JPH0447115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2154293A JPH0447115A (en) 1990-06-13 1990-06-13 Exhaust disposal equipment of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2154293A JPH0447115A (en) 1990-06-13 1990-06-13 Exhaust disposal equipment of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0447115A true JPH0447115A (en) 1992-02-17

Family

ID=15580974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2154293A Pending JPH0447115A (en) 1990-06-13 1990-06-13 Exhaust disposal equipment of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0447115A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012423A1 (en) * 1996-09-20 1998-03-26 Hitachi, Ltd. Engine control device
DE19653756A1 (en) * 1996-12-20 1998-06-25 Porsche Ag New control strategy for a NOx storage
FR2811370A1 (en) * 2000-07-07 2002-01-11 Daimler Chrysler Ag IC engines esp. for motor vehicles with fuel after-injection for particle filter regeneration regulated dependent upon exhaust temperature in front of filter
EP1333169A1 (en) * 2002-02-01 2003-08-06 J. Eberspächer GmbH & Co. KG Exhaust system and method for regeneration of a particulate filter
JP2005201252A (en) * 2003-12-05 2005-07-28 Caterpillar Inc Method and device for regenerating particulate filter
US6959541B2 (en) 2002-06-04 2005-11-01 Denso Corporation Fuel injection control system for internal combustion engine
WO2005121518A1 (en) * 2004-06-08 2005-12-22 Bosch Corporation Exhaust gas post-processing device
JP2006274907A (en) * 2005-03-29 2006-10-12 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2007512465A (en) * 2003-11-25 2007-05-17 プジョー・シトロエン・オトモビル・ソシエテ・アノニム System for desulfating NOx traps
JP2007162585A (en) * 2005-12-14 2007-06-28 Nissan Motor Co Ltd Fuel injection control device and fuel injection control method for engine
JP2008180133A (en) * 2007-01-24 2008-08-07 Mazda Motor Corp Exhaust emission purifier of diesel engine
JP2008267159A (en) * 2007-04-16 2008-11-06 Fuji Heavy Ind Ltd Exhaust emission control device for internal combustion engine
JP2014190198A (en) * 2013-03-26 2014-10-06 Yanmar Co Ltd Agricultural work vehicle

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012423A1 (en) * 1996-09-20 1998-03-26 Hitachi, Ltd. Engine control device
DE19653756A1 (en) * 1996-12-20 1998-06-25 Porsche Ag New control strategy for a NOx storage
DE19653756C2 (en) * 1996-12-20 1999-01-14 Porsche Ag New control strategy for a NOx storage
FR2811370A1 (en) * 2000-07-07 2002-01-11 Daimler Chrysler Ag IC engines esp. for motor vehicles with fuel after-injection for particle filter regeneration regulated dependent upon exhaust temperature in front of filter
EP1333169A1 (en) * 2002-02-01 2003-08-06 J. Eberspächer GmbH & Co. KG Exhaust system and method for regeneration of a particulate filter
US6959541B2 (en) 2002-06-04 2005-11-01 Denso Corporation Fuel injection control system for internal combustion engine
JP2007512465A (en) * 2003-11-25 2007-05-17 プジョー・シトロエン・オトモビル・ソシエテ・アノニム System for desulfating NOx traps
JP2005201252A (en) * 2003-12-05 2005-07-28 Caterpillar Inc Method and device for regenerating particulate filter
CN100449132C (en) * 2004-06-08 2009-01-07 博世株式会社 Exhaust gas post-processing device
WO2005121518A1 (en) * 2004-06-08 2005-12-22 Bosch Corporation Exhaust gas post-processing device
US7634906B2 (en) 2004-06-08 2009-12-22 Bosch Corporation Exhaust gas after-treatment apparatus
JP2006274907A (en) * 2005-03-29 2006-10-12 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2007162585A (en) * 2005-12-14 2007-06-28 Nissan Motor Co Ltd Fuel injection control device and fuel injection control method for engine
JP2008180133A (en) * 2007-01-24 2008-08-07 Mazda Motor Corp Exhaust emission purifier of diesel engine
JP2008267159A (en) * 2007-04-16 2008-11-06 Fuji Heavy Ind Ltd Exhaust emission control device for internal combustion engine
JP2014190198A (en) * 2013-03-26 2014-10-06 Yanmar Co Ltd Agricultural work vehicle

Similar Documents

Publication Publication Date Title
JPH0441914A (en) Exhaust gas processor for internal combustion engine
KR100507826B1 (en) Exhaust gas purification apparatus for internal combustion engine and method thereof
US7062907B2 (en) Regeneration control system
JP2004028045A (en) Exhaust emission control device
EP1431549A2 (en) Fuel injection control device
JP3767483B2 (en) Exhaust gas purification device for internal combustion engine
JP2004353529A (en) Exhaust emission control system
JPH0419315A (en) Exhaust gas processing device for internal combustion engine
WO2006052474A2 (en) Method for controlling temperature in a diesel particulate filter during regeneration
EP1555401A1 (en) Exhaust purifying apparatus for internal combustion engine
JP2003065116A (en) Exhaust emission control device for internal combustion engine
JPH0447115A (en) Exhaust disposal equipment of internal combustion engine
JP2007270705A (en) Egr device for engine
JP2010071203A (en) Dpf regeneration control device
JP2010151058A (en) Exhaust emission control device for diesel engine
JP2004232544A (en) Engine fuel injection control device
JP4161575B2 (en) Exhaust gas purification device for internal combustion engine
JP2004251230A (en) Activity determining device for oxidation catalyst for engine and exhaust emission control device of engine
JP3800933B2 (en) Exhaust particulate processing device for internal combustion engine
JP2004183525A (en) Exhaust emission control device
JP2006274907A (en) Exhaust emission control device
JP5990094B2 (en) Diesel engine exhaust treatment equipment
JP3870673B2 (en) Exhaust gas purification device for internal combustion engine
JP2005307746A (en) Exhaust emission control device
JP7152988B2 (en) diesel engine