JPH0447017B2 - - Google Patents

Info

Publication number
JPH0447017B2
JPH0447017B2 JP61103228A JP10322886A JPH0447017B2 JP H0447017 B2 JPH0447017 B2 JP H0447017B2 JP 61103228 A JP61103228 A JP 61103228A JP 10322886 A JP10322886 A JP 10322886A JP H0447017 B2 JPH0447017 B2 JP H0447017B2
Authority
JP
Japan
Prior art keywords
magnetic
alloy
fine particles
amount
lubricating solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61103228A
Other languages
Japanese (ja)
Other versions
JPS62260031A (en
Inventor
Koichi Tamaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP61103228A priority Critical patent/JPS62260031A/en
Publication of JPS62260031A publication Critical patent/JPS62260031A/en
Publication of JPH0447017B2 publication Critical patent/JPH0447017B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〈技術分野〉 本発明はNi−Fe系高透磁率合金母相中に潤滑
性固体微粒子を分散させることにより耐摩耗性を
著しく向上させた合金に関し、特に磁気ヘツドに
用いて好適な耐摩耗性高透磁率合金に関するもの
である。 〈先行技術とその問題点〉 従来より磁気ヘツド用磁性合金としてはパーマ
ロイ、Fe−Si−Al合金、フエライトが多用され
ており、最近では一部アモルフアス合金も使用さ
れている。Fe−Si−Al合金は金属磁性材料の中
では耐摩耗性に優れ、VTR、オーデイオ用磁気
ヘツドコア材として用いられているが材質固有の
脆さのために鍛造、圧延等の加工が極めて困難で
あり、またコア片への加工においても難点があり
量産性に劣る。フエライトは電気抵抗が高く、耐
摩耗性が優れていることから、各種磁気ヘツドに
用いられているが、飽和磁束密度および透磁率が
低く、かつ機械的に脆弱であり加工性に劣ること
から用途が限定されている。さらにアモルフアス
合金については薄いリボン状の材料であるためヘ
ツド化することが容易でなく、また経年変化等の
安定性についての実績に欠け、さらには耐摩耗性
が開発当初の予想よりも必して良くなかつたこと
からも実用化は今後の課題である。 これらに対してパーマロイは軟質磁性材料の中
でも特に優れた磁性材料であり、しかも加工性が
良好であり比較的安価である等の理由から工業的
には磁気ヘツド用としてはパーマロイが広く用い
られている。しかしパーマロイは磁気特性は優れ
ているにもかかわらず、Fe−Si−Al合金、フエ
ライト、アモルフアス合金に比べると耐摩耗性が
若干劣るという欠点があつた。 パーマロイの耐摩耗性を改良した先行技術とし
ては特公昭55−40096号が知られており「いわゆ
る78パーマロイの母相中に微細でしかもひじよう
に硬くて耐摩耗性にすぐれ、かつ熱的にも安定な
MgO、Al2O3、BeOなどの酸化物粒子を分散さ
せ、しかもこの粒子が母相と原子的な整合関係を
もたないで母相中に均一に分散した状態を保持し
た分散型強化合金」とある。しかし78パーマロイ
は機械的に軟らかく、こういつた軟質の母相中に
非常に硬い粒子を分散させた材料を用いて磁気ヘ
ツドを作製し磁気テープを走行させると、磁気テ
ープは傷つけられ、さらにヘツドは軟質の母相が
著しく摩耗し硬質の分散粒子がほとんど摩耗しな
いという、いわゆる偏摩耗が生じ、スペーシング
ロスが大きくなり磁気ヘツドの信頼性が劣るとい
う問題がある。 〈発明の目的〉 本発明は上記のような実状に鑑みなされたもの
で、Ni−Fe系合金の母相中に潤滑性固体粒子を
分散させた磁気ヘツド用耐摩耗性高透磁率合金の
提供を目的としている。 〈発明の構成〉 上記の目的を達成するための潤滑性固体微粒子
を検討した結果、MoS2,WS2,BN,PbSが有
効であることを見いだした。これらをパーマロイ
母相中に分散させた材料を用いて磁気ヘツドを作
製し磁気テープを走行させるとヘツドとテープと
の摺動界面に厚さ100Å以下の潤滑層が形成され
ヘツドの耐摩耗性は無分散合金よりも格段に優れ
ており、また偏摩耗も生じない。これは後述する
実施例から明らかである。 本発明は、重量%でNi58〜85%、磁気特性改
良元素1〜20%、残部が実質的にFeからなる組
成の合金粉末に対して潤滑性固体微粒子を添加
し、粉末冶金法により該潤滑性固体微粒子を分散
させることを特徴として耐摩耗性を著しく改善す
る効果があるものである。(以下重量%をwt%で
示す。) ここで、上記磁気特性改良元素としてSi,Ge,
Ti,Zr,V,Nb,Ta,Cr,Mo,W,Cu,Ag,
および白金元素から選らばれた少なくとも1種で
ある。また、上記潤滑性固体微粒子として
MoS2,WS2,BN,PbSの少なくとも1種とし
て体積比にて0.01〜5%添加するものとする。
(以下体積%をvol%で示す。) Ni量は磁気特性改良元素の種類および量によ
り決るものであるが、磁気ヘツド用磁性合金の場
合では58〜85wt%の範囲で高い透磁率が得られ
る。磁気特性改良元素としては種々あるが、中で
もSi,Ge,Ti,Zr,V,Nb,Ta,Cr,Mo,
W,Cu,Ag,および白金元素が特にその効果が
著しい。これらの元素の添加量は元素の種類によ
り異なるが総量で1〜20wt%の範囲が好ましい。
潤滑性固体微粒子の添加量は0.01〜5vol%の範囲
が好ましく、0.01vol%未満では耐摩耗性改良に
及ぼす効果が明らかでなく、5vol%を越える添加
物は加工性および透磁率の低下が大きくなる。潤
滑性固体微粒子のさらに好ましい添加量は0.1〜
2vol%でありこの範囲で透磁率が最も高くなると
ともに加工性も良好で耐摩耗性にも顕著な効果が
認められる。 本発明合金を製造するには潤滑性固体微粒子を
均一に分散させる必要上、粉末冶金法を用いるの
が最適である。従来の溶解法では微粒子が凝集し
たり、比重差のために均一に分散させることが極
めて困難である。以下にその製造工程の一例を示
す。まず、Ni、Feおよび前記磁気特性改良元素
の適当量を非酸化性雰囲気中(真空中または大気
中でも可)でマグネシアルツボを用いた高周波溶
解炉で溶解したのち、Si,Al,Mg,Ca,Mn,
C等の脱酸材、脱硫材を総量で1wt%以下添加し
て不純物を取り除き、均一組成の溶融合金を得
る。次にこの溶融合金をアトマイズ法により粉化
させ、所定組成の合金粉末を得る。なお、アトマ
イズ法としてはガスアトマイズ法が好ましいが水
または油によるアトマイズ法でも良い。こうして
得られた粉末を必要に応じてH2ガスによる加熱
還元し、ふるい分けを行い−100メツシユに調整
した。次いでこの粉末に粒径3μm以下、好ましく
は1μm以下の潤滑性固体微粒子であるMoS2
WS2,BN,PbSの少なくとも一種を0.01〜5vol
%の適当量を配合し、混合機により1〜100時間
混合し、均一に微粒子を分散させた後、900℃以
下融点以下の温度で加圧、焼結する。このとき、
熱間静水圧プレスを用いるのが効果的である。す
なわち、混合粉末を熱間静水圧プレス用容器に述
填密封して1100℃、1500気圧の高温高圧ガス雰囲
気下で熱間静水圧プレス処理して空孔のない健全
な焼結体を形成する。続いて該焼結体を900℃以
上融点以下の温度、例えば1000℃で熱間圧延し、
さらに冷間圧延と中間焼鈍を繰り替えして、厚さ
0.1mmの板を製造する。 〈実施例〉 以下、本発明の実施例について述べる。 試料作成の方法としては、ガスアトマイズ法お
よび熱間静水圧プレス法を用いた上記の方法とし
た。この方法により作成された厚さ0.1mmの板か
ら磁気特性測定用試料として外径10mm、内径6mm
のリングを、さらに耐摩耗性試験のためにヘツド
コアチツプを打抜き、水素気流中で1100℃、3時
間の熱処理を施し、各測定に供した。磁気特性の
測定は電子材料工業会規格EMAS−2003に準じ
て樹脂モールド前について行つた。耐摩耗試験と
しては、磁気テープにはγ−Fe2O3テープを使用
し、オートリバース型カセツトデツキにより1000
時間の連続走行テストを行い、このときのヘツド
の摩耗量を測定した。テープ走行速度4.75mm/
secで100時間毎にテープを交換させた。 これらの結果を表−1乃至表−3に示す。な
お、微粒子を分散させない試料については通常の
溶解法で作成した。 表−1には、まず母相合金としてMoパーマロ
イを選び、潤滑性固体微粒子としてはMoS2を選
び、MoS2添加量と透磁率および摩耗量の関係を
示した。これよりMoS2添加量と共にμz(0.3kHz)
は低下するが、逆にμz(100kHz)は増加してい
る。これは微粒子分散による磁区の細分化により
高周波領域における透磁率が高くなつていると考
えられる。さらに、摩耗量はMoS2の添加量と共
に小さくななつており、MoS2添加により耐摩耗
性が向上していることがわかる。 次いで母相合金は同一として潤滑性固体微粒子
の種類を変えた場合の結果を表−2に示す。この
ときの添加量は全て1vol%とし添加微粒子の違い
による効果を調べたものである。ここではBNの
添加の場合が他と比べて若干優れていることがわ
かる。 表−3には潤滑性固体微粒子としてMoS2、こ
の添加量を1vol%一定という条件下で母相合金の
種類を変えた場合の結果を示している。この結果
より母相合金組成によらず、MoS2の添加により
摩耗量はいずれも小さくなつている。またμz
(0.3kHz)は添加により低くなつているが、μz
(100kHz)は逆に高くなつている。 以上をまとめると、0.3kHzにおける透磁率は、
微粒子を分散させないものよりも劣つているが、
100kHzのそれは分散させた方がやや高くなつて
いる。また、耐摩耗性は微粒子分散材の方が格段
に優れていた。 白金元素は、その一例としてRuを選んだが、
他の元素についても同様の効果が得られている。 ここでの実施例はヘツドコアについて記載した
が、ヘツドケース材として用いても効果的であ
る。 〈発明の効果〉 以上述べた如く、本発明によれば上述のように
構成したので、耐摩耗性に優れた潤滑性固体微粒
子を分散させた耐摩耗性高透磁率合金を得ること
が可能である。
<Technical Field> The present invention relates to an alloy whose wear resistance has been significantly improved by dispersing lubricating solid fine particles in a Ni-Fe based high magnetic permeability alloy matrix, and which is particularly suitable for use in magnetic heads. It relates to high magnetic permeability alloys. <Prior art and its problems> Conventionally, permalloy, Fe-Si-Al alloy, and ferrite have been widely used as magnetic alloys for magnetic heads, and recently, amorphous alloys have also been used in some cases. Fe-Si-Al alloy has excellent wear resistance among metal magnetic materials, and is used as a magnetic head core material for VTRs and audio devices, but due to the inherent brittleness of the material, processing such as forging and rolling is extremely difficult. However, there are also difficulties in processing it into core pieces, making it less suitable for mass production. Ferrite has high electrical resistance and excellent wear resistance, so it is used in various magnetic heads, but it has low saturation magnetic flux density and magnetic permeability, is mechanically fragile, and has poor workability, so it is not used for many purposes. is limited. Furthermore, since amorphous amorphous alloys are thin ribbon-shaped materials, it is difficult to form them into heads, and there is a lack of track record regarding stability over time, and furthermore, the wear resistance is necessarily lower than expected at the time of development. Since the results were not good, practical application is a future issue. On the other hand, permalloy is a particularly excellent magnetic material among soft magnetic materials, has good workability, and is relatively inexpensive, so permalloy is widely used industrially for magnetic heads. There is. However, although permalloy has excellent magnetic properties, it has the disadvantage that its wear resistance is slightly inferior to that of Fe-Si-Al alloy, ferrite, and amorphous alloy. Japanese Patent Publication No. 55-40096 is known as a prior art that improved the wear resistance of permalloy. also stable
A dispersion-strengthened alloy in which oxide particles such as MgO, Al 2 O 3 , BeO, etc. are dispersed, and these particles maintain a uniformly dispersed state in the matrix without having an atomic matching relationship with the matrix. "a. However, 78 permalloy is mechanically soft, and if a magnetic head is made using such a material with very hard particles dispersed in a soft matrix and a magnetic tape is run, the magnetic tape will be damaged and the head will be damaged. There is a problem in that so-called uneven wear occurs, in which the soft matrix is significantly worn and the hard dispersed particles are hardly worn, resulting in increased spacing loss and poor reliability of the magnetic head. <Object of the Invention> The present invention was made in view of the above-mentioned circumstances, and provides a wear-resistant high permeability alloy for magnetic heads, in which lubricating solid particles are dispersed in a Ni-Fe alloy matrix. It is an object. <Structure of the Invention> As a result of examining lubricating solid fine particles for achieving the above object, it was found that MoS 2 , WS 2 , BN, and PbS are effective. When a magnetic head is made using a material in which these are dispersed in a permalloy matrix and a magnetic tape is run, a lubricating layer with a thickness of less than 100 Å is formed at the sliding interface between the head and the tape, and the wear resistance of the head is reduced. It is much superior to non-dispersion alloys and does not cause uneven wear. This will be clear from the examples described later. In the present invention, lubricating solid fine particles are added to an alloy powder having a composition of 58 to 85% Ni, 1 to 20% of magnetic property improving elements, and the balance substantially Fe, and the lubricant is obtained by a powder metallurgy method. It is characterized by dispersing solid fine particles, and has the effect of significantly improving wear resistance. (Hereinafter, weight% is expressed as wt%.) Here, as the above magnetic property improving elements, Si, Ge,
Ti, Zr, V, Nb, Ta, Cr, Mo, W, Cu, Ag,
and at least one selected from the element platinum. In addition, as the above-mentioned lubricating solid fine particles,
At least one of MoS 2 , WS 2 , BN, and PbS is added in a volume ratio of 0.01 to 5%.
(Hereinafter, volume percent is expressed as vol%.) The amount of Ni is determined by the type and amount of the magnetic property improving element, but in the case of magnetic alloys for magnetic heads, high magnetic permeability can be obtained in the range of 58 to 85 wt%. . There are various elements for improving magnetic properties, among them Si, Ge, Ti, Zr, V, Nb, Ta, Cr, Mo,
W, Cu, Ag, and platinum elements are particularly effective. The amount of these elements added varies depending on the type of element, but the total amount is preferably in the range of 1 to 20 wt%.
The amount of lubricating solid particles added is preferably in the range of 0.01 to 5 vol%; if the additive is less than 0.01 vol%, the effect on improving wear resistance is not obvious, and if the additive exceeds 5 vol%, the workability and magnetic permeability are significantly reduced. Become. A more preferable addition amount of the lubricating solid fine particles is 0.1~
It is 2 vol%, and in this range, the magnetic permeability is the highest, the workability is good, and a remarkable effect on wear resistance is observed. In order to manufacture the alloy of the present invention, it is optimal to use a powder metallurgy method because it is necessary to uniformly disperse the lubricating solid fine particles. In conventional dissolution methods, it is extremely difficult to uniformly disperse fine particles due to agglomeration and differences in specific gravity. An example of the manufacturing process is shown below. First, Ni, Fe, and appropriate amounts of the magnetic property improving elements are melted in a high-frequency melting furnace using a magnesia crucible in a non-oxidizing atmosphere (vacuum or air is also possible), and then Si, Al, Mg, Ca, Mn,
A deoxidizing agent such as carbon and a desulfurizing agent are added in a total amount of 1 wt% or less to remove impurities and obtain a molten alloy with a uniform composition. Next, this molten alloy is pulverized by an atomization method to obtain an alloy powder of a predetermined composition. The atomization method is preferably a gas atomization method, but an atomization method using water or oil may also be used. The powder thus obtained was heated and reduced with H 2 gas as needed, and sieved to adjust to -100 mesh. Next, MoS 2 , which is a lubricating solid fine particle with a particle size of 3 μm or less, preferably 1 μm or less, is added to this powder.
0.01 to 5 vol of at least one of WS 2 , BN, and PbS
% and mixed in a mixer for 1 to 100 hours to uniformly disperse the fine particles, followed by pressurization and sintering at a temperature below 900° C. and below the melting point. At this time,
It is effective to use a hot isostatic press. That is, the mixed powder is placed in a hot isostatic pressing container and sealed, and subjected to hot isostatic pressing in a high temperature, high pressure gas atmosphere of 1100°C and 1500 atm to form a sound sintered body without voids. . Subsequently, the sintered body is hot rolled at a temperature of 900°C or higher and lower than the melting point, for example, 1000°C,
Furthermore, cold rolling and intermediate annealing are repeated to increase the thickness.
Manufacture 0.1mm plates. <Examples> Examples of the present invention will be described below. The sample was prepared using the above-mentioned method using the gas atomization method and the hot isostatic pressing method. A plate with a thickness of 0.1 mm made using this method was used as a sample for measuring magnetic properties with an outer diameter of 10 mm and an inner diameter of 6 mm.
The ring was further punched out from the head core chip for wear resistance testing, heat treated in a hydrogen stream at 1100°C for 3 hours, and used for each measurement. The magnetic properties were measured before resin molding in accordance with the Electronic Materials Industries Association standard EMAS-2003. For the abrasion resistance test, γ-Fe 2 O 3 tape was used as the magnetic tape, and 1000
A continuous running test was conducted for hours, and the amount of wear on the head was measured. Tape running speed 4.75mm/
The tape was changed every 100 hours using sec. These results are shown in Tables 1 to 3. Note that samples in which fine particles were not dispersed were prepared using a normal dissolution method. Table 1 shows the relationship between the amount of MoS 2 added, magnetic permeability, and amount of wear, with Mo permalloy selected as the matrix alloy and MoS 2 selected as the lubricating solid particles. From this, μz (0.3kHz) with the amount of MoS 2 added
decreases, but conversely μz (100kHz) increases. This is thought to be because the magnetic permeability in the high frequency region increases due to the fragmentation of the magnetic domain due to the dispersion of fine particles. Furthermore, the amount of wear decreases with the amount of MoS 2 added, indicating that the addition of MoS 2 improves wear resistance. Next, Table 2 shows the results when the type of lubricating solid particles was changed while keeping the same matrix alloy. The amount added at this time was all 1 vol %, and the effect of different added fine particles was investigated. Here, it can be seen that the case of adding BN is slightly better than the others. Table 3 shows the results when MoS 2 was used as the lubricating solid particles and the type of matrix alloy was changed under the condition that the amount added was constant at 1 vol %. These results show that the addition of MoS 2 reduces the amount of wear regardless of the matrix alloy composition. Also μz
(0.3kHz) is lower due to addition, but μz
(100kHz), on the other hand, is becoming higher. To summarize the above, the magnetic permeability at 0.3kHz is
Although it is inferior to those that do not disperse fine particles,
At 100kHz, it is slightly higher when it is dispersed. In addition, the fine particle dispersed material was significantly superior in wear resistance. As for the platinum element, we chose Ru as an example.
Similar effects have been obtained with other elements. Although the embodiments herein have been described with respect to a head core, it is also effective to use it as a head case material. <Effects of the Invention> As described above, according to the present invention, with the above structure, it is possible to obtain a wear-resistant high magnetic permeability alloy in which lubricating solid fine particles having excellent wear resistance are dispersed. be.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 重量%でNi58〜85%、磁気特性改良元素と
して、Si,Ge,Ti,Zr,V,Nb,Ta,Cr,
Mo,W,Cu,Ag,および白金族元素から選ら
ばれた少なくとも1種を1〜20%、残部が実質的
にFeからなる組成の合金粉末よりなる母相部分
と、該母相部分中に分散した潤滑性固体微粒子よ
りなる体積比にして0.01〜5%の添加物とを含
み、上記潤滑性固体微粒子はMoS2,WS2,BN,
PbSの少なくとも1種よりなることを特徴とする
耐摩耗性高透磁率合金。
1% by weight of Ni 58-85%, as magnetic property improving elements Si, Ge, Ti, Zr, V, Nb, Ta, Cr,
A matrix portion made of an alloy powder having a composition of 1 to 20% of at least one selected from Mo, W, Cu, Ag, and platinum group elements, and the remainder substantially Fe; 0.01 to 5% by volume of an additive consisting of dispersed lubricating solid fine particles, and the lubricating solid fine particles are MoS 2 , WS 2 , BN,
A wear-resistant high permeability alloy comprising at least one type of PbS.
JP61103228A 1986-05-07 1986-05-07 Wear-resistant high permeability alloy Granted JPS62260031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61103228A JPS62260031A (en) 1986-05-07 1986-05-07 Wear-resistant high permeability alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61103228A JPS62260031A (en) 1986-05-07 1986-05-07 Wear-resistant high permeability alloy

Publications (2)

Publication Number Publication Date
JPS62260031A JPS62260031A (en) 1987-11-12
JPH0447017B2 true JPH0447017B2 (en) 1992-07-31

Family

ID=14348613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61103228A Granted JPS62260031A (en) 1986-05-07 1986-05-07 Wear-resistant high permeability alloy

Country Status (1)

Country Link
JP (1) JPS62260031A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709412B (en) * 2009-12-10 2012-01-04 洛阳轴研科技股份有限公司 Nickel-based bearing retainer material and preparation method thereof
CN103806847B (en) * 2014-03-04 2016-01-06 东营咸亨工贸有限公司 Wear-and corrosion-resistant rod collar
CN104762500B (en) * 2014-12-17 2016-11-30 武汉理工大学 A kind of with MoO3platelike crystal is lubrication phase and the novel Ni strengthening phase3al based self-lubricating material and preparation method thereof
CN105861879A (en) * 2016-03-31 2016-08-17 苏州睿昕汽车配件有限公司 Preparation method of high-strength piston material of automobile diesel engine
CN107475655A (en) * 2016-06-03 2017-12-15 南京理工大学 A kind of piston ring surface nickel aluminium base self-lubricating wear-resistant coating and preparation method
CN108273523B (en) * 2018-04-02 2020-09-22 暨南大学附属第一医院 Production method of anticoagulant drug intermediate
CN109402481B (en) * 2018-12-11 2021-03-26 中国科学院兰州化学物理研究所 Nickel-silicon-based self-lubricating alloy in seawater environment and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061508A (en) * 1973-10-01 1975-05-27
JPS60138035A (en) * 1983-12-27 1985-07-22 Res Inst Electric Magnetic Alloys Magnetic alloy for magnetic recording and reproducing head and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061508A (en) * 1973-10-01 1975-05-27
JPS60138035A (en) * 1983-12-27 1985-07-22 Res Inst Electric Magnetic Alloys Magnetic alloy for magnetic recording and reproducing head and production thereof

Also Published As

Publication number Publication date
JPS62260031A (en) 1987-11-12

Similar Documents

Publication Publication Date Title
JP2013508546A (en) Cemented carbide and method for producing the same
CN109923610B (en) Sputtering target for magnetic recording medium
US4572750A (en) Magnetic alloy for magnetic recording-reproducing head
Upadhyaya et al. Sintering of submicron WC-10wt.% Co hard metals containing nickel and iron
US4581080A (en) Magnetic head alloy material and method of producing the same
JPH0447017B2 (en)
JPS5842741A (en) Wear resistant alloy with high permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
KR910009974B1 (en) High saturated magnetic flux density alloy
JPS58123848A (en) Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
KR900007666B1 (en) Amorphous alloy for use in magnetic heads
CA1076397A (en) Wear-resistant shaped magnetic article and process for making the same
JP4218111B2 (en) Fe-Ni alloy powder and method for producing the same
US5073214A (en) Magnetic material for a magnetic head
GB2051622A (en) Method for manufacturing components for magnetic heads
JP2907899B2 (en) Method for producing molded article of high magnetic permeability alloy and magnetic head constituted by members of molded article obtained by this method
JP2018206835A (en) Soft magnetic alloy particle and electronic component
JPH0138862B2 (en)
JPH0457739B2 (en)
JPS5922781B2 (en) Wear resistant high permeability high saturation magnetic flux density alloy
JPS63307246A (en) Free cutting high permeability alloy
WO2020040082A1 (en) Co-BASED ALLOY FOR USE IN SOFT MAGNETIC LAYER OF MAGNETIC RECORDING MEDIUM
JPS5944762B2 (en) Magnetic alloy for wear-resistant recording/playback magnetic heads
JPS6211402B2 (en)
JPS63227752A (en) Fe-base alloy for semi-hard magnetic material having forcedly dispersed fine grain of fe3b and cu
JPH02153052A (en) Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head