JPH0446341B2 - - Google Patents

Info

Publication number
JPH0446341B2
JPH0446341B2 JP17995485A JP17995485A JPH0446341B2 JP H0446341 B2 JPH0446341 B2 JP H0446341B2 JP 17995485 A JP17995485 A JP 17995485A JP 17995485 A JP17995485 A JP 17995485A JP H0446341 B2 JPH0446341 B2 JP H0446341B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature regenerator
concentrated solution
condenser
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17995485A
Other languages
Japanese (ja)
Other versions
JPS6266068A (en
Inventor
Shinji Tonmya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP17995485A priority Critical patent/JPS6266068A/en
Priority to US06/909,718 priority patent/US4691528A/en
Publication of JPS6266068A publication Critical patent/JPS6266068A/en
Publication of JPH0446341B2 publication Critical patent/JPH0446341B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空冷二重効用吸収冷温水機の冷暖房
の切換制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to switching control of heating and cooling in an air-cooled dual-effect absorption chiller/heater.

〔従来技術〕[Prior art]

従来の公知技術としては、凝縮器及び吸収器を
冷却水で冷却する水冷二重効用吸収冷温水機があ
り、蒸発器による液冷媒の蒸発で冷水を得る冷房
運転の循環系を暖房運転では分離器と蒸発器を配
管接続した冷暖房切換弁を開けて蒸発器内に冷媒
蒸気を流し、その蒸発器の熱交換器を温水器とし
て使用し、よつて冷房用と暖房用との熱交換器を
各々持つ必要のない構成としたものがあつた。
Conventional known technology includes a water-cooled dual-effect absorption chiller-heater that cools the condenser and absorber with cooling water, and the circulation system for cooling operation that obtains chilled water by evaporating liquid refrigerant in an evaporator is separated for heating operation. Open the heating and cooling switching valve that connects the evaporator and the evaporator with piping to allow refrigerant vapor to flow into the evaporator, and use the evaporator's heat exchanger as a water heater, thereby creating a heat exchanger for cooling and heating. There was a configuration that didn't need to have each.

また、空冷の二重効用吸収冷温水機では、前記
水冷二重効用吸収冷温水機を空冷に相応するよう
に修正した第3図に示す様な冷温水器があつた。
これは、冷媒を吸収した稀溶液を加熱する高温再
生器1′を有し、分離器2′で冷媒蒸気と中間濃溶
液とに分離されたその中間濃溶液を前記冷媒蒸気
の凝縮熱で加熱される低温再生器4′を有し、該
低温再生器からの冷媒を凝縮器6′で凝縮し、蒸
発器7′で凝縮された液冷媒の蒸発により、冷水
を作り、蒸発した冷媒蒸気を吸収器8′で前記低
温再生器4′からの濃溶液に吸収させこの稀溶液
を前記高温再生器1′にポンプ9′で圧送させる構
成の空冷二重効用吸収冷温水機があつた。そし
て、該冷温水機は暖房運転では、分離器2′と蒸
発器7′とを配管接続する冷暖房切換弁17′を開
いて、冷房運転に使用された蒸発器7′の熱交換
器を温水器として使用したものであつた。
Furthermore, as an air-cooled dual-effect absorption chiller-heater, there was a water-cooler/heater as shown in FIG. 3, which was modified from the water-cooled dual-effect absorption chiller/heater to be compatible with air cooling.
This has a high-temperature regenerator 1' that heats a dilute solution that has absorbed refrigerant, and heats the intermediate concentrated solution, which is separated into refrigerant vapor and intermediate concentrated solution in a separator 2', using the heat of condensation of the refrigerant vapor. The refrigerant from the low-temperature regenerator is condensed in a condenser 6', the condensed liquid refrigerant is evaporated in an evaporator 7' to produce cold water, and the evaporated refrigerant vapor is There was an air-cooled dual-effect absorption chiller-heater configured to absorb a concentrated solution from the low-temperature regenerator 4' in an absorber 8' and pump this dilute solution to the high-temperature regenerator 1' with a pump 9'. In the heating operation, the water chiller/hot water machine opens the air conditioning/heating switching valve 17' which connects the separator 2' and the evaporator 7' with hot water to the heat exchanger of the evaporator 7' used for the cooling operation. It was used as a vessel.

更に第4図に示す様な冷温水機もあつた。これ
は冷房運転時に使用された蒸発器とは別に温水機
11′及び該温水器を加熱するための専用熱源器
10′を内蔵した構成であり、三方弁12′を暖房
時はA流路、冷房時はB流路に切換える構成のも
のであつた。
There was also a hot and cold water machine as shown in Figure 4. This has a built-in water heater 11' and a dedicated heat source 10' for heating the water heater in addition to the evaporator used during cooling operation, and the three-way valve 12' is set to the A flow path and The configuration was such that the flow path was switched to the B flow path during cooling.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

しかしながら、第3図に示されたように、蒸発
器7′の熱交換器を冷暖房兼用とし、凝縮器6′及
び吸収器8′が空冷で空気と効率良く熱交換され
るように構成すればするほど、暖房運転時には、
凝縮器6′及び吸収器8′の空気中への自然放熱
が、その暖房能力を激減させることになつた。
However, as shown in FIG. 3, if the heat exchanger of the evaporator 7' is used for both cooling and heating, and the condenser 6' and absorber 8' are configured to be air-cooled and efficiently exchange heat with the air, During heating operation,
Natural heat dissipation into the air by the condenser 6' and absorber 8' resulted in a drastic reduction in their heating capacity.

そこで、従来においても、第3図に示された冷
房運転時に使用された蒸発器7′とは別に、第4
図に示す如き、温水器11′及び該温水器を加熱
するための専用熱源器10′を内蔵した構造とし
たのであつた。
Therefore, in the past, in addition to the evaporator 7' used during the cooling operation shown in FIG.
As shown in the figure, the water heater has a built-in structure including a water heater 11' and a dedicated heat source 10' for heating the water heater.

しかし、この場合、冷房運転時の高温再生器を
加熱する熱源器の他に暖房運転時の温水器11′
と該温水器を加熱する為の熱源器10′とが必要
になり制御を複雑にし、まして、熱源器が2個必
要となつたことでコストアツプになつて不都合で
あつた。
However, in this case, in addition to the heat source device that heats the high-temperature regenerator during cooling operation, the water heater 11' during heating operation is
This requires a heat source device 10' for heating the water heater, which complicates control, and furthermore, requires two heat source devices, which increases costs and is inconvenient.

そこで、本発明は、熱源器を一台にて冷暖房運
転が出来、冷暖房の切換え操作が簡単に出来る空
冷二重効用吸収冷温水機を得ることを目的とする
ものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an air-cooled dual-effect absorption chiller/heater that can perform cooling and heating operations with a single heat source device and can easily switch between cooling and heating.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、冷媒を吸収した稀溶液を加熱して冷
媒蒸気と中間濃溶液とを得る高温再生器と、この
冷媒蒸気と中間濃溶液を分離する分離器と、この
分離された中間濃溶液が高温熱交換器で降温され
た後導入され前記冷媒蒸気が加熱する低温再生器
と、この低温再生器からの冷媒を空冷で凝縮する
凝縮器と、この凝縮器で凝縮された液冷媒を蒸発
させ負荷冷水と熱交換する蒸発器と、この蒸発器
で蒸発した冷媒蒸気を前記低温再生器からの濃溶
液に吸収させ、このとき発生する吸収熱を空冷除
去する吸収器と、この吸収器からの稀溶液を前記
高温再生器へ圧送するポンプとを有し、これらが
循環系を形成し、この循環系の蒸発器の熱交換器
で冷水を発生し、前記分離器内に有する温水器よ
り冷媒蒸気を凝縮させて温水を発生し、発生した
冷水又は温水が冷温水流路の弁で切換えられる空
冷二重効用吸収冷温水機において、前記低温再生
器へ中間濃溶液を供給する管路に前記分離器と凝
縮器の圧力差により開閉する中間濃溶液流量制御
弁と、前記低温再生器で熱交換し凝縮した液冷媒
を凝縮器へ供給する管路に前記分離器と凝縮器の
圧力差により開閉する冷媒流量制御弁を設けたこ
とを特徴とする空冷二重効用吸収冷温水機であ
る。
The present invention provides a high-temperature regenerator that heats a dilute solution that has absorbed a refrigerant to obtain refrigerant vapor and an intermediate concentrated solution, a separator that separates the refrigerant vapor and the intermediate concentrated solution, and a separator that separates the intermediate concentrated solution. a low-temperature regenerator that is heated by the refrigerant vapor that is introduced after its temperature has been lowered in a high-temperature heat exchanger; a condenser that condenses the refrigerant from the low-temperature regenerator by air cooling; and a condenser that evaporates the liquid refrigerant condensed in the condenser. an evaporator that exchanges heat with the load chilled water; an absorber that absorbs the refrigerant vapor evaporated in the evaporator into a concentrated solution from the low-temperature regenerator; and removes the absorbed heat generated at this time by air cooling; A pump for pumping the diluted solution to the high-temperature regenerator, these form a circulation system, and the heat exchanger of the evaporator in this circulation system generates cold water, and the water heater in the separator generates refrigerant. In an air-cooled dual-effect absorption chiller-heater in which hot water is generated by condensing steam, and the generated cold water or hot water is switched by a valve in a cold/hot water flow path, the separation is carried out in a pipe that supplies an intermediate concentrated solution to the low temperature regenerator. An intermediate concentrated solution flow control valve that opens and closes based on the pressure difference between the separator and the condenser, and a pipe that supplies the liquid refrigerant that has undergone heat exchange and condensed in the low-temperature regenerator to the condenser, opens and closes based on the pressure difference between the separator and the condenser. This is an air-cooled dual-effect absorption chiller/heater characterized by being equipped with a refrigerant flow rate control valve.

以下、図面によつて説明すると、第1図に示す
如く、1は冷媒を吸収した稀溶液を加熱して冷媒
蒸気と中間濃溶液とを得る高温再生器、2は冷媒
蒸気と中間濃溶液を分離する分離器、3は高温熱
交換器、4は分離器2にて分離された冷媒蒸気に
より高温熱交換器3にて低温の稀溶液と熱交換さ
れ降温された中間濃溶液を加熱し冷媒蒸気と濃溶
液を得る低温再生器、5は低温熱交換器、6は低
温再生器4及び高温再生器1で発生し低温再生器
で凝縮した冷媒蒸気及び冷媒液を凝縮冷却する凝
縮器、7は凝縮器6で凝縮した冷媒液を蒸発させ
負荷冷水と熱交換する蒸発器、8は蒸発器7で発
生した冷媒蒸気を前記低温再生器4で発生し、前
記低温熱交換器5にて低温の稀溶液と熱交換され
降温された濃溶液に吸収させる吸収器、9は吸収
器8からの稀溶液を前記高温再生器1へ圧送する
溶液ポンプであつて、これらによつて空冷二重効
用吸収冷温水機の循環系を形成し、蒸発器7の熱
交換器で冷水を発生し、前記分離器2内に有する
温水器11で高温再生器1より発生した冷媒蒸気
が凝縮されて温水を発生し、発生されて冷温水が
冷房運転時と暖房運転時とにより切換えられる三
方弁12を蒸発器7と温水器11との間の冷温水
循環系流路に設け、上記三方弁12の手前には冷
温水循環ポンプ13を配設する。また、前記低温
再生器4へ中間濃溶液を供給する管路26に前記
分離器2と凝縮器6の圧力差により自動的に開閉
する完全閉止機能を有する中間濃溶液流量制御弁
14を有し、前記低温再生器4で熱交換して凝縮
した液冷媒を凝縮器6へ供給する管路27に前記
分離器2と凝縮器4の圧力差により自動的に開閉
する完全閉止機能を有する冷媒流量制御弁15を
設ける。
The following will be explained with reference to the drawings. As shown in Fig. 1, 1 is a high-temperature regenerator that heats a dilute solution that has absorbed refrigerant to obtain refrigerant vapor and an intermediate concentrated solution; 2 is a high-temperature regenerator that generates refrigerant vapor and an intermediate concentrated solution; A separator for separating, 3 is a high-temperature heat exchanger, 4 is a refrigerant vapor separated in the separator 2, heat exchanges with a low-temperature dilute solution in the high-temperature heat exchanger 3, and heats the intermediate concentrated solution whose temperature is lowered. a low-temperature regenerator for obtaining steam and a concentrated solution, 5 a low-temperature heat exchanger, 6 a condenser for condensing and cooling the refrigerant vapor and refrigerant liquid generated in the low-temperature regenerator 4 and the high-temperature regenerator 1 and condensed in the low-temperature regenerator; 8 is an evaporator that evaporates the refrigerant liquid condensed in the condenser 6 and exchanges heat with the load chilled water; 9 is a solution pump that pumps the dilute solution from the absorber 8 to the high-temperature regenerator 1. Forming a circulation system of an absorption chiller/heater, cold water is generated by the heat exchanger of the evaporator 7, and refrigerant vapor generated from the high temperature regenerator 1 is condensed in the water heater 11 included in the separator 2 to generate hot water. A three-way valve 12 is provided in the cold and hot water circulation system flow path between the evaporator 7 and the water heater 11, and is provided in front of the three-way valve 12, and the generated cold and hot water is switched between cooling operation and heating operation. A cold/hot water circulation pump 13 is installed. Further, the pipe line 26 for supplying the intermediate concentrated solution to the low temperature regenerator 4 is provided with an intermediate concentrated solution flow rate control valve 14 having a complete closing function that automatically opens and closes depending on the pressure difference between the separator 2 and the condenser 6. , a refrigerant flow rate having a complete closing function that automatically opens and closes depending on the pressure difference between the separator 2 and the condenser 4 in a pipe 27 that supplies the liquid refrigerant condensed through heat exchange in the low-temperature regenerator 4 to the condenser 6. A control valve 15 is provided.

そこで、中間濃溶液流量制御弁14及び冷媒流
量制御弁15の構造を、第2図を参照して説明す
ると、20は出口管であり、中間濃溶液流量制御
弁14では低温再生器4に、冷媒流量制御弁15
では凝縮器6に接続され、21の管路は入口管で
あり、中間濃溶液流量制御弁14では高温熱交換
器3にて降温された中間濃溶液回路26に、冷媒
流量制御弁15では低温再生器4にて凝縮した液
冷媒回路27に接続され、22の管路は中間濃溶
液流量制御弁及び冷媒流量制御弁共に凝縮器6と
接続される。そして、出口管20と凝縮器6へ接
続する管路22との圧力差により自動的に入口管
21よりの流路を開閉するダイヤフラム24に付
設された開閉弁23を出口管20端部の弁座に配
備し、ダイヤフラム24の背面には完全閉止機能
をするように開閉の圧力を調整するばね25を有
するものである。
Therefore, the structures of the intermediate concentrated solution flow rate control valve 14 and the refrigerant flow rate control valve 15 will be explained with reference to FIG. Refrigerant flow control valve 15
is connected to the condenser 6, the pipe 21 is an inlet pipe, the intermediate concentrated solution flow rate control valve 14 connects the intermediate concentrated solution circuit 26 whose temperature has been lowered in the high temperature heat exchanger 3, and the refrigerant flow rate control valve 15 connects the intermediate concentrated solution circuit 26 with a low temperature It is connected to the liquid refrigerant circuit 27 condensed in the regenerator 4, and the pipe line 22 is connected to the condenser 6 together with the intermediate concentrated solution flow rate control valve and the refrigerant flow rate control valve. Then, the on-off valve 23 attached to the diaphragm 24 that automatically opens and closes the flow path from the inlet pipe 21 due to the pressure difference between the outlet pipe 20 and the pipe line 22 connected to the condenser 6 is connected to the valve at the end of the outlet pipe 20. A spring 25 is provided on the back of the diaphragm 24 to adjust the opening/closing pressure so as to provide a complete closing function.

なお、図中、10は高温再生器1を加熱する熱
源器であり、一般的には燃料を燃焼させるバーナ
ーが使用される。16は冷房運転時の凝縮器6で
の冷媒の凝縮熱及び吸収器8での吸収熱を空気中
に放出する為の空冷冷却フアンであり、18は溶
液ポンプ9停止時の低温熱交換器5から吸収器8
へ溶液が流れる事を防止する溶液逆止弁であつ
て、19は暖房時の溶液が流れる溶液バイパス管
である。
In addition, in the figure, 10 is a heat source device that heats the high-temperature regenerator 1, and generally a burner that burns fuel is used. 16 is an air-cooled cooling fan for releasing into the air the heat of condensation of the refrigerant in the condenser 6 and the heat of absorption in the absorber 8 during cooling operation, and 18 is the low temperature heat exchanger 5 when the solution pump 9 is stopped. from absorber 8
19 is a solution bypass pipe through which the solution flows during heating.

〔作用〕[Effect]

従つて、中間濃溶液流量制御弁14及び冷媒流
量制御弁15が、入口管21より出口管20への
流れの開閉をする弁23を有し、該弁の開閉が凝
縮器6と接続する管路21との圧力差により行わ
れる構造であるために、上記空冷二重効用吸収冷
温水機の作用は、暖房運転時には、三方弁12を
Aの矢印のように温水が温水器11へ流れるよう
制御され、温水出口温度は50℃〜60℃に調整され
る。この時に、分離器2の圧力は約100〜160mm
HgAbsとなる。よつて、中間濃溶液流量制御弁
14及び冷媒流量制御弁15の開口時の圧力を
200〜250mmHgAb2に設定することにより高温再
生器1にて加熱された溶液及び冷媒蒸気は低温再
生器4及び凝縮器6に流入しない為、効率の良い
暖房運転が可能となる。
Therefore, the intermediate concentrated solution flow rate control valve 14 and the refrigerant flow rate control valve 15 have a valve 23 that opens and closes the flow from the inlet pipe 21 to the outlet pipe 20, and the opening and closing of the valves is the same as that of the pipe connected to the condenser 6. Since it is constructed based on the pressure difference between the air-cooled water heater and the water heater 21, the operation of the air-cooled dual-effect absorption chiller-heater is that during heating operation, the three-way valve 12 is turned in the direction of the arrow A so that hot water flows to the water heater 11. Controlled, the hot water outlet temperature is adjusted to 50℃~60℃. At this time, the pressure in separator 2 is approximately 100 to 160 mm.
It becomes HgAbs. Therefore, the pressure when the intermediate concentrated solution flow rate control valve 14 and the refrigerant flow rate control valve 15 are opened is
By setting 200 to 250 mmHgAb 2 , the solution and refrigerant vapor heated in the high-temperature regenerator 1 do not flow into the low-temperature regenerator 4 and condenser 6, so efficient heating operation is possible.

次に、冷房運転時には、三方弁12はBの矢印
のように冷水が蒸発器7を流れるよう制御され、
通常の二重効用吸収冷凍機運転と同様になる。こ
こで、分離器2の圧力は冷却空気温度を20℃〜35
℃とすると、500〜1500mmHgAbsとなり、中間濃
溶液流量制御弁14及び冷媒流量制御弁15は開
口状態となる。
Next, during cooling operation, the three-way valve 12 is controlled so that cold water flows through the evaporator 7 as indicated by the arrow B.
The operation will be similar to normal dual-effect absorption chiller operation. Here, the pressure of separator 2 is the cooling air temperature between 20℃ and 35℃.
℃, it becomes 500 to 1500 mmHgAbs, and the intermediate concentrated solution flow rate control valve 14 and the refrigerant flow rate control valve 15 are in an open state.

なお、中間濃溶液流量制御弁14及び冷媒流量
制御弁15を差圧弁方式より他の冷房暖房制御信
号により作動する電磁弁又はモジユトロール弁に
て対応出来ることは勿論であり、又冷温水流路の
切換の為の弁は三方弁だけでなく、二方弁の組合
せまたは手動弁による切換も可能である。
It goes without saying that the intermediate concentrated solution flow rate control valve 14 and the refrigerant flow rate control valve 15 can be handled by electromagnetic valves or modular valves operated by other cooling/heating control signals rather than the differential pressure valve system, and also by switching the cold and hot water flow paths. The valve for this purpose is not only a three-way valve, but also a combination of two-way valves or a manual valve.

〔発明の効果〕〔Effect of the invention〕

以上の結果、本発明は次のような効果が得られ
る。
As a result of the above, the present invention provides the following effects.

熱源器1台にて冷房、暖房運転が可能であ
り、コストが安くなる。
Cooling and heating operations can be performed with a single heat source device, reducing costs.

冷房、暖房の切換えは冷温水の循環水系の切
換えのみで操作が簡単である。
Switching between cooling and heating is easy, just by switching the circulating water system for cold and hot water.

中間濃溶液流量制御弁及び冷媒流量制御弁が
共に簡単な自圧自動制御弁である為、特別な制
御機構、例えば、電磁弁機構、モジユトロール
弁機構が不要であり、制御が安価である。
Since both the intermediate concentrated solution flow rate control valve and the refrigerant flow rate control valve are simple self-pressure automatic control valves, a special control mechanism such as a solenoid valve mechanism or a modular valve mechanism is not required, and the control is inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の空冷二重効用吸収冷温水機
の構成図であり、第2図は、中間濃溶液流量制御
弁及び冷媒流量制御弁の構造図である。第3図
は、従来の空冷二重効用吸収冷温水機の構成図で
あり、第4図は、従来の空冷二重効用吸収冷温水
機の他の実施例の構成図である。 1,1′……高温再生器、2,2′……分離器、
3,3′……高温熱交換器、4,4′……低温再生
器、5,5′……低温熱交換器、6,6′……凝縮
器、7,7′……蒸発器、8,8′……吸収器、
9,9′……溶液ポンプ、10,10′……熱源
器、11,11′……温水器、12,12′……三
方弁、13,13′……循環水ポンプ、14,1
4′……中間濃溶液流量制御弁、15,15′……
冷媒流量制御弁、16,16′……空冷冷却フア
ン、17,17′……冷暖房切換弁、18,1
8′……逆止弁、19,19′……溶液バイパス
管、20……出口管、21……入口管、22……
管路、23……開閉する弁、24……ダイヤフラ
ム、25……ばね、26……中間濃溶液回路、2
7……冷媒回路。
FIG. 1 is a structural diagram of an air-cooled dual-effect absorption chiller-heater of the present invention, and FIG. 2 is a structural diagram of an intermediate concentrated solution flow rate control valve and a refrigerant flow rate control valve. FIG. 3 is a block diagram of a conventional air-cooled dual-effect absorption chiller/heater, and FIG. 4 is a block diagram of another embodiment of the conventional air-cooled dual-effect absorption chiller/heater. 1, 1'... High temperature regenerator, 2, 2'... Separator,
3,3'...High temperature heat exchanger, 4,4'...Low temperature regenerator, 5,5'...Low temperature heat exchanger, 6,6'...Condenser, 7,7'...Evaporator, 8,8'...absorber,
9,9'...Solution pump, 10,10'...Heat source device, 11,11'...Water heater, 12,12'...Three-way valve, 13,13'...Circulating water pump, 14,1
4'... Intermediate concentrated solution flow rate control valve, 15, 15'...
Refrigerant flow control valve, 16, 16'... Air cooling cooling fan, 17, 17'... Air conditioning switching valve, 18, 1
8'... Check valve, 19, 19'... Solution bypass pipe, 20... Outlet pipe, 21... Inlet pipe, 22...
Pipe line, 23... Valve to open and close, 24... Diaphragm, 25... Spring, 26... Intermediate concentrated solution circuit, 2
7...Refrigerant circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 冷媒を吸収した稀溶液を加熱する高温再生器
1を有し、該高温再生器で加熱して得られた冷媒
蒸気と中間濃溶液とを分離器2で分離し、分離さ
れた中間濃溶液が降温された後導入され、前記冷
媒蒸気の凝縮熱で中間濃溶液を加熱する低温再生
器4を有し、該低温再生器からの冷媒を空冷で凝
縮する凝縮器6と、該凝縮器で凝縮された液冷媒
を蒸発させ負荷冷水と熱交換する蒸発器7と、該
蒸発器で蒸発した冷媒蒸気を前記低温再生器4か
らの濃溶液に吸収させ、このとき発生する吸収熱
を空冷除去する吸収器8と、該吸収器からの稀溶
液を前記高温再生器1へ圧送するポンプ9とを有
し、これらが形成する循環系の前記蒸発器7によ
り冷水を発生し、前記分離器2内に有する温水器
11より冷媒蒸気の凝縮で温水を発生し、発生し
た冷水又は温水の供給を冷温水流路系の弁の切換
えで得る空冷二重効用吸収冷温水機において、前
記低温再生器4へ中間濃溶液を供給する管路26
に前記分離器2と凝縮器6の圧力差により開閉す
る中間濃溶液流量制御弁14と、前記低温再生器
4で熱交換し凝縮した液冷媒を凝縮器6へ供給す
る管路27に前記分離器2と凝縮器4の圧力差に
より開閉する冷媒流量制御弁15を設けたことを
特徴とする空冷二重効用吸収冷温水機。
1 It has a high temperature regenerator 1 that heats a dilute solution that has absorbed a refrigerant, and the refrigerant vapor obtained by heating with the high temperature regenerator and an intermediate concentrated solution are separated in a separator 2, and the separated intermediate concentrated solution a low temperature regenerator 4 which is introduced after the temperature of the refrigerant has been lowered and heats the intermediate concentrated solution with the heat of condensation of the refrigerant vapor, a condenser 6 which condenses the refrigerant from the low temperature regenerator by air cooling; The evaporator 7 evaporates the condensed liquid refrigerant and exchanges heat with the load chilled water, and the refrigerant vapor evaporated in the evaporator is absorbed into the concentrated solution from the low-temperature regenerator 4, and the absorbed heat generated at this time is removed by air cooling. The evaporator 7 of the circulation system formed by these components generates cold water, and the separator 2 In an air-cooled dual-effect absorption chiller-heater, in which hot water is generated by condensing refrigerant vapor from a water heater 11 contained in the water heater 11, and the generated cold water or hot water is supplied by switching a valve in a cold/hot water flow path system, the low-temperature regenerator 4 Conduit 26 for supplying intermediate concentrated solution to
An intermediate concentrated solution flow rate control valve 14 that opens and closes depending on the pressure difference between the separator 2 and the condenser 6, and a pipe 27 that supplies the liquid refrigerant condensed through heat exchange in the low-temperature regenerator 4 to the condenser 6. An air-cooled dual-effect absorption chiller-heater characterized by being provided with a refrigerant flow control valve 15 that opens and closes depending on the pressure difference between the container 2 and the condenser 4.
JP17995485A 1985-08-15 1985-08-15 Air-cooled double-effect absorption water heater and chiller Granted JPS6266068A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17995485A JPS6266068A (en) 1985-08-15 1985-08-15 Air-cooled double-effect absorption water heater and chiller
US06/909,718 US4691528A (en) 1985-08-15 1986-09-22 Air-cooled absorption type water cooling/heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17995485A JPS6266068A (en) 1985-08-15 1985-08-15 Air-cooled double-effect absorption water heater and chiller

Publications (2)

Publication Number Publication Date
JPS6266068A JPS6266068A (en) 1987-03-25
JPH0446341B2 true JPH0446341B2 (en) 1992-07-29

Family

ID=16074861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17995485A Granted JPS6266068A (en) 1985-08-15 1985-08-15 Air-cooled double-effect absorption water heater and chiller

Country Status (1)

Country Link
JP (1) JPS6266068A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794933B2 (en) * 1988-08-09 1995-10-11 矢崎総業株式会社 Air-cooled absorption air conditioner
JPH0443264A (en) * 1990-06-08 1992-02-13 Hitachi Zosen Corp Absorption type heat source device

Also Published As

Publication number Publication date
JPS6266068A (en) 1987-03-25

Similar Documents

Publication Publication Date Title
JPH0886530A (en) Absorption type water cooling and heating machine
US6487874B2 (en) Absorption refrigerator
JP2005009754A (en) Single/double effect absorption refrigerating machine, and its operation control method
JPH0446341B2 (en)
JPH07849Y2 (en) Air-cooled absorption chiller / heater
JP2895974B2 (en) Absorption refrigerator
JPH0443264A (en) Absorption type heat source device
JPS6135900Y2 (en)
JPS6113884Y2 (en)
JP2779422B2 (en) Absorption chiller / heater
JPH0354378Y2 (en)
JP2533932B2 (en) Air-cooled absorption type water heater
JPS5829818Y2 (en) absorption refrigerator
JPH058351U (en) Hot water absorption absorption cold water heater
JP3811632B2 (en) Waste heat input type absorption refrigerator
JPS6149586B2 (en)
JPH05332632A (en) Hot water multi-circuit taking-out absorption type cold water-hot water feeding machine and automatic changing-over method for taking-out hot water
JPH0577947B2 (en)
JPH0353538B2 (en)
JPH0752039B2 (en) Air-cooled absorption chiller / heater
JPH0754209B2 (en) Absorption cold / hot water device and its operating method
JPH03105171A (en) Absorption type water cooling and heating machine
JPH10185344A (en) Absorption type cooling-heating equipment
JP2000065443A (en) Combined heat transfer apparatus
JPS6113550B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term