JPH0353538B2 - - Google Patents

Info

Publication number
JPH0353538B2
JPH0353538B2 JP2309582A JP2309582A JPH0353538B2 JP H0353538 B2 JPH0353538 B2 JP H0353538B2 JP 2309582 A JP2309582 A JP 2309582A JP 2309582 A JP2309582 A JP 2309582A JP H0353538 B2 JPH0353538 B2 JP H0353538B2
Authority
JP
Japan
Prior art keywords
pipe
condenser
temperature regenerator
valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2309582A
Other languages
Japanese (ja)
Other versions
JPS58140576A (en
Inventor
Kazuhiro Yoshii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2309582A priority Critical patent/JPS58140576A/en
Publication of JPS58140576A publication Critical patent/JPS58140576A/en
Publication of JPH0353538B2 publication Critical patent/JPH0353538B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/006Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the sorption type system

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は、ヒートポンプ運転による温水供給が
行なえる吸収冷温水機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption chiller/heater capable of supplying hot water by operating a heat pump.

吸収冷凍機は冷房用冷水を供給する装置として
使用される例が多いが、温度が低い熱源水(以
下、低熱源水と云う)例えば温排水を利用して、
温度の高い温水を取り出して暖房等を行なう所謂
ヒートポンプ運転も可能である。特にこのような
ヒートポンプ運転は低熱源水が温排水や太陽熱温
水などの形で多量に得られる場所では利用価値の
大きいものである。それ故、従来、冷房用冷水を
効率良く取り出すことのできる二重効用吸収冷凍
機の蒸発器に低熱源水を供給して吸収器及び凝縮
器を加熱器として使用し、温水を取り出して暖房
等に利用する所謂一重効用のヒートポンプ運転に
切替えることが行なわれている。
Absorption refrigerators are often used as devices that supply cold water for air conditioning, but they can be
It is also possible to perform so-called heat pump operation in which high-temperature hot water is extracted to perform heating or the like. Particularly, such heat pump operation has great utility value in places where a large amount of low-heat source water can be obtained in the form of heated wastewater or solar hot water. Therefore, conventionally, low heat source water is supplied to the evaporator of a dual-effect absorption refrigerator that can efficiently extract cold water for cooling, and the absorber and condenser are used as heaters, and hot water is extracted for heating, etc. The current trend is to switch to so-called single-effect heat pump operation, which is used for

しかし乍ら、二重効用の冷凍運転を行なつて効
率良く冷水を取り出すことを本来の目的とする二
重効用吸収冷凍機において、吸収器及び凝縮器か
ら温水を取り出す一重効用のヒートポンプ運転に
切替える従来のものは諸々の問題点を有してお
り、特に多量の冷媒蒸気を要する大型機には不向
きである。何故なら、一重効用のヒートポンプ運
転時に高温再生器において発生する冷媒蒸気の比
容積が二重効用の冷凍運転時のそれのおよそ4倍
程度大きく、高温再生器から低温再生器を経て凝
縮器へ冷媒蒸気を送る配管に大口径のものを用い
なければならず、かつ該配管に冷水負荷或いは温
水負荷に応じて冷媒流量を調節するための開閉弁
に規格外のものを用いなければならないからであ
る。すなわち、この配管に大口径のものを用いる
場合には、冷凍運転時に、低温再生器を経由した
該配管内の冷媒ドレンが円滑に凝縮器に流入しな
いと云う現象を起こして安定的かつ効率良く冷水
を取り出せない等の冷温水機の性能上の問題点、
或いは、前記開閉弁を特別に製造し、また該弁を
精度良く制御するための特別の設備を要する等の
製造上、コスト上の問題点を有し、大型機におい
ては実用的ではなかつた。
However, in a dual-effect absorption refrigerator whose original purpose is to efficiently extract cold water by performing double-effect refrigeration operation, it is possible to switch to single-effect heat pump operation to extract hot water from the absorber and condenser. Conventional systems have various problems and are particularly unsuitable for large machines that require a large amount of refrigerant vapor. This is because the specific volume of refrigerant vapor generated in the high-temperature regenerator during single-effect heat pump operation is approximately four times larger than that during dual-effect refrigeration operation, and the refrigerant vapor is transferred from the high-temperature regenerator to the condenser via the low-temperature regenerator. This is because large-diameter piping must be used to send steam, and non-standard opening/closing valves must be used to adjust the refrigerant flow rate depending on the chilled water load or hot water load in the piping. . In other words, if a large-diameter pipe is used, during refrigeration operation, the refrigerant drain in the pipe via the low-temperature regenerator may not flow smoothly into the condenser, resulting in a stable and efficient flow. Problems with the performance of the water cooler/heater, such as not being able to take out cold water,
Alternatively, there are manufacturing and cost problems such as the need to specially manufacture the on-off valve and special equipment to control the valve with high precision, making it impractical for large machines.

本発明は、斯る点に鑑み、従来の二重効用吸収
冷凍機に第2凝縮器を冷媒配管及び分岐水管によ
り接続し、温水必要時には一重効用のヒートポン
プ運転を行なつて吸収器及び第2凝縮器から得ら
れる熱により温水を取り出し、冷水必要時には所
謂従来の二重効用の冷凍運転を行なつて冷水を取
り出すように冷媒および吸収液の循環サイクルを
切替え得る構成を採り、ヒートポンプ運転による
温水供給を行なう此種吸収冷温水機の大型化を安
価にかつ性能良く実現することを目的としたもの
である。尚、ここに称する大型吸収冷温水機とは
冷水出力及び温水出力の大きいものを云う。
In view of this, the present invention connects a second condenser to a conventional double-effect absorption refrigerating machine through refrigerant piping and a branch water pipe, and performs single-effect heat pump operation when hot water is required. The refrigerant and absorption liquid circulation cycle can be switched so that hot water is extracted using the heat obtained from the condenser, and when cold water is required, the so-called conventional dual-effect refrigeration operation is performed to extract cold water. The purpose is to realize a large-sized absorption chiller/heater for supplying water at low cost and with good performance. Note that the large-scale absorption chiller/heater referred to herein refers to one with large outputs of cold water and hot water.

以下、本発明の実施例を図面に基いて説明す
る。1は燃焼ガス等の高温熱源により吸収液から
冷媒蒸気を加熱分離して中間液に濃縮する駆動用
の高温再生器、2は前記高温再生器1からの冷媒
蒸気の熱により中間液から更に冷媒蒸気を加熱分
離して濃液にする低温再生器3と該低温再生器及
び前記高温再生器1において分離された冷媒を凝
縮かつ冷却する凝縮器4とを形成した再生凝縮
胴、5は前記凝縮器4からの液状冷媒を気化させ
るようにした蒸発器6と該蒸発器において気化し
た冷媒を低温再生器3からの濃液に吸収せしめる
ようにした吸収器7とを形成した蒸発吸収胴、8
及び9は低温及び高温溶液熱交換器で、これらは
開閉弁10を有する冷媒導管(冷媒配管)11、
開閉弁12を有する冷媒液流下管13、冷媒ポン
プ14を有する冷媒液循環路15、溶液ポンプ1
6を有する稀液管17、中間液管(中間液配管)
18及び濃液管19で接続されており、また前記
蒸発器6に水管20を収納し、吸収器7及び凝縮
器4に水管21を収納している。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a high-temperature regenerator for driving, which heats and separates refrigerant vapor from an absorption liquid using a high-temperature heat source such as combustion gas and concentrates it into an intermediate liquid; 2 is a driving high-temperature regenerator that uses the heat of the refrigerant vapor from the high-temperature regenerator 1 to further convert refrigerant from the intermediate liquid; A regenerated condensing shell 5 is formed with a low-temperature regenerator 3 that heats and separates vapor to convert it into a concentrated liquid, and a condenser 4 that condenses and cools the refrigerant separated in the low-temperature regenerator and the high-temperature regenerator 1; an evaporator-absorbing shell 8 formed with an evaporator 6 for vaporizing the liquid refrigerant from the vessel 4 and an absorber 7 for absorbing the refrigerant vaporized in the evaporator into the concentrated liquid from the low-temperature regenerator 3;
and 9 are low-temperature and high-temperature solution heat exchangers, which are refrigerant pipes (refrigerant pipes) 11 having on-off valves 10;
A refrigerant liquid flow pipe 13 having an on-off valve 12, a refrigerant liquid circulation path 15 having a refrigerant pump 14, and a solution pump 1
Dilute liquid pipe 17 with 6, intermediate liquid pipe (intermediate liquid piping)
18 and a concentrated liquid pipe 19, a water pipe 20 is housed in the evaporator 6, and a water pipe 21 is housed in the absorber 7 and condenser 4.

而して、冷水必要時には、水管20に水を循環
せしめ、かつ水管21に冷却水を供給すると共に
高温再生器1に熱源を供給して冷媒及び吸収液の
循環サイクルを形成せしめ、換言すれば、所謂従
来の二重効用吸収冷凍機としての運転を行わし
め、水管20から冷水を得るものである。
When cold water is required, water is circulated through the water pipe 20, cooling water is supplied to the water pipe 21, and a heat source is supplied to the high temperature regenerator 1 to form a refrigerant and absorption liquid circulation cycle. , which operates as a so-called conventional dual-effect absorption refrigerator, and obtains cold water from the water pipe 20.

次に、22は第2凝縮器で、該第2凝縮器の上
部には前記冷媒導管11の分岐管23が接続さ
れ、下部には開閉弁24を有する凝縮冷媒液流下
管25が接続されており、又、該流下管はスチー
ムトラツプ、オリフイス等の減圧装置26を備え
ており、前記冷媒液流下管13に接続されてい
る。そして、高温発生器1に接続された冷媒導管
11と分岐管23と凝縮冷媒流下管25と冷媒液
流下管13とにより高温発生器1から第2凝縮器
22を介して蒸発器6に至る冷媒配管が構成され
る。27は前記水管21の凝縮器4入口側におい
て分岐されている水管で、該分岐水管は開閉弁2
8を有し、前記第2凝縮器22に収納されてい
る。又、29は前記水管21に設けた開閉弁であ
る。尚、開閉弁28,29を介して分岐水管27
を設ける代わりに三方弁(図示せず)を介して分
岐水管27を設けても良い。30は一端を前記中
間液管18と接続され他端を前記低温溶液熱交換
器8と接続されたバイパス溶液管路で、高温再生
器1に接続された中間液管18とバイパス溶液管
路30と濃液管19とにより高温再生器1から低
温再生器3及び高温溶液熱交換器9を側路して吸
収器7に至る溶液配管が構成される。そして、バ
イパス溶液管路30には開閉弁31が設けられて
いる。又、32は中間液管18に設けた開閉弁で
ある。33は一端を前記冷媒導管11と接続され
他端を前記再生凝縮胴2と接続された均圧管で、
該管には開閉弁34が設けられている。
Next, 22 is a second condenser, an upper part of which is connected to a branch pipe 23 of the refrigerant conduit 11, and a lower part thereof is connected to a condensed refrigerant liquid downflow pipe 25 having an on-off valve 24. The downflow pipe is also equipped with a pressure reducing device 26 such as a steam trap or orifice, and is connected to the refrigerant liquid downflow pipe 13. The refrigerant reaches the evaporator 6 from the high-temperature generator 1 via the second condenser 22 through the refrigerant conduit 11, branch pipe 23, condensed refrigerant down-flow pipe 25, and refrigerant liquid down-flow pipe 13 connected to the high-temperature generator 1. Piping is configured. Reference numeral 27 indicates a water pipe branched from the water pipe 21 on the condenser 4 inlet side, and the branch water pipe is connected to the on-off valve 2.
8, and is housed in the second condenser 22. Further, 29 is an on-off valve provided in the water pipe 21. In addition, the branch water pipe 27 is connected via the on-off valves 28 and 29.
Instead of providing this, a branch water pipe 27 may be provided via a three-way valve (not shown). 30 is a bypass solution pipe connected to the intermediate liquid pipe 18 at one end and the low temperature solution heat exchanger 8 at the other end; the intermediate liquid pipe 18 connected to the high temperature regenerator 1 and the bypass solution pipe 30 and the concentrated liquid pipe 19 constitute a solution piping that runs from the high temperature regenerator 1 to the absorber 7 by bypassing the low temperature regenerator 3 and the high temperature solution heat exchanger 9. The bypass solution conduit 30 is provided with an on-off valve 31 . Further, 32 is an on-off valve provided in the intermediate liquid pipe 18. 33 is a pressure equalizing pipe connected at one end to the refrigerant conduit 11 and at the other end to the regeneration condensation shell 2;
The pipe is provided with an on-off valve 34.

而して、温水必要時には、前記開閉弁10,1
2,29及び32を全閉にし開閉弁24,28,
31及び34を開いた状態で水管20に低熱源水
を供給すると共に高温再生器1に高温熱源を供給
し、水管21及び分岐水管27に通水して所謂一
重効用のヒートポンプ運転を行ない、分岐水管2
7から温水を取り出す。
Therefore, when hot water is required, the on-off valves 10, 1
2, 29 and 32 are fully closed, and the on-off valves 24, 28,
With 31 and 34 open, low-heat source water is supplied to the water pipe 20, and a high-temperature heat source is supplied to the high-temperature regenerator 1, and water is passed through the water pipe 21 and branch water pipe 27 to perform a so-called single-effect heat pump operation. Water pipe 2
Take out the hot water from 7.

次に、ヒートポンプ運転時の冷媒及び吸収液の
循環サイクルを説明する。高温再生器1で濃縮さ
れた吸収液は前記中間液管18、バイパス溶液管
30、低温溶液熱交換器8及び濃液管19を経て
吸収器7に至り蒸発器6からの気化冷媒を吸収し
て希釈される。尚、吸収器7において発生する吸
収熱は前記水管21内の水を昇温するのに費やさ
れる。そして、希釈された吸収液は吸収器7底部
から溶液ポンプ16、稀液管17を経て高温再生
器1に還流されるのである。
Next, the circulation cycle of the refrigerant and absorption liquid during operation of the heat pump will be explained. The absorption liquid concentrated in the high temperature regenerator 1 passes through the intermediate liquid pipe 18, the bypass solution pipe 30, the low temperature solution heat exchanger 8 and the concentrated liquid pipe 19, and reaches the absorber 7, where it absorbs the vaporized refrigerant from the evaporator 6. diluted. The absorbed heat generated in the absorber 7 is used to raise the temperature of the water in the water pipe 21. The diluted absorption liquid is then returned to the high temperature regenerator 1 from the bottom of the absorber 7 via the solution pump 16 and the diluted liquid pipe 17.

尚、ヒートポンプ運転時には、再生凝縮胴2と
高温再生器1とを均圧管33により短絡して同圧
にしているので、低温溶液熱交換器8に流入した
吸収液が低温再生器3に逆流することはない。
In addition, during heat pump operation, the regeneration condensation shell 2 and the high temperature regenerator 1 are short-circuited by the pressure equalization pipe 33 to maintain the same pressure, so the absorption liquid flowing into the low temperature solution heat exchanger 8 flows back into the low temperature regenerator 3. Never.

また、高温再生器1において発生した冷媒蒸気
は前記冷媒導管11、分岐管23を経て第2凝縮
器22に至り凝縮冷媒液となる。尚、第2凝縮器
22において発生する凝縮潜熱は前記分岐水管2
7内の水を昇温するのに費やされる。そして、凝
縮冷媒液は凝縮冷媒液流下管25、減圧装置2
6、冷媒液溜め35、冷媒ポンプ14、冷媒循環
路15を経て蒸発器6に至り低熱源水によつて加
熱されて気化し吸収器7において吸収液に吸収さ
れて高温再生器1に還流されるのである。
Further, the refrigerant vapor generated in the high-temperature regenerator 1 passes through the refrigerant conduit 11 and the branch pipe 23, reaches the second condenser 22, and becomes a condensed refrigerant liquid. Note that the latent heat of condensation generated in the second condenser 22 is transferred to the branch water pipe 2.
7 is used to heat up the water in the tank. The condensed refrigerant liquid is transferred to the condensed refrigerant liquid down pipe 25 and the pressure reducing device 2.
6. The refrigerant passes through the refrigerant reservoir 35, the refrigerant pump 14, and the refrigerant circulation path 15, reaches the evaporator 6, is heated by the low heat source water and vaporized, is absorbed by the absorption liquid in the absorber 7, and is refluxed to the high-temperature regenerator 1. It is.

このように、ヒートポンプ運転時には、凝縮器
4に代えて第2凝縮器22を用いるようにしたも
のであるから、前記冷媒導管11は高温再生器1
から分岐管23に至るまでの間のみ大口径のもの
であれば良い。したがつて、冷凍運転時に、高温
再生器1からの冷媒蒸気が低温再生器3において
中間液と熱交換する際に生じる冷媒ドレンを凝縮
器4に円滑に流通させるのに十分小径の冷媒導管
11を、低温再生器3と凝縮器4との間におい
て、用いることができ、冷媒ドレンの流通が悪く
なつて冷凍能力の低下と不安定現象を生ずる従来
のものの欠点〔特に口径の大きい冷媒導管11を
用いる大型機に生じ易い欠点〕を解消できる。
尚、第2凝縮器22への冷媒蒸気の供給を、冷媒
導管11、分岐管23を通して行なう代りに、大
口径の冷媒蒸気導管36を通して行なつても良
い。
In this way, during heat pump operation, the second condenser 22 is used instead of the condenser 4, so the refrigerant conduit 11 is connected to the high temperature regenerator 1.
It is sufficient that the pipe has a large diameter only between the pipe and the branch pipe 23. Therefore, during refrigeration operation, the refrigerant conduit 11 is sufficiently small in diameter to smoothly flow the refrigerant drain generated when the refrigerant vapor from the high temperature regenerator 1 exchanges heat with the intermediate liquid in the low temperature regenerator 3 to the condenser 4. can be used between the low-temperature regenerator 3 and the condenser 4, which is a disadvantage of the conventional method in that the flow of the refrigerant drain becomes poor, resulting in a decrease in the refrigerating capacity and unstable phenomena [especially when the refrigerant conduit 11 has a large diameter]. This eliminates the drawbacks that tend to occur in large machines that use
Note that the refrigerant vapor may be supplied to the second condenser 22 through the large-diameter refrigerant vapor conduit 36 instead of through the refrigerant conduit 11 and branch pipe 23.

また、開閉弁10も規格内のものを用いること
ができ、該弁を例えば冷水負荷に応じて開度調節
される冷媒流量制御弁として用いれば、安価かつ
簡便な制御が可能となる。尚、中間液管18に開
閉弁32を必ずしも設けなくても良い。何故な
ら、ヒートポンプ運転時、均圧管33を介して高
温再生器1と再生凝縮胴2とを同圧にし、吸収液
が高温再生器1から高温溶液熱交換器9を経て低
温再生器3に流入するのを防止しているからであ
る。尤も、高温再生器1と再生凝縮胴2とが同圧
になるのに多少の時間を要するので開閉弁32を
設けることが好ましい。同様の理由で、低温再生
器3と低温溶液熱交換器8との間の濃液管19に
開閉弁(図示せず)を設けても良い。又、ヒート
ポンプ運転時、均圧管33の代りに冷媒導管11
を用いて高温再生器1と再生凝縮胴2とを同圧に
しても良い。この場合には開閉弁10を開けば良
い。尤も、上記同様、同圧になるのに時間を要
し、ヒートポンプ運転の初期性能が低下するの
で、開閉弁34付きの均圧管33を設けることが
好ましい。
Moreover, the on-off valve 10 can also be used within the standard, and if this valve is used as a refrigerant flow rate control valve whose opening degree is adjusted according to the chilled water load, inexpensive and simple control becomes possible. Note that the on-off valve 32 does not necessarily need to be provided in the intermediate liquid pipe 18. This is because, during heat pump operation, the high temperature regenerator 1 and the regeneration condensation shell 2 are made to have the same pressure through the pressure equalization pipe 33, and the absorption liquid flows from the high temperature regenerator 1 to the low temperature regenerator 3 via the high temperature solution heat exchanger 9. This is because it prevents them from doing so. However, since it takes some time for the high temperature regenerator 1 and the regeneration condensation shell 2 to reach the same pressure, it is preferable to provide the on-off valve 32. For the same reason, an on-off valve (not shown) may be provided in the concentrated liquid pipe 19 between the low-temperature regenerator 3 and the low-temperature solution heat exchanger 8. Also, during heat pump operation, the refrigerant conduit 11 is used instead of the pressure equalization pipe 33.
The high-temperature regenerator 1 and the regenerated condensation shell 2 may be brought to the same pressure by using. In this case, it is sufficient to open the on-off valve 10. However, as described above, it takes time to reach the same pressure and the initial performance of the heat pump operation deteriorates, so it is preferable to provide a pressure equalizing pipe 33 with an on-off valve 34.

このように、本発明吸収冷温水機は、冷水必要
時には、開閉弁24,28,31及び34を全開
にし、開閉弁10,12,29及び32を開いた
状態で運転して、蒸発器6を冷却器として使用す
る所謂二重効用吸収冷凍機として用い、温水必要
時には開閉弁10,12,29及び32を全開に
し、開閉弁24,28,31及び34を開くよう
に切替えて運転し、吸収器7及び第2凝縮器22
を加熱器として使用する一重効用の吸収ヒートポ
ンプとして用いるものである。又均圧管33若し
くは開閉弁32を配設しない場合は、開閉弁10
を両運転時共に開状態にしておくことは言を俟た
ない。更にまた、前記減圧装置26を調節して、
ヒートポンプ運転時と冷凍運転時との夫々におい
て、第2凝縮器22と蒸発器6との圧力差を適宜
調節する場合には、開閉弁24を配設しなくても
差し支えない。
As described above, when cold water is needed, the absorption chiller/heater of the present invention operates with the on-off valves 24, 28, 31, and 34 fully open and the on-off valves 10, 12, 29, and 32 open, and the evaporator 6 is used as a so-called double-effect absorption refrigerator which is used as a cooler, and when hot water is needed, the on-off valves 10, 12, 29 and 32 are fully opened, and the on-off valves 24, 28, 31 and 34 are switched to open. Absorber 7 and second condenser 22
It is used as a single-effect absorption heat pump that uses the heat pump as a heater. In addition, when the pressure equalization pipe 33 or the on-off valve 32 is not provided, the on-off valve 10
Needless to say, keep it open during both operations. Furthermore, adjusting the pressure reducing device 26,
When the pressure difference between the second condenser 22 and the evaporator 6 is adjusted appropriately during the heat pump operation and the refrigeration operation, the on-off valve 24 may not be provided.

以上のように、本発明は二重効用吸収冷凍機の
冷媒配管、中間液配管、冷媒液流下管及び水管に
開閉弁を設け、高温再生器から低温再生器及び凝
縮器を側路して蒸発器に至り第2凝縮器及び開閉
弁を有した冷媒配管を設け、高温再生器から低温
再生器及び高温溶液熱交換器を側路して吸収器に
至り開閉弁を有した溶液配管を設け、水管から分
岐して第2凝縮器に至り開閉弁を有した分岐水管
を設け、上記開閉弁の開閉切替えを行うことによ
り、温水必要時には、吸収器及び第2凝縮器を加
熱器として使用し分岐水管から温水を取出すもの
であるから、高温再生器から低温再生器を経て凝
縮器に至る冷媒導管を大口径のものにする必要が
なく、従来の二重効用吸収冷凍機に簡単な改良を
行なうだけて、安価かつ性能の良い大型吸収冷温
水機を実用化できるものである。
As described above, the present invention provides on-off valves in the refrigerant pipes, intermediate liquid pipes, refrigerant liquid flow pipes, and water pipes of a double-effect absorption refrigerator, and bypasses the low-temperature regenerator and condenser from the high-temperature regenerator to evaporate. A refrigerant pipe is provided that reaches the vessel and has a second condenser and an on-off valve, and a solution pipe that bypasses the high-temperature regenerator, a low-temperature regenerator and a high-temperature solution heat exchanger, and leads to the absorber and has an on-off valve. By installing a branch water pipe that branches from the water pipe to the second condenser and has an on-off valve, and by switching the on-off valve on and off, when hot water is needed, the absorber and the second condenser can be used as a heater and branched. Since hot water is extracted from the water pipe, there is no need to make the refrigerant pipe from the high temperature regenerator to the condenser via the low temperature regenerator large in diameter, making it a simple improvement to the conventional dual effect absorption refrigerator. Therefore, it is possible to put into practical use a large-scale absorption chiller/heater that is inexpensive and has good performance.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示す回路構成概略説
明図である。 1……高温再生器、3……低温再生器、4……
凝縮器、6……蒸発器、7……吸収器、8,9…
…低温、高温溶液熱交換器、10……開閉弁、1
1……冷媒導管、12……開閉弁、13……冷媒
液流下管、18……中間液管、19……濃液管、
21……水管、22……第2凝縮器、23……分
岐管、24……開閉弁、25……凝縮冷媒液流下
管、27……分岐水管、28,29……開閉弁、
30……バイパス溶液管路、31,32……開閉
弁、33……均圧管、34……開閉弁。
The drawing is a schematic explanatory diagram of a circuit configuration showing an embodiment of the present invention. 1...High temperature regenerator, 3...Low temperature regenerator, 4...
Condenser, 6... Evaporator, 7... Absorber, 8, 9...
...Low temperature, high temperature solution heat exchanger, 10...Opening/closing valve, 1
1... Refrigerant conduit, 12... Open/close valve, 13... Refrigerant liquid flow down pipe, 18... Intermediate liquid pipe, 19... Concentrated liquid pipe,
21... Water pipe, 22... Second condenser, 23... Branch pipe, 24... On-off valve, 25... Condensed refrigerant liquid down pipe, 27... Branch water pipe, 28, 29... On-off valve,
30... Bypass solution pipe line, 31, 32... On-off valve, 33... Pressure equalization pipe, 34... On-off valve.

Claims (1)

【特許請求の範囲】[Claims] 1 高温再生器、低温再生器、凝縮器、蒸発器、
凝縮器、低温及び高温溶液熱交換器を配管接続し
て冷凍サイクルを構成する二重効用吸収冷凍機に
おいて、高温再生器から低温再生器を介して凝縮
器に至り開閉弁を有した冷媒配管と、高温再生器
から高温溶液熱交換器を介して低温再生器に至り
開閉弁を有した中間液配管と、凝縮器から蒸発器
に至り開閉弁を有した冷媒液流下管と、吸収器か
ら凝縮器に至り開閉弁を有した水管と、高温再生
器から低温再生器及び凝縮器を側路して蒸発器に
至り第2凝縮器及び開閉弁を有した冷媒配管と、
高温再生器から低温再生器及び高温溶液熱交換器
を側路して吸収器に至り開閉弁を有した溶液配管
と、上記水管から分岐して第2凝縮器に至り開閉
弁を有した分岐水管とを備え、これら開閉弁を切
替えることにより、高温再生器から高温の冷媒蒸
気を上記冷媒液管を介して第2凝縮器へ送りか
つ、高温再生器から高温の吸収液を上記溶液管路
を介して吸収器へ送り、吸収器及び第2凝縮器を
ヒートポンプ運転時の加熱器として使用し分岐水
管から温水を取り出すようにしたことを特徴とす
る吸収冷温水機。
1 High temperature regenerator, low temperature regenerator, condenser, evaporator,
In a dual-effect absorption refrigerator that connects a condenser, a low-temperature solution heat exchanger, and a high-temperature solution heat exchanger to form a refrigeration cycle, the refrigerant piping is connected from a high-temperature regenerator to a condenser via a low-temperature regenerator and has an on-off valve. , an intermediate liquid pipe that runs from the high-temperature regenerator to the low-temperature regenerator via a high-temperature solution heat exchanger and has an on-off valve, a refrigerant liquid down-flow pipe that leads from the condenser to the evaporator and has an on-off valve, and condensation from the absorber. a water pipe leading to the vessel and having an on-off valve, and a refrigerant pipe passing from the high-temperature regenerator to the low-temperature regenerator and the condenser to the evaporator and having a second condenser and an on-off valve;
A solution pipe that bypasses the high-temperature regenerator through the low-temperature regenerator and the high-temperature solution heat exchanger to the absorber and has an on-off valve, and a branch water pipe that branches from the water pipe and leads to the second condenser and has an on-off valve. By switching these on-off valves, high-temperature refrigerant vapor is sent from the high-temperature regenerator to the second condenser via the refrigerant liquid pipe, and high-temperature absorption liquid is sent from the high-temperature regenerator to the second condenser through the solution pipe. An absorption chiller/heater characterized in that the absorber and the second condenser are used as heaters during heat pump operation, and hot water is taken out from a branch water pipe.
JP2309582A 1982-02-15 1982-02-15 Absorption cold and hot water machine Granted JPS58140576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2309582A JPS58140576A (en) 1982-02-15 1982-02-15 Absorption cold and hot water machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2309582A JPS58140576A (en) 1982-02-15 1982-02-15 Absorption cold and hot water machine

Publications (2)

Publication Number Publication Date
JPS58140576A JPS58140576A (en) 1983-08-20
JPH0353538B2 true JPH0353538B2 (en) 1991-08-15

Family

ID=12100876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2309582A Granted JPS58140576A (en) 1982-02-15 1982-02-15 Absorption cold and hot water machine

Country Status (1)

Country Link
JP (1) JPS58140576A (en)

Also Published As

Publication number Publication date
JPS58140576A (en) 1983-08-20

Similar Documents

Publication Publication Date Title
JP3287131B2 (en) Absorption chiller / heater
JPH0353538B2 (en)
JP2003343939A (en) Absorption refrigerating machine
JPS6135900Y2 (en)
JP2895974B2 (en) Absorption refrigerator
JP2000088391A (en) Absorption refrigerating machine
JP4278315B2 (en) Absorption refrigerator
JPH0355741B2 (en)
JPS599037B2 (en) Absorption heating and cooling equipment
JPS5829818Y2 (en) absorption refrigerator
KR20030078701A (en) Absorption Type Refrigerator
JPH0621730B2 (en) Single-double-effect absorption refrigerator
JP2009085508A (en) Absorption type refrigerating machine
JPS6113546B2 (en)
JPH0355739B2 (en)
JPH0754209B2 (en) Absorption cold / hot water device and its operating method
JP2005106408A (en) Absorption type freezer
JPS6113550B2 (en)
JPS5844183B2 (en) Single and double effect absorption chiller
JP2533932B2 (en) Air-cooled absorption type water heater
JP2543258B2 (en) Absorption heat source device
JPH0446341B2 (en)
JP2001208443A (en) Absorption freezer
JPS6113548B2 (en)
JPH0577947B2 (en)