JPH0446033A - Production of chalcogenide glass - Google Patents

Production of chalcogenide glass

Info

Publication number
JPH0446033A
JPH0446033A JP15157190A JP15157190A JPH0446033A JP H0446033 A JPH0446033 A JP H0446033A JP 15157190 A JP15157190 A JP 15157190A JP 15157190 A JP15157190 A JP 15157190A JP H0446033 A JPH0446033 A JP H0446033A
Authority
JP
Japan
Prior art keywords
glass
chalcogenide glass
gas
inert gas
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15157190A
Other languages
Japanese (ja)
Other versions
JP2520767B2 (en
Inventor
Junji Nishii
準治 西井
Shozo Morimoto
詔三 森本
Ikuo Inagawa
郁夫 稲川
Takashi Yamagishi
山岸 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HISANKABUTSU GLASS KENKYU KAIHATSU KK
Original Assignee
HISANKABUTSU GLASS KENKYU KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HISANKABUTSU GLASS KENKYU KAIHATSU KK filed Critical HISANKABUTSU GLASS KENKYU KAIHATSU KK
Priority to JP2151571A priority Critical patent/JP2520767B2/en
Publication of JPH0446033A publication Critical patent/JPH0446033A/en
Application granted granted Critical
Publication of JP2520767B2 publication Critical patent/JP2520767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain chalcogenide glass having high IR transmissivity, superior weather resistance and mechanical strength by heat-treating chalcogenide glass based on S and/or Se in a quartz glass vessel while feeding a gaseous mixture of inert gas with gaseous halogen into the vessel. CONSTITUTION:Chalcogenide glass based on S and/or Se is put in a quartz glass vessel and heated to the softening point or above while feeding a gaseous mixture of inert gas with gaseous halogen into the vessel. The feed of the gaseous mixture is then stopped and the vessel is evacuated while continuing heating. The inert gas is preferably nitrogen, argon or helium and the gaseous halogen is preferably gaseous chlorine. The pref. volume ratio of the gaseous halogen to the inert gas is 10-100,000ppm.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、S−H,5e−H,O−H等による吸収が小
さく、優れた赤外透過特性を有するカルコゲナイドガラ
スの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing chalcogenide glass which has low absorption by S-H, 5e-H, O-H, etc. and has excellent infrared transmission characteristics.

[従来の技#J] カルコゲナイドガラスは赤外線透過ファイバー用の材料
として注目されている。中でもイオウ(S)あるいはせ
レン(Se)を主成分にしたガラスファイバーは低温温
度計測、ガス分析、c。
[Conventional Technique #J] Chalcogenide glass is attracting attention as a material for infrared transmitting fibers. Among them, glass fibers containing sulfur (S) or serene (Se) as their main components are useful for low-temperature temperature measurement, gas analysis, and c.

レーザーのパワー伝送など様々な分野への応用が開拓さ
れつつある。これらの分野で使用されるファイバーの長
さは数メートルから数十メートルであり、ファイバーの
透過損失は”l dB/m以下であることが望ましい。
Applications are being developed in various fields such as laser power transmission. The length of fibers used in these fields is from several meters to several tens of meters, and it is desirable that the fiber transmission loss be less than 1 dB/m.

しかし、s、seを主成分とするガラスには水素あるい
は水がS−H,5e−H。
However, in glasses whose main components are s and se, hydrogen or water is S-H, 5e-H.

0−Hの形で不純物として含まれており、2〜6μ風の
波長領域に強い吸収をもたらすので、波長によっては損
失が10dB/I11以上になる場合がある。
It is contained as an impurity in the form of 0-H and causes strong absorption in the wavelength range of 2 to 6 μm, so depending on the wavelength, the loss may be 10 dB/I11 or more.

この様な不純物を除去するためには、ガラス原料及びガ
ラス自身の充分な精製を行う必要があり、従来から種々
の方法が研究されており、中でも真空蒸留方が有効であ
るといわれている。だが、真空M留法は、原料またはガ
ラス中に含まれる不純物の内、鉄、ニッケル、コバルト
等の金属不純物は、比較的容易に除去できるのだが、S
−H%5e−H等の水素化物及び水分(○−H)は、た
とえ蒸留を複数回繰り返しても充分に除去することはで
きない。
In order to remove such impurities, it is necessary to sufficiently purify the glass raw materials and the glass itself, and various methods have been studied in the past, among which vacuum distillation is said to be effective. However, the vacuum M distillation method can relatively easily remove metal impurities such as iron, nickel, and cobalt among the impurities contained in raw materials or glass;
Hydride such as -H%5e-H and water (◯-H) cannot be sufficiently removed even if the distillation is repeated multiple times.

S−H,5e−H等の水素化物及び水分(○−H)を効
率よく除去する手段として、82C12または5e2C
]2等の塩素化合牧のガス雰囲気下でSまたはSeを蒸
留することが知られている(特開昭58−120538
)。しかしこの方法で用いられる液体状態のS  C1
または5e2C[2は極めて不安定な物質であるため、
蒸留操作が困難であり、また得られるSまたはSeに微
量のハロゲン元素が残在するため、それらを原料に用い
てカルコゲナイドガラスを作成すると、ガラスの耐候性
、機械的強度が低下するという欠点があった。
As a means to efficiently remove hydrides such as S-H, 5e-H and moisture (○-H), 82C12 or 5e2C
] It is known that S or Se can be distilled in a chlorinated gas atmosphere of grade 2 (Japanese Patent Application Laid-Open No. 58-120538).
). However, the liquid S C1 used in this method
or 5e2C[2 is an extremely unstable substance, so
The distillation operation is difficult, and trace amounts of halogen elements remain in the resulting S or Se, so when chalcogenide glass is created using these as raw materials, the weather resistance and mechanical strength of the glass are reduced. there were.

[発明が解決しようとする課題] 本発明者らは、これらの欠点を除去するためにカルコゲ
ナイドガラス原料を不活性ガスとハロゲンガスとの混合
ガス気流中で溶融した後に、真空脱気しながら蒸溜する
という方法を提案した(カルコゲナイドガラス原料の精
製法、’FT願昭63−277330号、昭和63年1
1月 4日出願)。これによって、ガラス中の5−)−
1,5e−H,0−H等の不に物吸収による損失は従来
の1/10以下に低減できた。
[Problems to be Solved by the Invention] In order to eliminate these drawbacks, the present inventors melted a chalcogenide glass raw material in a mixed gas flow of an inert gas and a halogen gas, and then distilled it while degassing under vacuum. proposed a method for purifying chalcogenide glass raw materials, 'FT Application No. 1983-277330, 1988.
(filed on January 4th). This results in 5−)− in the glass.
Loss due to absorption of foreign substances such as 1,5e-H and 0-H was reduced to 1/10 or less of the conventional value.

しかし、この方法の場合、調合する際の雰囲気やガラス
合成容器の洗浄、及びその合成過程の雰囲気を極めて厳
密に制置しなければ得られるガラスファイバーの品質が
一定にならないことがわかった。例えば、外気の湿度が
80%以上の状態でガラスを合成すると、その合成過程
で水分がカルニゲナイドガラス中に取り込まれ、不純物
吸収による透過損失は明らかに上昇した。
However, in the case of this method, it has been found that the quality of the glass fiber obtained will not be constant unless the atmosphere during blending, the cleaning of the glass synthesis container, and the atmosphere during the synthesis process are extremely strictly controlled. For example, when glass is synthesized under conditions where the humidity of the outside air is 80% or more, water is incorporated into the carnigenide glass during the synthesis process, and the transmission loss due to absorption of impurities clearly increases.

本発明は、罪作II透過率の高いカルコゲナイドガラス
、特に2〜6μmの波長領域に於て強い吸収を示すS−
H,5e−H,O−H等の不KAgI!J!1度が低く
、かつ耐候性及び機械的強度に優れたカルコゲナイドガ
ラスの新しい製造方法を提供することを目的とする。
The present invention is a chalcogenide glass with high transmittance, especially S-
Non-KAgI such as H, 5e-H, O-H! J! It is an object of the present invention to provide a new method for producing chalcogenide glass that has a low temperature coefficient and excellent weather resistance and mechanical strength.

[課題を解決するための手段] 本発明の上記目的は、イコウまたはセレンの内少なくと
も一方を主成分とするカルコゲナイドガラスを石英ガラ
ス容器の中に収納し、該容器内部に不活性ガスとハロゲ
ンガスとの混合ガスを流しながら、前記カルコゲナイド
ガラスを軟化点以上に加熱し、その後も加熱を継続しな
がら、混合ガスを止めて該ガラス容器内を真空脱気する
ことによって達成される。
[Means for Solving the Problems] The above object of the present invention is to store chalcogenide glass containing at least one of smelt or selenium as a main component in a quartz glass container, and to store an inert gas and a halogen gas inside the container. This is accomplished by heating the chalcogenide glass above its softening point while flowing a mixed gas with it, then stopping the mixed gas and evacuating the inside of the glass container while continuing to heat the glass.

すなわち、本発明のカルコゲナイドガラスの製造方法で
は、イオウまたはセレンまたはそれらの内の少なくとも
一方を含有するカルコゲナイドガラス中に存在するS−
H,5e−)−1、○−H等の水素原子が関係する不純
物とハロゲンガス(ここではXで示す)とを該ガラスの
融点以上で反応させることによて、HXを生成せしめ、
その後に真空下でHXあるいは未反応×をガラス中から
取り除くことを特徴としている。
That is, in the method for producing chalcogenide glass of the present invention, S- present in chalcogenide glass containing sulfur, selenium, or at least one of them.
By reacting impurities involving hydrogen atoms such as H, 5e-)-1, and ○-H with a halogen gas (indicated by X here) at a temperature higher than the melting point of the glass, HX is generated,
It is characterized in that HX or unreacted X is then removed from the glass under vacuum.

精製に用いる石英ガラス容器は予め溶融室、第1トラッ
プ!、第2トラップ!とに分けておくことが望ましい。
The quartz glass container used for refining is placed in the melting chamber and the first trap! , second trap! It is desirable to separate the

つまり、容器内部に不活性ガスとハロゲンガスとの混合
ガスを流しながら原料ガラスを溶融!から第1トラップ
至に蒸留によって移動させ、その後、混合ガスの石英容
器内への流入を止めて、石英ガラス容器内を真空脱気し
ながら、該カルコゲナイドガラス融液を第1トラップ室
から第2トラップ至へと蒸留移動すれば、該カルコゲナ
イドガラス中に残在するSe C[2等のハロゲン化物
及び S2”2・  3 未反応ハロゲンをより効寧よく取り除くことができる。
In other words, the raw glass is melted while flowing a mixed gas of inert gas and halogen gas inside the container! The chalcogenide glass melt is transferred from the first trap chamber to the second trap chamber by distillation, and then the flow of the mixed gas into the quartz container is stopped, and while the inside of the quartz glass container is vacuum degassed, the chalcogenide glass melt is transferred from the first trap chamber to the second trap chamber. By distilling and moving to the trap, halides such as Se C[2 and S2''2.3 unreacted halogens remaining in the chalcogenide glass can be removed more effectively.

本発明で使用するハロゲンガスとしては塩素ガスが好ま
しいが、塩素ガスとジオウまたはセレンまたはそれらの
内の少なくとも一方を含有するカルコゲナイドガラス融
液とを直接接触せしめると両者が短時間の内に激しく反
応し、ガラス構成成分の塩化物、例えばAsCl  、
Gec14、52C12、Se C12等が多量ニ生成
スルタめ、ガラスの組成が大幅に変動するばかりか、そ
の後、真空下でガラスを蒸溜してもそれらの塩素化合物
または未反応塩素を十分に除去出来ない場合がある。従
って、通常は不活性ガスで希釈されたハロゲンガスを用
いた方が好ましい。本発明で用いる不活性ガスとしては
ヘリウムガス、窒素ガスまたはアルゴンガスが好ましく
、不活性ガスに対するハロゲンガスの体積比率は、Fi
l製前のカルコゲナイドガラスの純度にも依存するが、
10pt)m以上カー) 500000I]Dm 以下
、好マL < ハ1000pl]m u上かつ1ooo
ooppm以下の範囲であることが好ましい。体積比率
が上記限定範囲下限よりも低い場合、精製後のカルコゲ
ナイドガラス中のS−H,5e−H,O−H等の不純物
が十分除去できない場合がある。また体積比率が上記限
定範囲上限よりも高い場合、ガラスの組成変動が生じた
り、精製後のカルコゲナイドガラス原料中にS  C1
、Se3C12等のハロゲン化牧または未反応ハロゲン
が残在し、該原料を用いてカルニゲナイドガラスを作製
すると、ガラスの耐候性、機械的強度が低下する場合が
ある。
Chlorine gas is preferred as the halogen gas used in the present invention, but when chlorine gas and a chalcogenide glass melt containing dioxium, selenium, or at least one of them are brought into direct contact, the two react violently within a short period of time. and chlorides of glass constituents, such as AsCl,
Since large amounts of Gec14, 52C12, Se C12, etc. are produced, not only does the composition of the glass change significantly, but even if the glass is subsequently distilled under vacuum, these chlorine compounds or unreacted chlorine cannot be sufficiently removed. There are cases. Therefore, it is usually preferable to use a halogen gas diluted with an inert gas. The inert gas used in the present invention is preferably helium gas, nitrogen gas or argon gas, and the volume ratio of halogen gas to inert gas is Fi
Although it depends on the purity of chalcogenide glass before manufacturing,
10pt) m or more car) 500000I] Dm below, good ma L < ha 1000pl] mu u and 1ooo
The range is preferably ooppm or less. When the volume ratio is lower than the lower limit of the above-mentioned limited range, impurities such as S-H, 5e-H, and O-H in the chalcogenide glass after purification may not be sufficiently removed. In addition, if the volume ratio is higher than the upper limit of the above-mentioned limited range, the composition of the glass may change, or S C1 may be present in the chalcogenide glass raw material after purification.
, Se3C12, etc., or unreacted halogens remain, and when carnigenide glass is produced using these raw materials, the weather resistance and mechanical strength of the glass may decrease.

[実施例] 次に本発明の詳細な説明する。[Example] Next, the present invention will be explained in detail.

実施例−1 第1図はこの実施例で用いたII製のための無水石英ガ
ラス容器の断面図である。ここで1は精製前のカルコゲ
ナイドガラスを溶かすための溶!!!、2は溶融室から
蒸留によって移動してくるガラス蒸気をトラップする第
1トラップ室、3は第1トラップ雫かう真空脱気蒸留に
よって移動してくるガラス蒸気をトラップする第2トラ
ップ室である。
Example 1 FIG. 1 is a sectional view of an anhydrous quartz glass container made of II used in this example. Here, 1 is the melt to melt the chalcogenide glass before purification! ! ! , 2 is a first trap chamber for trapping the glass vapor moving from the melting chamber by distillation, and 3 is a second trap chamber for trapping the glass vapor moving from the first trap drop by vacuum degassing distillation.

まず溶融=1に精製前のA S 2 S  3ガラス4
を入れ、石英ガラス容器内にガス導入口5よりアルゴン
ガスを導入し、石英ガラス容器内を十分にアルゴンガス
で置換した。その後、同じくガス導入口4より、純度9
9.99999%の塩素ガスを1000010000p
p含有するアルゴンガスを50cc/winの流量で導
入しながら加熱ビータ7により溶融室1を室温から 7
00℃まで2時間で昇温した。これによってAs2S3
がラス4は第1トラップ至2へ完全に移動した。その後
、ガス導入口5を閉じて、ガス放出口6より石英ガラス
容器内全体を10’torrに減匠し、第1トラップ室
を室温から℃まで12時間で昇温した。
First, melt = 1 before refining A S 2 S 3 glass 4
was introduced into the quartz glass container through the gas inlet 5, and the inside of the quartz glass container was sufficiently replaced with argon gas. After that, from the same gas inlet port 4, the purity 9
9.99999% chlorine gas 1000010000p
While introducing p-containing argon gas at a flow rate of 50 cc/win, the melting chamber 1 was heated from room temperature to 7 using a heating beater 7.
The temperature was raised to 00°C in 2 hours. This allows As2S3
However, the last 4 moved completely to the 1st trap to 2. Thereafter, the gas inlet 5 was closed, the entire interior of the quartz glass container was reduced to 10'torr through the gas outlet 6, and the temperature of the first trap chamber was raised from room temperature to °C over 12 hours.

この様にして第2ト=ラツプ室に集められたAs253
ガラスを用いて外径400μmのテフロンクラッドファ
イバーを作製し、その透過損失を測定したところ、第2
図に示すように波長41μm付[f7)S−1−if、
:起因スルピークハ2 dB/m、2.9gmの〇−8
90,5dB/mテあり、2.5em、3.5g mで
最低損失0.99dB/mが達成された。
As253 collected in the second trap chamber in this way
A Teflon clad fiber with an outer diameter of 400 μm was made using glass, and its transmission loss was measured.
As shown in the figure, with a wavelength of 41 μm [f7) S-1-if,
: Due to noise peak 2 dB/m, 2.9gm 〇-8
A minimum loss of 0.99 dB/m was achieved at 2.5 em and 3.5 g m.

実施例−2 実施例−1と同口形の石英ガラス′各器を用いて、” 
” 15△52oSe65ガラスを実施例−1と同じ手
順で精製した。ただし溶融!1から第1トラップ至2へ
の蒸留の際は、溶融室1を室温から800℃まで2晴間
で昇温し、第1トラップ!2から第2トラップ!3への
蒸留の際はと一ター8により第1トラップ室2を空温か
ら 700℃まで12時間で臂澗した。
Example-2 Using quartz glass vessels with the same mouth shape as in Example-1,
” 15Δ52oSe65 glass was purified using the same procedure as in Example-1. However, when distilling from the melt! 1 to the first trap to 2, the temperature of the melting chamber 1 was raised from room temperature to 800 ° C. During distillation from the first trap! 2 to the second trap! 3, the first trap chamber 2 was heated from air temperature to 700° C. in 12 hours using a rotor 8.

この様にして第2トラップ至3に集められたGe15A
S2oSe65ガラスを用いて外形400u mのテフ
ロンクラッドファイバーを作製し、その透過損失を測定
しtこところ、第3図に示プように波長45um付近の
3e−Hl、:E因するピーク526B/lllであり
、3μm、6emで最低損失02dB/mが達成された
Ge15A collected in the second trap to 3 in this way
A Teflon-clad fiber with an outer diameter of 400 um was fabricated using S2oSe65 glass, and its transmission loss was measured. As shown in Figure 3, a peak of 526 B/lll due to 3e-Hl:E around a wavelength of 45 um was obtained. A minimum loss of 02 dB/m was achieved at 3 μm and 6 em.

比較例−1 実施例−1で用いた精製前のAS283ガラスをそのま
ま用いて実施例−1と周じテフロンクララドファイバー
を作製し、その透過損失を測定したところ、第4図に示
すように波長4.1μm付近のS−Hに起因するピーク
は10dB/fflであり、最低損失は2.5μmで0
.5dB/l1lrあった。
Comparative Example-1 A Teflon Clarad fiber was prepared using the unpurified AS283 glass used in Example-1 as it was, and the transmission loss was measured, as shown in Figure 4. The peak due to S-H near the wavelength 4.1 μm is 10 dB/ffl, and the lowest loss is 0 at 2.5 μm.
.. There was 5dB/l1lr.

比較例−2 実施例−2で用いた精製前のGe、5AS2oSe1、
ガラスをそのまま用いて実施例−2と同じサイズのテフ
ロンクラッドファイバーを作製し、その透過損失を測定
したところ、第5図に示すように4.5μm付近の5e
−Hl、:起因するピークは72dB/mであり、最低
損失は6μmで0.4dB/mであった。
Comparative Example-2 Ge, 5AS2oSe1, used in Example-2 before purification
A Teflon clad fiber of the same size as in Example 2 was prepared using glass as it was, and its transmission loss was measured.
-Hl,: the resulting peak was 72 dB/m and the lowest loss was 0.4 dB/m at 6 μm.

[発明の効果] 本発明の方法によれば、毒性及び強い腐蝕性を示すS 
 C1またはSe C12を用いることなく、赤外線透
過率の高いカルコゲナイドガラス、特に2〜6μ瓦の波
長領域に於て強い吸収を示すS−H,5e−1〇−H等
の不純物濃度が低く、かつ耐候性及び機械的強度に優れ
たカルコゲナイドガラスを容易に製造することができる
[Effect of the invention] According to the method of the invention, S
Chalcogenide glass with high infrared transmittance, especially without using C1 or Se C12, has a low concentration of impurities such as S-H, 5e-1〇-H, etc., which exhibit strong absorption in the wavelength range of 2 to 6μ tiles, and Chalcogenide glass with excellent weather resistance and mechanical strength can be easily produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で使用した無水石英ガラス誠意の精製容
器、第2図〜第5図は各々実施例−1、−2及び比較例
−1、−2で得られたファイバーの透過損失スペクトル
である。。 1:溶融室、      2:第1トラップ室、3:第
2トラップ至、 4:精製前のカルコゲナイドガラス、 5:アルゴンガス及びハロゲンガス導入口、6:ガス故
出口、 7:溶融!加熱ヒーター 8:第1トラップ!加熱ヒーター 非酸化物ガラス研究開発株式会社
Figure 1 shows the anhydrous silica glass purification vessel used in the present invention, and Figures 2 to 5 show the transmission loss spectra of the fibers obtained in Examples-1 and -2 and Comparative Examples-1 and -2, respectively. It is. . 1: Melting chamber, 2: First trap chamber, 3: To the second trap, 4: Chalcogenide glass before purification, 5: Argon gas and halogen gas inlet, 6: Gas outlet, 7: Melting! Heater 8: First trap! Heating Heater Non-oxide Glass Research and Development Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)イオウまたはセレンの内少なくとも一方を主成分
とするカルコゲナイドガラスを石英ガラス容器の中に収
納し、該容器内部に不活性ガスとハロゲンガスとの混合
ガスを流しながら、前記カルコゲナイドガラスを軟化点
以上に加熱し、その後も加熱を継続しながら、混合ガス
を止めて該ガラス容器内を真空脱気することを特徴とす
るカルコゲナイドガラスの製造方法。
(1) Chalcogenide glass containing at least one of sulfur or selenium as a main component is stored in a quartz glass container, and the chalcogenide glass is softened while flowing a mixed gas of an inert gas and a halogen gas into the container. 1. A method for producing chalcogenide glass, which comprises heating the glass container to a temperature above a point, and then, while continuing the heating, stopping a mixed gas and vacuum degassing the inside of the glass container.
(2)石英ガラス容器を予め溶融室、第1トラップ室、
第2トラップ室に分けておき、不活性ガスとハロゲンガ
スとの混合ガスを流しながらカルコゲナイドガラスを溶
融室から第1トラップ室へ蒸留によって移動させ、その
後、混合ガスを止めて石英ガラス容器内を真空脱気しな
がら前記カルゴゲナイドガラスを第1トラップ室から第
2トラップ室へと蒸留移動させることを特徴とする請求
項第1項記載のカルコゲナイドガラスの製造方法。
(2) A quartz glass container is placed in a melting chamber, a first trap chamber,
The chalcogenide glass is separated into a second trap chamber, and the chalcogenide glass is moved from the melting chamber to the first trap chamber by distillation while flowing a mixed gas of inert gas and halogen gas.Then, the mixed gas is stopped and the inside of the quartz glass container is removed. 2. The method for producing chalcogenide glass according to claim 1, wherein the chalcogenide glass is distilled and transferred from the first trap chamber to the second trap chamber while being vacuum degassed.
(3)不活性ガスがヘリウム、窒素、アルゴンのいづれ
かであり、かつハロゲンガスが塩素ガスであることを特
徴とする請求項第1項または第2項記載のカルコゲナイ
ドガラスの製造方法。
(3) The method for producing chalcogenide glass according to claim 1 or 2, wherein the inert gas is helium, nitrogen, or argon, and the halogen gas is chlorine gas.
(4)不活性ガスに対する該ハロゲンガスの体積比率が
10ppm以上かつ100000ppm以下であること
を特徴とする請求項第1項、第2項または第2項記載の
カルコゲナイドガラスの製造方法。
(4) The method for producing chalcogenide glass according to claim 1, 2, or 2, wherein the volume ratio of the halogen gas to the inert gas is 10 ppm or more and 100,000 ppm or less.
JP2151571A 1990-06-12 1990-06-12 Method for manufacturing chalcogenide glass Expired - Lifetime JP2520767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2151571A JP2520767B2 (en) 1990-06-12 1990-06-12 Method for manufacturing chalcogenide glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2151571A JP2520767B2 (en) 1990-06-12 1990-06-12 Method for manufacturing chalcogenide glass

Publications (2)

Publication Number Publication Date
JPH0446033A true JPH0446033A (en) 1992-02-17
JP2520767B2 JP2520767B2 (en) 1996-07-31

Family

ID=15521437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2151571A Expired - Lifetime JP2520767B2 (en) 1990-06-12 1990-06-12 Method for manufacturing chalcogenide glass

Country Status (1)

Country Link
JP (1) JP2520767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116282839A (en) * 2023-03-07 2023-06-23 宁波大学 Preparation method of ultra-low particle scattering high-purity chalcogenide glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116282839A (en) * 2023-03-07 2023-06-23 宁波大学 Preparation method of ultra-low particle scattering high-purity chalcogenide glass

Also Published As

Publication number Publication date
JP2520767B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
JPS58125631A (en) Manufacture of optical fiber
CN106927673B (en) Preparation method of high-purity chalcogenide glass for optical fiber
CN102531335A (en) Dynamic full-distillation purification method for low-hydroxy, high-purity chalcogenide glass
US4295869A (en) Process for producing optical transmission fiber
JP4181226B2 (en) Manufacturing method of high purity, high heat resistant quartz glass
JPH0637311B2 (en) Method for producing sodium-containing glass or ceramic article
JPH0446033A (en) Production of chalcogenide glass
Katsuyama et al. Fabrication of high‐purity chalcogenide glasses by chemical vapor deposition
US4801442A (en) Method for purifying starting materials for fabricating chalchogenide glass
WO1999007645A1 (en) Process for removing hydrogen and carbon impurities from glasses
JPS63201025A (en) Production of high-purity transparent glass
Huang et al. High-purity germanium-sulphide glass for optoelectronic applications synthesised by chemical vapour deposition
JPH0444618B2 (en)
US4560667A (en) Halogen glasses modified with carbon disulphide and process of preparation
EP0196665A1 (en) Process of and apparatus for manufacturing optical fibres for operation in the medium infrared transmission range
JPH02124742A (en) Method for refining starting material for chalcogenide glass
JPS58120538A (en) Production of chalcogenide glass
WO1998014406A1 (en) Glass making characterized by distillation
Lezal et al. Chalcogenide-Halide Glasses For Optical Waveguides
JPH02275730A (en) Purification of glass raw material
JPS6351978B2 (en)
RU2237030C1 (en) Method of manufacturing high-clean as-s system glasses for core and envelop of monomode and low-aperture multimode light guides
JPH054835A (en) Infrared-transmitting glass and production thereof
JPS6028604A (en) Manufacture of light transmitting material
JPS60239339A (en) Preparation of parent material for optical fiber