JPH0445977B2 - - Google Patents
Info
- Publication number
- JPH0445977B2 JPH0445977B2 JP56146929A JP14692981A JPH0445977B2 JP H0445977 B2 JPH0445977 B2 JP H0445977B2 JP 56146929 A JP56146929 A JP 56146929A JP 14692981 A JP14692981 A JP 14692981A JP H0445977 B2 JPH0445977 B2 JP H0445977B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- reactive gas
- gas
- supplying
- fibrous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 34
- 229910052799 carbon Inorganic materials 0.000 claims description 33
- 239000007789 gas Substances 0.000 claims description 31
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000010574 gas phase reaction Methods 0.000 claims description 2
- 239000011368 organic material Substances 0.000 claims description 2
- 239000000835 fiber Substances 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 150000001721 carbon Chemical class 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- IDCBOTIENDVCBQ-UHFFFAOYSA-N TEPP Chemical compound CCOP(=O)(OCC)OP(=O)(OCC)OCC IDCBOTIENDVCBQ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- -1 etc. Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Carbon And Carbon Compounds (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は炭素を主成分とした材料(ここではそ
れらを総称して単に炭素という)の作製方法に関
する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing materials whose main component is carbon (herein, they are collectively referred to simply as carbon).
〔従来技術及びその問題点〕
従来炭素とはグラフアイトの如き導電性の炭素
を考えていた。炭素の単結晶のダイヤモンドが知
られ、これは硬度、絶縁物中最大の熱伝導係数を
有する等の多くの特性が知られていた。このダン
ヤモンドは超高圧超高温においてのみ初めて合成
され、それ以外の炭素はグラフアイト的な硬度的
にもろい不良導体であつた。[Prior art and its problems] Conventionally, carbon was considered to be conductive carbon such as graphite. Diamond, a single crystal of carbon, is known for its many properties, including hardness and the highest thermal conductivity coefficient of any insulator. This Dunyamond was first synthesized only under ultra-high pressure and ultra-high temperature, and other carbons were poor conductors with graphite-like hardness and brittleness.
しかしこの炭素がプラズマ気相法を用いると光
学的エネルギバンド巾が2.6〜4.5eVを有する絶縁
性を有し、しかも650℃以下、特に200〜400℃で
形成可能であるというきわめて工業上重要な特性
を有していることを見出したことに本発明は基づ
くものである。 However, when this carbon is used using the plasma vapor phase method, it has an insulating property with an optical energy band width of 2.6 to 4.5 eV, and can be formed at temperatures below 650°C, especially at 200 to 400°C. The present invention is based on the discovery that it has the following characteristics.
本発明は、結晶性を有する炭素を主成分とした
炭素を繊維状を有する芯に形成して繊維状炭素を
形成することを目的としている。 An object of the present invention is to form fibrous carbon by forming carbon whose main component is crystalline carbon into a fibrous core.
本発明は上記目的を達成するため、反応容器に
反応性気体を供給する手段と、前記容器内の反応
性気体を真空排除する手段と、マイクロ波エネル
ギーを前記反応性気体に供給する手段とを具備す
るプラズマ反応装置を用いる方法において、減圧
下に保持された前記反応容器内に、繊維状を有す
る芯を設け、前記反応性気体である三重結合また
は二重結合を有する炭化物気体と水素との混合気
体を導入して前記マイクロ波エネルギーを前記反
応性気体に供給してプラズマ気相反応を生ぜし
め、さらに500W以上の高周波エネルギーを前記
混合気体に供給して、前記繊維状を有する芯に、
結晶性を有する炭素を主成分とした炭素を形成さ
せることとしたものである。
In order to achieve the above object, the present invention includes means for supplying a reactive gas to a reaction vessel, means for vacuum evacuation of the reactive gas in the vessel, and means for supplying microwave energy to the reactive gas. In a method using a plasma reactor equipped with a plasma reactor, a fibrous core is provided in the reaction vessel maintained under reduced pressure, and a carbide gas having a triple bond or double bond, which is the reactive gas, and hydrogen are combined. Introducing a gas mixture and supplying the microwave energy to the reactive gas to generate a plasma gas phase reaction, and further supplying high frequency energy of 500 W or more to the gas mixture to form the fibrous core,
This is to form carbon whose main component is crystalline carbon.
繊維状炭素は中心部の芯にナイロン、テトロン
等の有機物からなる繊維、ガラス、金属またはセ
ラミツク等を用い、その表面部または表面上に反
応した炭素を筒状に被膜化して形成したものであ
る。 Fibrous carbon is formed by using fibers made of organic materials such as nylon, tetron, etc., glass, metal, or ceramic for the central core, and forming a cylindrical film of reacted carbon on or on the surface. .
この筒状というのは、その中心部は繊維または
その単に炭化したものであるが、その表面には
30μ以下の厚さを有するきわめて硬度の高い即ち
光学的に2.0eV以上特に2.6〜4.5eVのエネルギバ
ンド巾を有するあたかもダイヤモンドの如き硬さ
を有する被膜が筒状を有して設けられ、そのため
まげ強度等に対し強靭な特性を有している。 This cylindrical shape is made of fiber or simply carbonized fiber at its center, but its surface is
A coating with a thickness of 30 μ or less and extremely hard, that is, optically has an energy band width of 2.0 eV or more, especially 2.6 to 4.5 eV, and has a hardness similar to that of a diamond, is provided in a cylindrical shape. It has strong properties such as strength.
反応性気体には、アセチレンまたはエチレンの
如く三重結合または二重結合を有する炭化水素を
主として用いる。 Hydrocarbons having triple bonds or double bonds, such as acetylene or ethylene, are mainly used as the reactive gas.
以下に図面に従つて本発明を記す。 The present invention will be described below with reference to the drawings.
第1図は本発明に用いたプラズマCVD(気相
法)装置の概要を示す。
FIG. 1 shows an outline of a plasma CVD (vapor phase method) apparatus used in the present invention.
図面において反応炉1は誘導または容量方式に
より電磁エネルギ2が与えられている。さらに炭
化水素であるアセチレン8より流量計5を経て励
起室に至る。この反応性気体は水素よりなり、キ
ヤリアガス7により希釈され、ともに2.45GHzの
マイクロ波の磁気エネルギ3が与えられて活性化
または分解する。この活性化または分解した反応
性気体は、高周波、代表的には13.56MHzの電磁
エネルギ2によりさらに結合を促進され、加熱さ
れた繊維状芯12の表面に被膜状に形成される。
この芯はロール10より9に到り、その間に表面
に炭素被膜が形成され、さらにより厚くするた
め、逆にロール9より10に再度まきもどされ、
これを繰り返して厚さが厚くなる。またこの繊維
は1本ではなく100〜104本が同時にそれぞれ1〜
10mmの間隔を経て反応空間内に配置され、その実
初的な表面積を増やして炭素の吸収効率を向上さ
せた。 In the drawing, a reactor 1 is provided with electromagnetic energy 2 by means of induction or capacitance. Furthermore, the acetylene 8, which is a hydrocarbon, passes through a flow meter 5 and reaches an excitation chamber. This reactive gas is composed of hydrogen, diluted by carrier gas 7, and both activated or decomposed by applying microwave magnetic energy 3 of 2.45 GHz. This activated or decomposed reactive gas is further promoted to bond by electromagnetic energy 2 of high frequency, typically 13.56 MHz, and is formed in the form of a film on the surface of the heated fibrous core 12.
This core is passed from roll 10 to roll 9, during which a carbon film is formed on the surface, and in order to make it even thicker, it is rolled again from roll 9 to roll 10.
Repeat this to increase the thickness. In addition, this fiber is not one, but 100 to 10, and four fibers, each with 1 to
They were placed in the reaction space with a spacing of 10 mm to increase the initial surface area and improve the carbon absorption efficiency.
この反応性気体および芯である繊維は、ヒータ
14および15により150〜160℃に加熱され、反
応が促進される。反応後に不要物は排気11を経
てロータリーポンプ11に到る。これは反応中に
0.001〜10torr代表的には0.1〜0.5torrの雰囲気を
反応性気体に与えるためにきわめて重要である。 This reactive gas and the core fiber are heated to 150 to 160°C by heaters 14 and 15 to accelerate the reaction. After the reaction, unnecessary substances reach the rotary pump 11 via the exhaust 11. This is during the reaction
It is critical to provide an atmosphere of 0.001 to 10 torr, typically 0.1 to 0.5 torr, to the reactive gas.
励起室4は50〜5000W代表的には200〜500Wで
マイクロ波が導かれC−H結合の水素を切断に有
効であつた。 Microwaves were introduced into the excitation chamber 4 at a power of 50 to 5000 W, typically 200 to 500 W, and were effective for cleaving hydrogen in C--H bonds.
更に活性化した炭素に運動エレルギを与え、互
いに衝突させ結合させるのに13.56MHzの周波数
の電磁エネルギを100〜300Wを2により与えるこ
とは大きい光学的バンド巾(Egという)を作る
ために重要であつた。 Furthermore, it is important to provide 100 to 300 W of electromagnetic energy at a frequency of 13.56 MHz to create a large optical bandwidth (called Eg) in order to give kinetic energy to the activated carbon and cause them to collide and bond with each other. It was hot.
しかし本発明においては、この電磁エネルギの
出力を500W以上にして、5〜200Åの大きさの結
晶性を有する構造にした。 However, in the present invention, the output of this electromagnetic energy is set to 500 W or more, and the structure is made to have crystallinity with a size of 5 to 200 Å.
形成された炭素は、単に反応性気体を熱分解す
るのみではEgは0.1〜1.5eVであり、またその場
合は硬度も十分ではなかつたが、さらに電磁エネ
ルギ3,2を与えると2.6〜4.5eV代表的には3.0
〜3.5eVとなり、この場合はビツカース硬度も
4500〜5500Kg/mm2以上とすぐれた値を有してい
た。また熱伝導度も5.0(W/cmdeg)という高い
値を有していた。 The formed carbon had an Eg of 0.1 to 1.5 eV when the reactive gas was simply thermally decomposed, and its hardness was not sufficient in that case, but when electromagnetic energy of 3.2 was further applied, the Eg was 2.6 to 4.5 eV. Typically 3.0
~3.5eV, and in this case, the Bitkers hardness is also
It had an excellent value of 4500 to 5500 Kg/mm 2 or more. It also had a high thermal conductivity of 5.0 (W/cmdeg).
また炭素の繊維状を作る時も、その芯の太さは
任意に変更可能であるが、実質的にはその直径
300μm(0.3mm)以下であり、特に代表的には10
〜100μmの繊維表面に30μm以下、例えば1〜
10μmの厚さの炭素(この場合、その芯も成分と
しては炭素となるが、その光学的バンド巾Egは
平均値において2eVよりも少ないため、表面の厚
さのみを考慮する)はちようど竹のように内部の
空心状になり、結果としてきわめて軽くかつまげ
強度に強い繊維状構造を作ることができた。 Also, when making carbon fibers, the thickness of the core can be changed arbitrarily, but in reality, the diameter can be changed.
300μm (0.3mm) or less, typically 10
30μm or less, e.g. 1~100μm fiber surface
Carbon with a thickness of 10 μm (in this case, the core is also carbon as a component, but its optical band width Eg is less than 2 eV on average, so only the surface thickness is considered) is just bamboo. As a result, we were able to create a fibrous structure that is extremely light and has strong binding strength.
もちろんこの繊維状構造は芯を直接プラズマ中
にて炭化し、その表面に0.1〜5μmの厚さに硬度
の強い本発明の炭素を形成してもよい。 Of course, the core of this fibrous structure may be directly carbonized in plasma, and the highly hard carbon of the present invention may be formed on the surface to a thickness of 0.1 to 5 μm.
かかる炭素繊維は一般のプラスチツクに混入し
複合化した。かかる材料は重さが軽いため、航空
機等に用いたり、またEgが2.0eV以上特に2.6eV
以上さらに3.5eV以上有する場合は、強化ガラス
またはその一部として用いることも可能であり、
その応用は計り知れない。 Such carbon fibers were mixed into general plastics to form composites. Since such materials are light in weight, they are used in aircraft etc.
In addition, if it has 3.5 eV or more, it can be used as tempered glass or a part of it.
Its applications are immeasurable.
本発明において、主として形成された炭素は電
磁エネルギを弱く加える場合は非晶質(アモルフ
アス)構造を示していた。しかし電磁エネルギの
出力を500W以上にすると5〜200Åの大きさの結
晶性を有する構造となつた。この結晶性の方が硬
度はさらに強くなつた。 In the present invention, the mainly formed carbon exhibited an amorphous structure when electromagnetic energy was weakly applied. However, when the electromagnetic energy output was increased to 500 W or more, a crystalline structure with a size of 5 to 200 Å was obtained. This crystallinity resulted in even stronger hardness.
以上において炭素を主成分として記したが、こ
の中には水素が0.01〜10モル%(原子%)含まれ
ており、さらに価、価または価の不純物を
3モル%(原子%)以下の量含有させて、平均的
には2.6〜4.5eVを有しつつもPまたはN型の導電
性を与えてもよい。 In the above, carbon is described as the main component, but it also contains hydrogen from 0.01 to 10 mol% (atomic %), and further contains valence, valence, or valence impurities in an amount of 3 mol% (atomic %) or less. It may be included to provide P or N type conductivity while having an average voltage of 2.6 to 4.5 eV.
また本発明における心は有機物の繊維を用い
た。しかしこの芯をガラスとし、その表面に炭素
を被膜コーテイングを行うと、この炭素の屈折率
が2.3〜2.6を有するため、光通信用のSiO2フアイ
バーの表面での光信号の損失を少なくすることに
きわめて有効である。この場合、フアイバー通信
ケーブルとしての強度、特に引つ張り強度も強
く、安価な材料である炭素の筒状コーテイングで
あるため、その工業的価値はきわめて大きなもの
であると信ずる。 Furthermore, the core in the present invention is made of organic fiber. However, if this core is made of glass and its surface is coated with carbon, the refractive index of this carbon is 2.3 to 2.6, so it is possible to reduce the loss of optical signals on the surface of SiO 2 fiber for optical communication. It is extremely effective. In this case, the cylindrical coating is made of carbon, which is an inexpensive material that has high strength, especially tensile strength, as a fiber communication cable, so we believe that its industrial value is extremely large.
さらにこの繊維状を設ける芯として、銅の如き
金属、セラミツクを用いてよく、細い金属線にあ
つては、その加工強度を向上でき、また電気的絶
縁性も優れているため、耐熱性を有する導線とし
て最適である。 Furthermore, metals such as copper or ceramics may be used as the core for providing this fibrous shape, and in the case of thin metal wires, its processing strength can be improved, and it has excellent electrical insulation properties, so it has heat resistance. Ideal as a conductor.
反応容器に反応性気体を供給する手段と、前記
容器内の反応性気体を真空排除する手段と、マイ
クロ波エネルギーを前記反応性気体に供給する手
段とを具備するプラズマ反応装置を用いる方法に
おいて、減圧下に保持された前記反応容器内に、
繊維状を有する芯を設け、前記反応性気体である
三重結合または二重結合を有する炭化物気体と水
素との混合気体を導入して前記マイクロ波エネル
ギーを前記反応性気体に供給してプラズマ気相反
応を生ぜしめ、さらに500W以上の高周波エネル
ギーを前記混合気体に供給して、前記繊維状を有
する芯に、結晶性を有する炭素を主成分とした炭
素を形成させることにより、結晶性を有する炭素
を主成分とした炭素を繊維状を有する芯に形成し
て繊維状炭素を形成することが可能となる。
A method using a plasma reactor comprising means for supplying a reactive gas to a reaction vessel, means for vacuum evacuation of the reactive gas in the vessel, and means for supplying microwave energy to the reactive gas, In the reaction vessel maintained under reduced pressure,
A core having a fibrous shape is provided, a mixed gas of hydrogen and a carbide gas having a triple bond or double bond as the reactive gas is introduced, and the microwave energy is supplied to the reactive gas to generate a plasma gas phase. By causing a reaction and further supplying high frequency energy of 500 W or more to the mixed gas to form carbon mainly composed of crystalline carbon in the fibrous core, crystalline carbon is produced. It becomes possible to form fibrous carbon by forming a core having a fibrous shape from carbon containing as a main component.
第1図は本発明の炭素を作製するための装置の
概要を示す。
FIG. 1 shows an outline of an apparatus for producing carbon according to the present invention.
Claims (1)
記容器内の反応性気体を真空排除する手段と、マ
イクロ波エネルギーを前記反応性気体に供給する
手段とを具備するプラズマ反応装置を用いる方法
において、減圧下に保持された前記反応容器内
に、繊維状を有する芯を設け、前記反応性気体で
ある三重結合または二重結合を有する炭化物気体
と水素との混合気体を導入して前記マイクロ波エ
ネルギーを前記反応性気体に供給してプラズマ気
相反応を生ぜしめ、さらに500W以上の高周波エ
ネルギーを前記混合気体に供給して、前記繊維状
を有する芯に、結晶性を有する炭素を主成分とし
た炭素を形成させることを特長とする繊維状炭素
の作製方法。 2 特許請求の範囲第1項において、繊維状を有
する芯が、有機物、ガラス、金属、セラミツクで
あることを特徴とする繊維状炭素の作製方法。[Scope of Claims] 1. A plasma comprising means for supplying a reactive gas to a reaction vessel, means for vacuum evacuation of the reactive gas in the vessel, and means for supplying microwave energy to the reactive gas. In a method using a reaction device, a fibrous core is provided in the reaction vessel maintained under reduced pressure, and a mixed gas of hydrogen and a carbide gas having a triple bond or double bond, which is the reactive gas, is supplied. and supplying the microwave energy to the reactive gas to generate a plasma gas phase reaction, and further supplying high frequency energy of 500 W or more to the mixed gas to impart crystallinity to the fibrous core. A method for producing fibrous carbon, characterized by forming carbon whose main component is carbon. 2. The method for producing fibrous carbon according to claim 1, wherein the fibrous core is an organic material, glass, metal, or ceramic.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56146929A JPS5849609A (en) | 1981-09-17 | 1981-09-17 | Carbon and its preparation |
JP13503789A JPH03158468A (en) | 1981-09-17 | 1989-05-29 | Carbon-based coating film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56146929A JPS5849609A (en) | 1981-09-17 | 1981-09-17 | Carbon and its preparation |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61285536A Division JPS62171910A (en) | 1986-11-29 | 1986-11-29 | Carbon |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5849609A JPS5849609A (en) | 1983-03-23 |
JPH0445977B2 true JPH0445977B2 (en) | 1992-07-28 |
Family
ID=15418760
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56146929A Granted JPS5849609A (en) | 1981-09-17 | 1981-09-17 | Carbon and its preparation |
JP13503789A Pending JPH03158468A (en) | 1981-09-17 | 1989-05-29 | Carbon-based coating film |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13503789A Pending JPH03158468A (en) | 1981-09-17 | 1989-05-29 | Carbon-based coating film |
Country Status (1)
Country | Link |
---|---|
JP (2) | JPS5849609A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5643343A (en) * | 1993-11-23 | 1997-07-01 | Selifanov; Oleg Vladimirovich | Abrasive material for precision surface treatment and a method for the manufacturing thereof |
US5711773A (en) * | 1994-11-17 | 1998-01-27 | Plasmoteg Engineering Center | Abrasive material for precision surface treatment and a method for the manufacturing thereof |
JP2000501781A (en) * | 1995-12-01 | 2000-02-15 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | Capacitively coupled diamond-like carbon reactor |
US6432537B1 (en) * | 1995-12-01 | 2002-08-13 | E.I. Du Pont De Nemours And Company | Diamond-like-carbon coated aramid fibers having improved mechanical properties |
DE102004033090A1 (en) * | 2004-07-08 | 2006-02-09 | Klaus Dr. Rennebeck | Heat conduction element useful especially when containing hollow fibers, as a brake disk, coupling disk, cutting tool, a vehicle bearing, cylinder or piston, or a vehicle tire includes boron doped electrically conductive diamond coating |
JP5282203B2 (en) * | 2008-07-22 | 2013-09-04 | 帝人株式会社 | Functional fibers and functional fiber products |
CN110820320A (en) * | 2019-11-06 | 2020-02-21 | 西安奕斯伟硅片技术有限公司 | Heat preservation felt, preparation method thereof and crystal pulling furnace |
-
1981
- 1981-09-17 JP JP56146929A patent/JPS5849609A/en active Granted
-
1989
- 1989-05-29 JP JP13503789A patent/JPH03158468A/en active Pending
Non-Patent Citations (1)
Title |
---|
SOLID STATE COMMUN * |
Also Published As
Publication number | Publication date |
---|---|
JPH03158468A (en) | 1991-07-08 |
JPS5849609A (en) | 1983-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0619282B1 (en) | Diamond/carbon/carbon composite useful as an integral dielectric heat sink and method for making same | |
US5143709A (en) | Process for production of graphite flakes and films via low temperature pyrolysis | |
JPS5842472A (en) | Thermal head | |
JPH0445977B2 (en) | ||
Qian et al. | Multiscale SiCnw and carbon fiber reinforced SiOC ceramic with enhanced mechanical and microwave absorption properties | |
JPH0529702B2 (en) | ||
JP2002523331A (en) | Method for producing an improved boron coating on graphite and articles obtained therefrom | |
CN114573330A (en) | Defective graphene/wave-transparent ceramic composite wave-absorbing material, method and application | |
JP2592392B2 (en) | Method of producing carbon coating containing silicon | |
US5523035A (en) | Process for producing carbonaceous material | |
US3556834A (en) | Low temperature method for producing amorphous boron-carbon deposits | |
JPH0543642B2 (en) | ||
Yoshimoto et al. | Low temperature growth of pyrolytic carbon with well-ordered graphite structure by chemical vapour deposition methods | |
JP6944699B2 (en) | Method for manufacturing hexagonal boron nitride film | |
EP0428977B1 (en) | Process for producing carbonaceous material | |
JPH0869997A (en) | Semiconductor device with passivation layer | |
JP2673766B2 (en) | Method for manufacturing carbon-based material | |
JPH0362791B2 (en) | ||
JPH04280809A (en) | Production of highly conductive hollow carbon | |
CN117286712A (en) | Composite fiber and preparation method and application thereof | |
JP3005604B2 (en) | Preparation method of carbon coating | |
JP3197545B2 (en) | Carbon coating | |
CA1268241A (en) | Electric insulation thin layer containing carbon | |
JPS63265890A (en) | Production of thin diamond film or thin diamond-like film | |
JPS62124273A (en) | Formation of electrically conductive graphite film |