JPH0445584A - Phase transition type memory element and its manufacture - Google Patents

Phase transition type memory element and its manufacture

Info

Publication number
JPH0445584A
JPH0445584A JP2152677A JP15267790A JPH0445584A JP H0445584 A JPH0445584 A JP H0445584A JP 2152677 A JP2152677 A JP 2152677A JP 15267790 A JP15267790 A JP 15267790A JP H0445584 A JPH0445584 A JP H0445584A
Authority
JP
Japan
Prior art keywords
semiconductor layer
hole
insulating film
memory element
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2152677A
Other languages
Japanese (ja)
Inventor
Makoto Sasaki
誠 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2152677A priority Critical patent/JPH0445584A/en
Publication of JPH0445584A publication Critical patent/JPH0445584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To reduce a current value of reset pulse which changes a chalcogenide semiconductor from crystal state to amorphous state and reloads a memory element from 'on' state to 'off' state by making an entire region of a semiconductor layer a current path. CONSTITUTION:A through-hole of a small diameter (1.5 to 0.1mum) which is smaller than a diameter (2 to 3mum) of a current path which is formed in a semiconductor layer of a conventional phase transition type memory element is provided to a layer insulating film which insulates a lower electrode and an upper electrode. A chalcogenide semiconductor layer is filled inside the through-hole. Thereby, an entire region of the semiconductor layer becomes a current path. According to the phase transition type memory element, a diameter of the through-hole, that is, a diameter of a semiconductor layer which is filled inside the through-hole is small and a volume of a current path (a volume of an entire of the semiconductor layer) is thereby small; therefore, it is possible to reduce a current value of reset pulse which changes the chalcogenide semiconductor from crystal state to amorphous state and reloads a memory element from 'on' state to 'off' state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、カルコゲナイド系半導体を用いた相転移型メ
モリ素子およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a phase change memory element using a chalcogenide semiconductor and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

最近、不揮発性メモリ素子として、カルコゲナイド系半
導体を用いた相転移型のメ゛モリ素子が開発されている
Recently, phase change type memory elements using chalcogenide semiconductors have been developed as nonvolatile memory elements.

この相転移型メモリ素子は、基本的には一対の電極間に
カルコゲナイド系の半導体層を介在させたもので、この
相転移型メモリ素子としては、従来、第4図に示すよう
な構造のものが知られている。
This phase change type memory element basically has a chalcogenide semiconductor layer interposed between a pair of electrodes, and conventional phase change type memory elements have a structure as shown in Figure 4. It has been known.

この相転移型メモリ素子の構造を説明すると、図中1は
ガラス板等からなる絶縁性基板であり、この基板1上に
は下部電極2とそのライン部2aが形成され、さらにこ
の基板1上には、前記下部電極2およびライン部2aを
覆う層間絶縁膜3が形成されている。この絶縁膜3には
、下部電極2の一部を露出させる開口4が形成されてお
り、この間口4は一般に直径5μm〜10μmの大きさ
に形成されている。そして、カルコゲナイド系の半導体
層5は、前記絶縁膜3の開口4内からその周囲の絶縁膜
上面にわたって形成されており、開口4内の部分の下面
において前記下部電極2の上面に接している。また、前
記絶縁膜3の上には前記半導体層5を覆って上部電極6
が形成されており、前記半導体層5の上面はこの上部電
極6に接している。なお、6aは上部電極6のライン部
である。
To explain the structure of this phase change type memory element, 1 in the figure is an insulating substrate made of a glass plate or the like, a lower electrode 2 and its line portion 2a are formed on this substrate 1, and further on this substrate 1. An interlayer insulating film 3 is formed to cover the lower electrode 2 and the line portion 2a. An opening 4 is formed in this insulating film 3 to expose a part of the lower electrode 2, and this opening 4 is generally formed to have a diameter of 5 μm to 10 μm. The chalcogenide semiconductor layer 5 is formed from within the opening 4 of the insulating film 3 to the upper surface of the surrounding insulating film, and is in contact with the upper surface of the lower electrode 2 at the lower surface of the portion inside the opening 4. Further, an upper electrode 6 is provided on the insulating film 3, covering the semiconductor layer 5.
is formed, and the upper surface of the semiconductor layer 5 is in contact with the upper electrode 6. Note that 6a is a line portion of the upper electrode 6.

この相転移型メモリ素子は、カルコゲナイド系半導体の
アモルファス状態から結晶状態および結晶状態からアモ
ルファス状態への相転移を利用してオン状態とオフ状態
とに書換えられるもので、例えば半導体層5の層厚を0
.3μmとした相転移型メモリ素子は、パルス幅30μ
See〜200μsec 、波高5v〜IOVのセット
パルスの印加によりオン状態となり、パルス幅0.3μ
sec 。
This phase change memory element is rewritten into an on state and an off state by utilizing the phase transition of a chalcogenide semiconductor from an amorphous state to a crystalline state and from a crystalline state to an amorphous state. 0
.. A phase change memory element with a pulse width of 3μm has a pulse width of 30μm.
See~200μsec, application of set pulse with wave height 5v~IOV turns on state, pulse width 0.3μ
sec.

電流値100mAのリセットパルスの印加によりオフ状
態に戻される。すなわち、下部電極2と上部電極6との
間に前記セットパルスを印加すると、この電極2.6間
の半導体層5中に生じるフィラメント状の電流バスAを
流れる電流によりジュール熱が発生して半導体層5の電
流パスA部分がアモルファス状態から結晶状態に相転移
し、電流バスAの抵抗値が低くなってメモリ素子がオン
状態となる。なお、第4図では半導体層5中に生ずる電
流バスAを半導体層5の中央部に図示しているが、この
電流バスAは、半導体層5の最も電流が流れやすい箇所
に形成される。また、カルコゲナイド系半導体は、結晶
化した後は印加電圧を下げてジュール熱をなくしてもア
モルファス状態には戻らず、したがってメモリ素子のオ
ン状態は−そのまま保持される。また、電極2,6間に
前記リセットパルスを印加すると、半導体層5の電流バ
スA部分が一旦溶融した後その熱を周囲の半導体層5に
奪われて急冷され、この電流バスA部分が結晶状態から
アモルファス状態に戻って電流バスAの抵抗値が高くな
り、メモリ素子がオフ状態となる。また、読出しは、電
極2,6の一方に読出しパルスを印加し、メモリ素子の
オン、オフ状態に応じて変化する他方の電極の出力を読
取ることで行なわれる。
It is returned to the off state by applying a reset pulse with a current value of 100 mA. That is, when the set pulse is applied between the lower electrode 2 and the upper electrode 6, Joule heat is generated by the current flowing through the filament-shaped current bus A generated in the semiconductor layer 5 between the electrodes 2 and 6, and the semiconductor The current path A portion of the layer 5 undergoes a phase transition from an amorphous state to a crystalline state, the resistance value of the current bus A decreases, and the memory element turns on. Although the current bus A generated in the semiconductor layer 5 is shown in the center of the semiconductor layer 5 in FIG. 4, the current bus A is formed at a location in the semiconductor layer 5 where current most easily flows. Furthermore, after crystallizing a chalcogenide semiconductor, even if the applied voltage is lowered to eliminate Joule heat, the chalcogenide semiconductor does not return to the amorphous state, and therefore the ON state of the memory element remains unchanged. Further, when the reset pulse is applied between the electrodes 2 and 6, the current bus A portion of the semiconductor layer 5 is once melted, and then the heat is absorbed by the surrounding semiconductor layer 5 and rapidly cooled, and this current bus A portion is crystallized. The state returns to the amorphous state, the resistance value of the current bus A becomes high, and the memory element turns off. Further, readout is performed by applying a readout pulse to one of the electrodes 2 and 6 and reading the output of the other electrode, which changes depending on the on/off state of the memory element.

ところで、この相転移型メモリ素子においては、その半
導体層5中に生ずるフィラメント状の電流バスAの直径
φは2μm〜3μm程度であり、半導体層5のアモルフ
ァス状態と結晶状態との相転移は電流パスA部分に発生
するだけであるが、半導体層5の相転移領域(電流バス
Aが形成される部分)を除く部分がその全域にわたって
アモルファス状態であれば、半導体層5の相転移領域以
外の部分は常に高抵抗であるから、半導体層5の面積が
どのような大きさであっても、メモリ素子の特性にはほ
とんど差がない。このため従来の相転移型メモリ素子で
は、電極2.6間を絶縁する層間絶縁膜3に直径5μm
′〜10μmの大きさの開口4を設けてこの部分全体に
半導体層5を形成している。
By the way, in this phase change type memory element, the diameter φ of the filament-shaped current bus A generated in the semiconductor layer 5 is about 2 μm to 3 μm, and the phase transition between the amorphous state and the crystalline state of the semiconductor layer 5 is caused by the current flow. This occurs only in the path A portion, but if the entire portion of the semiconductor layer 5 excluding the phase transition region (where the current bus A is formed) is in an amorphous state, then Since the portion always has a high resistance, there is almost no difference in the characteristics of the memory element no matter how large the area of the semiconductor layer 5 is. Therefore, in the conventional phase change memory element, the interlayer insulating film 3 that insulates between the electrodes 2.6 has a diameter of 5 μm.
An opening 4 having a size of 10 .mu.m is provided, and a semiconductor layer 5 is formed over this entire portion.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記従来の相転移型メモリ素子は、その
半導体層5中に生ずる電流バスAの直径φが2μm〜3
μm程度であり、この電流バスA部分の半導体が結晶状
態とアモルファス状態とに相転移するため、この相転移
領域の体積が大きく、したがって、半導体層5の相転移
領域を結晶状態からアモルファス状態に戻してメモリ素
子をオン状態からオフ状態に書換えるリセットパルスと
して大きな電流パルス(半導体層5の層厚がO13μm
の場合で100mA)を必要とするという問題をもって
いた。
However, in the conventional phase change memory element, the diameter φ of the current bus A generated in the semiconductor layer 5 is 2 μm to 3 μm.
μm, and since the semiconductor in this current bus A portion undergoes a phase transition between a crystalline state and an amorphous state, the volume of this phase transition region is large, and therefore the phase transition region of the semiconductor layer 5 changes from a crystalline state to an amorphous state. A large current pulse (the thickness of the semiconductor layer 5 is O13 μm) is used as a reset pulse to return the memory element from the on state to the off state.
The problem was that 100 mA was required in the case of

また、前記従来の相転移型メモリ素子は、半導体層5の
相転移領域を除く部分がその全域にわたってアモルファ
ス状態となっていることが必要であるため、その製造時
のプロセス温度に制約があるという問題ももっていた。
In addition, in the conventional phase change memory element, the entire region of the semiconductor layer 5 excluding the phase change region must be in an amorphous state, so there are restrictions on the process temperature during manufacturing. I also had problems.

これは、相転移型メモリ素子の製造過程においてプロセ
ス温度がカルコゲナイド半導体の結晶化温度(アモルフ
ァス状態から結晶状態に相転移する温度)Tcを越え、
しかもその後に徐冷されると、半導体層5がその全体に
わたって結晶化してしまうためである。なお、半導体層
5が結晶化しても、これを溶融して急冷すれば半導体層
5をアモルファス状態に戻すことができるが、面積の大
きな半導体層5の全体をアモルファス状態に戻すには大
きな電流パルス(例えば半導体層5の幅が10μm1層
厚が0.3umの場合は、数100mA)を電極26間
に印加しなければならないため、電極2.6間を絶縁し
ている絶縁膜3に絶縁破壊を発生させるおそれがある。
This is because the process temperature exceeds the crystallization temperature (temperature at which the phase changes from an amorphous state to a crystalline state) of the chalcogenide semiconductor (the temperature at which the phase transitions from an amorphous state to a crystalline state) occurs during the manufacturing process of a phase change memory element.
Moreover, if the semiconductor layer 5 is then slowly cooled, the entire semiconductor layer 5 will be crystallized. Note that even if the semiconductor layer 5 is crystallized, the semiconductor layer 5 can be returned to an amorphous state by melting and rapidly cooling it, but a large current pulse is required to return the entire semiconductor layer 5, which has a large area, to an amorphous state. (For example, if the width of the semiconductor layer 5 is 10 μm and the thickness of each layer is 0.3 μm, several 100 mA) must be applied between the electrodes 26, causing dielectric breakdown in the insulating film 3 that insulates between the electrodes 2. may occur.

このため、従来の相転移型メモリ素子は、前記結晶化温
度Tcを越えないようなプロセス温度で製造されている
が、カルコゲナイド半導体の結晶化温度Tcは、この半
導体の組成にもよるが50℃〜200℃であるため、こ
の温度以下にプロセス温度を抑えるには製造プロセスの
自由度が大きく制約され、したがって、例えば同じ基板
1上に相転移型メモリ素子をマトリックス状に配列形成
するとともにその駆動回路を構成する薄膜トランジスタ
を形成する場合に、前記薄膜トランジスタの製造プロセ
スも温度上の制約を受けてしまう。
For this reason, conventional phase change memory elements are manufactured at a process temperature that does not exceed the crystallization temperature Tc, but the crystallization temperature Tc of a chalcogenide semiconductor is 50°C, although it depends on the composition of this semiconductor. ~200°C, the degree of freedom in the manufacturing process is greatly restricted in order to keep the process temperature below this temperature. When forming thin film transistors constituting a circuit, the manufacturing process of the thin film transistors is also subject to temperature restrictions.

さらに、前記従来の相転移型メモリ素子は、半導体層5
の面積が大きいため、メモリの素子面積を小さくして集
積度を上げることができないという問題ももっていた。
Further, the conventional phase change memory element has a semiconductor layer 5.
Since the area of the memory device is large, there is also the problem that it is not possible to reduce the area of the memory element and increase the degree of integration.

本発明はこのような実情にかんがみてなされたものであ
って、その目的とするところは、カルコゲナイド系半導
体を結晶状態からアモルファス状態にしてメモリ素子を
オン状態からオフ状態に書換えるリセットパルスの電流
値を小さくすることができるとともに、製造時のプロセ
ス温度の制約もなくして製造プロセスの自由度を広げる
ことができ、しかも素子面積も小さくして集積度を上げ
ることができる相転移型メモリ素子を提供す−るととも
に、あわせてその製造方法を提供することにある。
The present invention has been made in view of these circumstances, and its purpose is to provide a reset pulse current that changes a chalcogenide semiconductor from a crystalline state to an amorphous state and rewrites a memory element from an on state to an off state. We are developing a phase change memory element that can reduce the value, increase the degree of freedom in the manufacturing process by eliminating restrictions on process temperature during manufacturing, and also reduce the element area and increase the degree of integration. The object of the present invention is to provide a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の相転移型メモリ素子は、絶縁性基板上に形成さ
れた下部電極と、この下部電極を覆って前記基板上に形
成された層間絶縁膜と、この絶縁膜に前記下部電極の一
部に対応させて設けられた貫通孔と、この貫通孔内に充
填され下端面において前記下部電極に接するカルコゲナ
イド系の半導体層と、前記絶縁膜の上に形成され一部に
おいて前記半導体層の上端面に接する上部電極とからな
り、かつ前記貫通孔の直径を1.5μm〜0.1μmの
範囲にしたことを特徴とするものである。
The phase change memory element of the present invention includes a lower electrode formed on an insulating substrate, an interlayer insulating film formed on the substrate covering the lower electrode, and a part of the lower electrode on the insulating film. a chalcogenide semiconductor layer filled in the through hole and in contact with the lower electrode at its lower end surface; and a chalcogenide semiconductor layer formed on the insulating film and partially in contact with the upper end surface of the semiconductor layer. and an upper electrode in contact with the through hole, and the diameter of the through hole is in the range of 1.5 μm to 0.1 μm.

また、本発明の相転移型メモリ素子、の製造方法は、絶
縁性基板上に下部電極とこの下部電極を覆う層間絶縁膜
を形成するとともにこの絶縁膜に前記下部電極の一部に
対応させて直径1.5μm〜0.1μmの貫通孔を形成
する工程と、前記絶縁膜上およびその貫通孔内にカルコ
ゲナイド系の半導体層を堆積させ、この後前記絶縁膜上
の半導体層をエツチング除去して前記貫通孔内のみに半
導体層を残す工程と、前記絶縁膜の上に前記貫通孔内の
半導体層を覆って上部電極を形成する工程とからなるこ
とを特徴とするものである。
Further, the method for manufacturing a phase change memory element of the present invention includes forming a lower electrode and an interlayer insulating film covering the lower electrode on an insulating substrate, and making the insulating film correspond to a part of the lower electrode. A step of forming a through hole with a diameter of 1.5 μm to 0.1 μm, depositing a chalcogenide semiconductor layer on the insulating film and in the through hole, and then removing the semiconductor layer on the insulating film by etching. The method is characterized by comprising a step of leaving a semiconductor layer only in the through hole, and a step of forming an upper electrode on the insulating film so as to cover the semiconductor layer in the through hole.

この製造方法においては、前記絶縁膜上およびその貫通
孔内にカルコゲナイド系の半導体層を堆積させた後に、
この半導体層をその融点以上の温度に加熱し、この後前
記絶縁膜上の半導体層をエツチング除去するのが望まし
い。
In this manufacturing method, after depositing a chalcogenide-based semiconductor layer on the insulating film and in its through-hole,
It is desirable to heat this semiconductor layer to a temperature equal to or higher than its melting point, and then remove the semiconductor layer on the insulating film by etching.

〔作用〕[Effect]

すなわち、本発明の相転移型メモリ素子は、下部電極と
上部電極との間を絶縁する層間絶縁膜に、従来の相転移
゛型メモリ素子においてその半導体層に形成される電流
バスの直径(2μm〜3μm)より小さな直径(1,5
μm−0,1μm)の貫通孔を設けて、この貫通孔内に
カルコゲナイド系の半導体層を充填する゛ことにより、
この半導体層の全域が電流パスとなるようにしたもので
あり、この相転移型メモリ素子によれば、前記貫通孔の
直径すなわちこの貫通孔内に充填された半導体層の直径
が小さく、シたがって電流パスの体積(半導体層全体の
体積)が小さいため、カルコゲナイド系半導体を結晶状
態からアモルファス状態にしてメモリ素子をオン状態か
らオフ状態に書換えるリセットパルスの電流値を小さく
することができる。なお、本発明において前記貫通孔の
直径を1.5μm〜0.1μmの範囲としているのは、
貫通孔の直径を1.5μmより大きくすると、この貫通
孔内に充填される半導体層の直径が大きくなってリセッ
トパルスの電流値をあまり小さくすることができなくな
り、また貫通孔の直径を0.1μmより小さくすると、
この貫通孔内に充填される半導体層の直径が小さくなり
すぎて安定した相転移が得られなくなるためである。ま
た、この相転移型メモリ素子では、半導体層の全域が電
流パスとなってこの半導体層全体がアモルファス状態と
結晶状態とに相転移するため、半導体層の初期状態はア
モルファス状態でも結晶状態でもよく、シたがって、そ
の製造過程でプロセス温度が半導体の結晶化温度を越え
ても構わないから、製造時のプロセス温度の制約もなく
して製造プロセスの自由度を広げることができる。しか
も、この相転移型メモリ素子では、半導体層の直径を小
さくしているため、素子面積も小さくして集積度を上げ
ることができる。
That is, the phase change type memory element of the present invention has a diameter (2 μm) of the current bus formed in the semiconductor layer in the conventional phase change type memory element, in the interlayer insulating film that insulates between the lower electrode and the upper electrode. ~3 μm) smaller diameter (1,5 μm)
By providing a through hole with a diameter of 0.1 μm) and filling this through hole with a chalcogenide semiconductor layer,
The entire area of this semiconductor layer serves as a current path, and according to this phase change memory element, the diameter of the through hole, that is, the diameter of the semiconductor layer filled in this through hole is small, and the Since the volume of the current path (volume of the entire semiconductor layer) is small, the current value of the reset pulse that changes the chalcogenide semiconductor from the crystalline state to the amorphous state and rewrites the memory element from the on state to the off state can be made small. In addition, in the present invention, the diameter of the through hole is in the range of 1.5 μm to 0.1 μm because
If the diameter of the through hole is made larger than 1.5 μm, the diameter of the semiconductor layer filled in the through hole becomes large, making it impossible to reduce the current value of the reset pulse very much. If it is smaller than 1 μm,
This is because the diameter of the semiconductor layer filled in this through hole becomes too small, making it impossible to obtain stable phase transition. In addition, in this phase change type memory element, the entire area of the semiconductor layer becomes a current path and the entire semiconductor layer undergoes a phase transition between an amorphous state and a crystalline state, so the initial state of the semiconductor layer may be either an amorphous state or a crystalline state. Therefore, since it does not matter if the process temperature exceeds the crystallization temperature of the semiconductor during the manufacturing process, there is no restriction on the process temperature during manufacturing, and the degree of freedom in the manufacturing process can be increased. Moreover, in this phase change type memory element, since the diameter of the semiconductor layer is reduced, the element area can also be reduced and the degree of integration can be increased.

また、本発明の相転移型メモリ素子の製造方法によれば
、層間絶縁膜に下部電極の一部に対応させて直径1,5
μm〜0.1μmの貫通孔を形成し、この絶縁膜上およ
びその貫通孔内にカルコゲナイド系の半導体層を堆積さ
せた後に、前記絶縁膜上の半導体層をエツチング除去し
て前記貫通孔内のみに半導体層を残しているから、前記
絶縁膜の貫通孔内に半導体層を充填した前記相転移型メ
モリ素子を製造することができる。
Further, according to the method for manufacturing a phase change memory element of the present invention, the interlayer insulating film is made to correspond to a part of the lower electrode with a diameter of 1.5 mm.
After forming a through hole of μm to 0.1 μm and depositing a chalcogenide semiconductor layer on the insulating film and inside the through hole, the semiconductor layer on the insulating film is removed by etching, and only the inside of the through hole is etched. Since the semiconductor layer is left in the insulating film, it is possible to manufacture the phase change memory element in which the through hole of the insulating film is filled with the semiconductor layer.

また、この製造方法において、前記絶縁膜上およびその
貫通孔内にカルコゲナイド系の半導体層を堆積させた後
、この半導体層をその融点以上の温度に加熱すれば、半
導体層の堆積時における貫通孔内への半導体の充填が不
完全であっても、半導体層が加熱により流動状態となっ
て絶縁膜上の半導体が貫通孔に流入するから、貫通孔内
に半導体を完全に充填して、貫通孔内に緻密な膜質の半
導体層を形成することができる。
In addition, in this manufacturing method, after depositing a chalcogenide semiconductor layer on the insulating film and in its through-hole, if this semiconductor layer is heated to a temperature equal to or higher than its melting point, the through-hole during deposition of the semiconductor layer can be heated. Even if the filling of the semiconductor inside is incomplete, the semiconductor layer becomes fluid due to heating and the semiconductor on the insulating film flows into the through hole. A dense filmy semiconductor layer can be formed within the hole.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を参照して説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図はこの実施例の相転移型メモリ素子の断面図であ
り、ガラス板等からなる絶縁性基板11の上には下部電
極12およびそのライン部12aが形成され、さらにこ
の基板11上には、前記下部電極12およびライン部1
2aを覆う層間絶縁1i13が0.1μm〜0.5μm
の厚さに形成されている。この層間絶縁膜13は、下部
電極12に対応する部分に直径が2μm〜5μm程度の
円形開口14を形成した基板はぼ全面を覆う第1の絶縁
膜13aと、この第1の絶縁膜13aの開口14内に第
1の絶縁膜13aと同じ膜厚に形成された第2の絶縁膜
13bとからなっており、前記第2の絶縁膜13bの中
央には、直径aが1.5μm〜0.1μmのほぼ円形な
貫通孔15が形成されている。そして、この貫通孔15
内には、カルコゲナイド系の半導体層16が密に充填さ
れており、この半導体層16はその下端面において前記
下部電極12に接している。なお、カルコゲナイド系半
導体としては、例えばGe−Te、In−5e 、Sb
 −Ge−Te等の各種組成の半導体があり、この実施
例でもこれら半導体を用いている。また、前記層間絶縁
膜13の上には、その貫通孔15内に充填した半導体層
16を覆って上部電極17が形成されており、前記半導
体層16の上面はこの上部電極17に接している。なお
、17aは上部電極17のライン部である。
FIG. 1 is a cross-sectional view of the phase change type memory element of this embodiment, in which a lower electrode 12 and its line portion 12a are formed on an insulating substrate 11 made of a glass plate or the like, and further on this substrate 11. is the lower electrode 12 and the line part 1
Interlayer insulation 1i13 covering 2a is 0.1 μm to 0.5 μm
It is formed to a thickness of . This interlayer insulating film 13 includes a first insulating film 13a that covers almost the entire surface of the substrate, in which a circular opening 14 with a diameter of approximately 2 μm to 5 μm is formed in a portion corresponding to the lower electrode 12; A second insulating film 13b is formed in the opening 14 to have the same thickness as the first insulating film 13a, and a diameter a of 1.5 μm to 0.0 μm is formed at the center of the second insulating film 13b. A substantially circular through hole 15 with a diameter of .1 μm is formed. And this through hole 15
A chalcogenide semiconductor layer 16 is densely filled inside, and this semiconductor layer 16 is in contact with the lower electrode 12 at its lower end surface. Note that chalcogenide semiconductors include, for example, Ge-Te, In-5e, and Sb.
There are semiconductors with various compositions such as -Ge-Te, and these semiconductors are used in this embodiment. Further, an upper electrode 17 is formed on the interlayer insulating film 13 to cover the semiconductor layer 16 filled in the through hole 15, and the upper surface of the semiconductor layer 16 is in contact with the upper electrode 17. . Note that 17a is a line portion of the upper electrode 17.

第2図は前記相転移型メモリ素子の製造工程図であり、
この相転移型メモリ素子は次のようにして製造される。
FIG. 2 is a manufacturing process diagram of the phase change type memory element,
This phase change type memory element is manufactured as follows.

まず、第2図(a)に示すように、基板11上にCr等
の金属膜を堆積し、この金属膜をフォトリソグラフィ法
によりバターニングして下部電極12とそのライン部1
2aを形成する。
First, as shown in FIG. 2(a), a metal film such as Cr is deposited on the substrate 11, and this metal film is patterned by photolithography to form the lower electrode 12 and its line portion 1.
Form 2a.

次に、第2図(b)に示すように、前記基板11上にそ
の全面にわたってSINまたは510□等の第1の絶縁
膜13aを0.1μm〜0.5μmの厚さに堆積させる
Next, as shown in FIG. 2(b), a first insulating film 13a such as SIN or 510□ is deposited over the entire surface of the substrate 11 to a thickness of 0.1 μm to 0.5 μm.

次に、第2図(C)に示すように、前記第1の絶縁膜1
3Hの下部電極12と対応する部分に、フォトリソグラ
フィ法によって直径すが2μm〜5μm程度の円形開口
14を形成する。
Next, as shown in FIG. 2(C), the first insulating film 1
A circular opening 14 having a diameter of approximately 2 μm to 5 μm is formed in a portion corresponding to the lower electrode 12 of 3H by photolithography.

次に、第2図(d)に示すように、第1の絶縁膜13a
の上とその開口14の壁面およびこの開口14内に露出
した下部電極12の上に第2の絶縁膜13bを堆積させ
る。なお、この第2の絶縁膜13bの材質は任意でよい
が、例えば、第1の絶縁膜13aと同じ絶縁材料(St
 Nまたは8102等)とする。この第2の絶縁膜13
bの堆積厚さは、前記開口14の中心部に、カルコゲナ
イド系半導体を充填する貫通孔15の直径aに相当する
径の縦穴部15′を残す厚さに制御する。
Next, as shown in FIG. 2(d), the first insulating film 13a is
A second insulating film 13b is deposited on the opening 14, the wall surface of the opening 14, and the lower electrode 12 exposed in the opening 14. Note that the second insulating film 13b may be made of any material, but for example, it may be made of the same insulating material as the first insulating film 13a (St
N or 8102, etc.). This second insulating film 13
The deposition thickness b is controlled to a thickness that leaves a vertical hole portion 15' having a diameter corresponding to the diameter a of the through hole 15 filled with the chalcogenide semiconductor in the center of the opening 14.

また、この第2の絶縁膜13bの堆積はCVD法によっ
て行なう。このCVD法による被膜の堆積では、原料ガ
スが被膜堆積面の表面で化学反応し、膜となって成長す
るため、第2の絶縁膜13bは、第1の絶縁膜13aの
上面および下部電極12の上面にも、また開口14の壁
面にも、これらの面に対して垂直な方向にそれぞれ均一
な膜厚dに堆積する。
Further, the second insulating film 13b is deposited by CVD. In the deposition of the film by this CVD method, the raw material gas undergoes a chemical reaction on the surface of the film deposition surface and grows as a film. It is deposited on both the upper surface and the wall surface of the opening 14 in a direction perpendicular to these surfaces to a uniform film thickness d.

次に、第2図(e)に示すように、前記第2の絶縁膜1
3bを、基板11面に対して垂直な方向にエツチングが
進行するエツチング条件で第1の絶縁膜13aおよび下
部電極12の上面を露出させるまでエツチングバックす
る。この第2の絶縁膜13bのエツチングバックは、R
IE法またはスパッタエツチング法等の異方性エツチン
グで行なう。このように第2の絶縁膜13bを異方性エ
ツチングによってエツチングバックすると、第2の絶縁
膜13bのうち、第1の絶縁!I 13 aの上面に堆
積した部分と、前記縦穴部15′の底部分がエツチング
除去され、最終的に、開口14の壁面に堆積した絶縁膜
13bだけが残るとともに、前記縦穴部15′が下部電
極12に達する貫通孔15となる。なお、前記貫通孔4
の直径aは−a+wl)−2Xdであり、例えば第1の
絶縁膜13aにフォトリソグラフィ法で形成した開口1
4の直径すを3μmとし、この開口14の壁面に残す第
2の絶縁膜13bの膜厚dを1.45μmとすると、貫
通孔4の直径aは、a−3−2X1.45μm−0,1
μmとなる。
Next, as shown in FIG. 2(e), the second insulating film 1
3b is etched back under etching conditions such that etching proceeds in a direction perpendicular to the surface of the substrate 11 until the upper surfaces of the first insulating film 13a and the lower electrode 12 are exposed. The etching back of this second insulating film 13b is R
This is done by anisotropic etching such as IE method or sputter etching method. When the second insulating film 13b is etched back by anisotropic etching in this way, the first insulating film 13b! The portion deposited on the upper surface of I 13a and the bottom portion of the vertical hole 15' are etched away, and finally, only the insulating film 13b deposited on the wall surface of the opening 14 remains, and the vertical hole 15' is removed by etching. This becomes a through hole 15 that reaches the electrode 12. Note that the through hole 4
The diameter a is -a+wl)-2Xd, and for example, the opening 1 formed in the first insulating film 13a by photolithography
If the diameter of the through hole 4 is 3 μm, and the thickness d of the second insulating film 13b left on the wall of the opening 14 is 1.45 μm, the diameter a of the through hole 4 is a-3-2X1.45 μm-0, 1
It becomes μm.

このようにして、第1の絶縁膜13aと貫通孔15を有
する第2の絶縁膜13bとからなる層間絶縁膜13を形
成した後は、第2図(f)に示すように、前記層間絶縁
膜13上およびその貫通孔15内にカルコゲナイド系の
半導体層16をCVD法等により堆積させ、前記貫通孔
15内に前記半導体層16を充填する。
After forming the interlayer insulating film 13 consisting of the first insulating film 13a and the second insulating film 13b having the through holes 15 in this way, as shown in FIG. A chalcogenide semiconductor layer 16 is deposited on the film 13 and in the through hole 15 thereof by CVD or the like, and the through hole 15 is filled with the semiconductor layer 16 .

ただし、この場合、前記貫通孔15のアスペクト比、す
なわち孔高(層間絶縁膜13の膜厚)hと孔径aとの比
(h/a)が1程度以上であると、貫通孔15内に堆積
する半導体層16が貫通孔15内に完全に充填されずに
、この半導体層16中に、第2図(f)に示すような空
孔Sができることがある。
However, in this case, if the aspect ratio of the through hole 15, that is, the ratio of the hole height (thickness of the interlayer insulating film 13) h to the hole diameter a (h/a) is about 1 or more, The deposited semiconductor layer 16 may not completely fill the through hole 15, and holes S as shown in FIG. 2(f) may be formed in the semiconductor layer 16.

そこで、この実施例では、前記層間絶縁膜13上および
その貫通孔15内にカルコゲナイド系半導体層16を堆
積させた後、この半導体層16をその融点以上の温度に
加熱(リフロー)して、貫通孔15内に半導体を完全に
充填させている。
Therefore, in this embodiment, after depositing a chalcogenide semiconductor layer 16 on the interlayer insulating film 13 and in its through hole 15, this semiconductor layer 16 is heated (reflowed) to a temperature higher than its melting point, and the semiconductor layer 16 is The hole 15 is completely filled with semiconductor.

第2図(g)はこの状態を示しており、堆積させた半導
体層16をその融点以上の温度に加熱すれば、半導体層
16の堆積時における貫通孔15内への半導体の充填が
不完全であっても、半導体層16が加熱により流動状態
となって絶縁膜13上の半導体が貫通孔15に流入する
から、貫通孔内に半導体を完全に充填して、貫通孔内に
緻密な膜質の半導体層を形成することができる。なお、
この場合、半導体層16の加熱後にこの半導体層16を
徐冷すると、半導体層16が結晶状態となリ、また急冷
すると半導体層16がアモルファス状態となるが、この
半導体層16の冷却は徐冷と急冷のいずれによってもよ
い。
FIG. 2(g) shows this state, and if the deposited semiconductor layer 16 is heated to a temperature higher than its melting point, the through hole 15 will not be filled with semiconductor completely during the deposition of the semiconductor layer 16. Even in this case, the semiconductor layer 16 becomes fluid due to heating and the semiconductor on the insulating film 13 flows into the through hole 15, so the through hole is completely filled with the semiconductor and a dense film is formed inside the through hole. It is possible to form a semiconductor layer of. In addition,
In this case, when the semiconductor layer 16 is slowly cooled after heating, the semiconductor layer 16 becomes a crystalline state, and when rapidly cooled, the semiconductor layer 16 becomes an amorphous state. or quenching.

この後は、第2図(h)に示すように、層間絶縁膜13
上の半導体層16をエツチング除去して前記貫通孔15
内のみに半導体層16を残す。
After this, as shown in FIG. 2(h), the interlayer insulating film 13
The upper semiconductor layer 16 is etched away to form the through hole 15.
The semiconductor layer 16 is left only inside.

次に、第2図(i)に示すように、前記層間絶縁膜13
の上にCr等の金属膜を堆積し、この金属膜をフォトリ
ングラフィ法によりパターニングして、前記貫通孔15
内の半導体層16を覆う下部電極17とそのライン部1
7aを形成し、相転移型メモリ素子を完成する。
Next, as shown in FIG. 2(i), the interlayer insulating film 13
A metal film such as Cr is deposited thereon, and this metal film is patterned by photolithography to form the through holes 15.
The lower electrode 17 covering the semiconductor layer 16 inside and its line portion 1
7a is formed to complete a phase change type memory element.

すなわち、この実施例の相転移型メモリ素子は、下部電
極12と上部電極17との間を絶縁する層間絶縁膜13
に、直径aが1.5μm〜0.1μmの貫通孔15を設
けて、この貫通孔15内にカルコゲナイド系の半導体層
16を充填したものであり、この相転移型メモリ素子で
は、その半導体層16の直径(貫通孔15の直径a)が
、従来の相転移型メモリ素子においてその半導体層に形
成される電流バスの直径(2μm〜3μm)より小さい
ため、半導体層16の全域が電流バスとなる。
That is, the phase change memory element of this embodiment has an interlayer insulating film 13 that insulates between the lower electrode 12 and the upper electrode 17.
A through hole 15 with a diameter a of 1.5 μm to 0.1 μm is provided in the device, and a chalcogenide semiconductor layer 16 is filled in the through hole 15. 16 (diameter a of the through hole 15) is smaller than the diameter (2 μm to 3 μm) of the current bus formed in the semiconductor layer in a conventional phase change memory element, so the entire area of the semiconductor layer 16 is used as the current bus. Become.

そして、この相転移型メモリ素子によれば、半導体層1
6の直径が小さく、したがって電流バスの体積(半導体
層16全体の体積)が小さいため、カルコゲナイド系半
導体を結晶状態からアモルファス状態にしてメモリ素子
をオン状態からオフ状態に書換えるリセットパルスの電
流値を小さくすることができる。
According to this phase change memory element, the semiconductor layer 1
6 is small in diameter and therefore the volume of the current bus (volume of the entire semiconductor layer 16) is small, so the current value of the reset pulse that changes the chalcogenide semiconductor from the crystalline state to the amorphous state and rewrites the memory element from the on state to the off state is can be made smaller.

すなわち、下記の表は、半導体層16の厚さ(貫通孔1
5の花鳥)を0,3μmにした場合の、半導体層16の
直径と、この半導体層16を結晶状態からアモルファス
状態に相転移させるのに必要なリセットパルスの電流値
との関係を示している。
That is, the table below shows the thickness of the semiconductor layer 16 (through hole 1
5 shows the relationship between the diameter of the semiconductor layer 16 and the current value of the reset pulse required to phase transition the semiconductor layer 16 from the crystalline state to the amorphous state, when the diameter of the semiconductor layer 16 is set to 0.3 μm. .

二の表のように、半導体層16の直径が従来の相転移型
メモリ素子においてその半導体層に形成される電流バス
の直径と同程度(2μm)である場合は、半導体層16
を結晶状態からアモルファス状態に相転移させるのに必
要なリセットパルスの電流値は100mAと従来の相転
移型メモリ素子とほぼ同じであるが、半導体層16の直
−径を1.5μmにすると、前記リセットパルスの電流
値は56.3mAと、従来の相転移型メモリ素子のほぼ
1/2程度ですみ、さらに半導体層16の直径を小さく
すると、リセットパルスの電流値もさらに小さくてすむ
As shown in Table 2, when the diameter of the semiconductor layer 16 is approximately the same as the diameter (2 μm) of the current bus formed in the semiconductor layer in a conventional phase change memory element, the semiconductor layer 16
The current value of the reset pulse required to cause a phase transition from a crystalline state to an amorphous state is 100 mA, which is almost the same as that of a conventional phase change type memory element, but if the diameter of the semiconductor layer 16 is 1.5 μm, The current value of the reset pulse is 56.3 mA, which is about 1/2 of that of a conventional phase change memory element, and if the diameter of the semiconductor layer 16 is further reduced, the current value of the reset pulse can be even smaller.

なお、この実施例において、前記貫通孔15の直径aを
1.5μm〜0.1μmの範囲としているのは、貫通孔
15の直径aを1,5μmより大きくすると、この貫通
孔15内に充填される半導体層16の直径が大きくなっ
てリセットパルスの電流値をあまり小さくすることがで
きなくなり、また貫通孔15の直径を0.1μmより小
さくすると、この貫通孔15内に充填される半導体層1
6の直径が小さくなりすぎて安定した相転移が得られな
くなるためである。
In this embodiment, the diameter a of the through hole 15 is set in the range of 1.5 μm to 0.1 μm, because if the diameter a of the through hole 15 is larger than 1.5 μm, the inside of the through hole 15 will be filled. If the diameter of the semiconductor layer 16 becomes large and the current value of the reset pulse cannot be made very small, and if the diameter of the through hole 15 is made smaller than 0.1 μm, the semiconductor layer filled in the through hole 15 becomes larger. 1
This is because the diameter of 6 becomes too small and stable phase transition cannot be obtained.

また、この相転移型メモリ素子では、半導体層16の全
域が電流バスとなってこの半導体層全体がアモルファス
状態と結晶状態とに相転移するため、半導体層16の初
期状態はアモルファス状態でも結晶状態でもよく、した
がって、その製造過程でプロセス温度が半導体16の結
晶化温度を越えても構わないから、製造時のプロセス温
度の制約もなくして製造プロセスの自由度を広げること
ができる。したがって、例えば同じ基板11上に相転移
型メモリ素子をマトリックス状に配列形成するとともに
その駆動回路を構成する薄膜トランジスタを形成する場
合でも、前記薄膜トランジスタの製造プロセスに温度上
の制約を受けることはない。
In addition, in this phase change type memory element, the entire area of the semiconductor layer 16 becomes a current bus, and the entire semiconductor layer undergoes a phase transition between an amorphous state and a crystalline state. Therefore, since the process temperature may exceed the crystallization temperature of the semiconductor 16 during the manufacturing process, there is no restriction on the process temperature during manufacturing, and the degree of freedom in the manufacturing process can be increased. Therefore, for example, even when phase change memory elements are arranged in a matrix on the same substrate 11 and thin film transistors constituting the drive circuit are formed, the manufacturing process of the thin film transistors is not subject to temperature restrictions.

しかも、この相転移型メモリ素子では、半導体層16の
直径を小さくしているため、素子面積も小さくして集積
度を上げることができる。
Moreover, in this phase change type memory element, since the diameter of the semiconductor layer 16 is made small, the element area can also be made small and the degree of integration can be increased.

また、前記実施例の相転移型メモリ素子の製造方法では
、層間絶縁膜13に下部電極12の一部に対応させて直
径1.5μm〜0,1μmの貫通孔14を形成し、この
絶縁膜13上およびその貫通孔15内にカルコゲナイド
系の半導体層16を堆積させた後に、前記絶縁膜13上
の半導体層16をエツチング除去して前記貫通孔15内
のみに半導体層16を残しているから、絶縁膜13の貫
通孔15内に半導体層16を充填した前記相転移型メモ
リ素子を製造することができる。
Further, in the method for manufacturing a phase change memory element according to the embodiment, a through hole 14 having a diameter of 1.5 μm to 0.1 μm is formed in the interlayer insulating film 13 in correspondence with a part of the lower electrode 12, and the insulating film After the chalcogenide semiconductor layer 16 is deposited on the insulating film 13 and in the through hole 15, the semiconductor layer 16 on the insulating film 13 is removed by etching, leaving the semiconductor layer 16 only in the through hole 15. , it is possible to manufacture the phase change memory element in which the through hole 15 of the insulating film 13 is filled with the semiconductor layer 16.

しかも、この製造方法では、層間絶縁膜13に設ける貫
通孔15を、まず第1の絶縁膜13aを形成してこの第
1の絶縁膜13aに開口14を形成し、この開口14の
壁面に第2の絶縁膜13bを堆積させる方法で形成して
いるため、前記第2の絶縁膜13bの堆積厚さを制御す
ることで、直径aが1,5μm〜0.1μmの非常に小
さな貫通孔15を形成することができる。
Moreover, in this manufacturing method, the through hole 15 provided in the interlayer insulating film 13 is formed by first forming the first insulating film 13a, forming the opening 14 in the first insulating film 13a, and forming the through hole 15 on the wall surface of the opening 14. By controlling the deposition thickness of the second insulating film 13b, a very small through hole 15 with a diameter a of 1.5 μm to 0.1 μm can be formed. can be formed.

また、前記実施例の製造方法では、前記絶縁膜13上お
よびその貫通孔14内にカルコゲナイド系の半導体層1
6を堆積させた後、この半導体層16をその融点以上の
温度に加熱しているため、半導体層16の堆積時におけ
る貫通孔15内への半導体の充填が不完全であっても、
半導体層16を加熱により流動状態にして絶縁膜13上
の半導体が貫通孔15に流入させ、貫通孔15内に半導
体を完全に充填して、貫通孔15内に緻密な膜質の半導
体層16を形成することができる。
Further, in the manufacturing method of the embodiment, a chalcogenide semiconductor layer 1 is formed on the insulating film 13 and in the through hole 14 thereof.
After depositing the semiconductor layer 16, the semiconductor layer 16 is heated to a temperature higher than its melting point.
The semiconductor layer 16 is heated to a fluidized state, and the semiconductor on the insulating film 13 flows into the through hole 15, completely filling the through hole 15 with the semiconductor and forming a dense film semiconductor layer 16 in the through hole 15. can be formed.

なお、前記実施例では、層間絶縁膜13に設ける貫通孔
15を、第1の絶縁膜13aに形成した開口14の壁面
に第2の絶縁膜13bを堆積させる方法で形成している
が、この貫通孔15はフォトリソグラフィ法によって形
成してもよく、現在のフォトリングラフィ技術でも、1
μmより僅かに小さい孔径までの貫通孔の形成は可能で
ある。
In the above embodiment, the through hole 15 provided in the interlayer insulating film 13 is formed by depositing the second insulating film 13b on the wall surface of the opening 14 formed in the first insulating film 13a. The through hole 15 may be formed by photolithography, and even with the current photolithography technology, 1
It is possible to form through-holes with diameters slightly smaller than μm.

第3図は貫通孔15をフォトリソグラフィ法によって形
成した相転移型メモリ素子の実施例を示しており、この
実施例は、層間絶縁膜13を単一の絶縁膜とし、この絶
縁膜13にフォトリソグラフィ法によって貫通孔15を
形成したものである。
FIG. 3 shows an embodiment of a phase change memory element in which a through hole 15 is formed by photolithography. The through hole 15 is formed by a lithography method.

また、前記実施例の製造方法では、層間絶縁膜13上お
よびその貫通孔14内にカルコゲナイド系の半導体層1
6を堆積させた後、この半導体層16をその融点以上の
温度に加熱して、絶縁膜13上の半導体を貫通孔15に
流入させているが、貫通孔15の花鳥(層間絶縁膜13
の膜厚)hが貫通孔15の孔径aより小さくてアスペク
ト比(h/a)が1より小さい場合は、半導体層−16
の堆積時にこの半導体層16が貫通孔15内に完全に充
填されるから、この場合は前記加熱工程は省略してもよ
い。
Further, in the manufacturing method of the embodiment, a chalcogenide semiconductor layer 1 is formed on the interlayer insulating film 13 and in the through hole 14 thereof.
After depositing the semiconductor layer 16, the semiconductor layer 16 is heated to a temperature higher than its melting point, and the semiconductor on the insulating film 13 flows into the through hole 15.
When the film thickness h of the through hole 15 is smaller than the hole diameter a of the through hole 15 and the aspect ratio (h/a) is smaller than 1, the semiconductor layer -16
Since the through hole 15 is completely filled with the semiconductor layer 16 during deposition, the heating step may be omitted in this case.

〔発明の効果〕〔Effect of the invention〕

本発明の相転移型メモリ素子は、下部電極と上部電極と
の間を絶縁する層間絶縁膜に、従来の相転移型メモリ素
子においてその半導体層に形成される電流パスの直径(
2μm〜3μm)より小さな直径(1,5μm〜0.1
μm)の貫通孔を設けて、この貫通孔内にカルコゲナイ
ド系の半導体層を充填することにより、この半導体層の
全域が電流パスとなるようにしたものであるから、カル
コゲナイド系半導体を結晶状態からアモルファス状態に
してメモリ素子をオン状態からオフ状態に書換えるリセ
ットパルスの電流値を小さくすることができるし、また
、半導体層の全域が電流パスとなってこの半導体層全体
がアモルファス状態と結晶状態とに相転移するために半
導体層の初期状態はアモルファス状態でも結晶状態でも
よいから、製造時のプロセス温度の制約もなくして製造
プロセスの自由度を広げることができるシしかも、この
相転移型メモリ素子では、半導体層の直径を小さくして
いるため、素子面積も小さくして集積度を上げることが
できる。
The phase change memory element of the present invention has an interlayer insulating film that insulates between the lower electrode and the upper electrode.
2 μm to 3 μm) smaller diameter (1,5 μm to 0.1
By providing a through hole with a diameter of μm) and filling this through hole with a chalcogenide semiconductor layer, the entire area of this semiconductor layer becomes a current path. It is possible to reduce the current value of the reset pulse that changes the memory element from an on state to an off state by setting it in an amorphous state, and the entire semiconductor layer becomes a current path, so that the entire semiconductor layer can be switched between an amorphous state and a crystalline state. Since the initial state of the semiconductor layer can be either an amorphous state or a crystalline state, there is no restriction on process temperature during manufacturing, increasing the flexibility of the manufacturing process. In the device, since the diameter of the semiconductor layer is made small, the device area can also be made small and the degree of integration can be increased.

また、本発明の相転移型メモリ素子の製造方法によれば
、層間絶縁膜に下部電極の一部に対応させて直径1,5
μm〜0.1μmの貫通孔を形成し、この絶縁膜上およ
びその貫通孔内にカルコゲナイド系の半導体層を堆積さ
せた後に、前記絶縁膜上の半導体層をエツチング除去し
て前記貫通孔内のみに半導体層を残しているから、前記
絶縁膜の貫通孔内に半導体層を充填した前記相転移型メ
モリ素子を製造することができる。
Further, according to the method for manufacturing a phase change memory element of the present invention, the interlayer insulating film is made to correspond to a part of the lower electrode with a diameter of 1.5 mm.
After forming a through hole of μm to 0.1 μm and depositing a chalcogenide-based semiconductor layer on the insulating film and inside the through hole, the semiconductor layer on the insulating film is removed by etching and only the inside of the through hole is etched. Since the semiconductor layer is left in the insulating film, it is possible to manufacture the phase change memory element in which the semiconductor layer is filled in the through hole of the insulating film.

また、この製造方法において、前記絶縁膜上およびその
貫通孔内にカルコゲナイド系の半導体層を堆積させた後
、この半導体層をその融点以上の温度に加熱すれば、半
導体層の堆積時における貫通孔内への半導体の充填が不
完全であっても、半導体層が加熱により流動状態となっ
て絶縁膜上の半導体が貫通孔に流入するから、貫通孔内
に半導体を完全に充填して、貫通孔内に緻密な膜質の半
導体層を形成することができる。
In addition, in this manufacturing method, after depositing a chalcogenide semiconductor layer on the insulating film and in its through-hole, if this semiconductor layer is heated to a temperature equal to or higher than its melting point, the through-hole during deposition of the semiconductor layer can be heated. Even if the filling of the semiconductor inside is incomplete, the semiconductor layer becomes fluid due to heating and the semiconductor on the insulating film flows into the through hole. A dense filmy semiconductor layer can be formed within the hole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示す相転移型
メモリ素子の断面図およびその製造工程図、第3図は本
発明の他の実施例を示す相転移型メモリ素子の断面図、
第4図は従来の相転移型メモリ素子の断面図である。 11・・・基板、12・・・下部電極、13・・・層間
絶縁膜、13a・・・第1の絶縁膜、13b・・・第2
の絶縁膜、14・・・開口、15・・・貫通孔、15・
・・カルコゲナイド系半導体層、17・・・上部電極。
FIGS. 1 and 2 are cross-sectional views of a phase change memory element showing one embodiment of the present invention and a diagram of its manufacturing process, and FIG. 3 is a cross-sectional view of a phase change memory element showing another embodiment of the present invention. figure,
FIG. 4 is a cross-sectional view of a conventional phase change type memory element. DESCRIPTION OF SYMBOLS 11... Substrate, 12... Lower electrode, 13... Interlayer insulating film, 13a... First insulating film, 13b... Second
insulating film, 14... opening, 15... through hole, 15.
... Chalcogenide semiconductor layer, 17... Upper electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁性基板上に形成された下部電極と、この下部
電極を覆って前記基板上に形成された層間絶縁膜と、こ
の絶縁膜に前記下部電極の一部に対応させて設けられた
貫通孔と、この貫通孔内に充填され下端面において前記
下部電極に接するカルコゲナイド系の半導体層と、前記
絶縁膜の上に形成され一部において前記半導体層の上端
面に接する上部電極とからなり、かつ前記貫通孔の直径
を1.5μm〜0.1μmの範囲にしたことを特徴とす
る相転移型メモリ素子。
(1) A lower electrode formed on an insulating substrate, an interlayer insulating film formed on the substrate to cover this lower electrode, and an interlayer insulating film provided on this insulating film to correspond to a part of the lower electrode. It consists of a through hole, a chalcogenide-based semiconductor layer filled in the through hole and in contact with the lower electrode at its lower end surface, and an upper electrode formed on the insulating film and partially in contact with the upper end surface of the semiconductor layer. , and a diameter of the through hole is in the range of 1.5 μm to 0.1 μm.
(2)絶縁性基板上に下部電極とこの下部電極を覆う層
間絶縁膜を形成するとともにこの絶縁膜に前記下部電極
の一部に対応させて直径1.5μm〜0.1μmの貫通
孔を形成する工程と、前記絶縁膜上およびその貫通孔内
にカルコゲナイド系の半導体層を堆積させ、この後前記
絶縁膜上の半導体層をエッチング除去して前記貫通孔内
のみに半導体層を残す工程と、前記絶縁膜の上に前記貫
通孔内の半導体層を覆って上部電極を形成する工程とか
らなることを特徴とする相転移型メモリ素子の製造方法
(2) A lower electrode and an interlayer insulating film covering the lower electrode are formed on an insulating substrate, and a through hole with a diameter of 1.5 μm to 0.1 μm is formed in this insulating film to correspond to a part of the lower electrode. a step of depositing a chalcogenide-based semiconductor layer on the insulating film and in the through hole thereof, and then etching away the semiconductor layer on the insulating film to leave the semiconductor layer only in the through hole; A method for manufacturing a phase change memory element, comprising the step of forming an upper electrode on the insulating film so as to cover the semiconductor layer in the through hole.
(3)絶縁膜上およびその貫通孔内にカルコゲナイド系
の半導体層を堆積させた後、この半導体層をその融点以
上の温度に加熱し、この後前記絶縁膜上の半導体層をエ
ッチング除去することを特徴とする請求項2に記載の相
転移型メモリ素子の製造方法。
(3) After depositing a chalcogenide-based semiconductor layer on the insulating film and in its through-hole, heating this semiconductor layer to a temperature equal to or higher than its melting point, and then etching away the semiconductor layer on the insulating film. 3. The method for manufacturing a phase change memory element according to claim 2.
JP2152677A 1990-06-13 1990-06-13 Phase transition type memory element and its manufacture Pending JPH0445584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152677A JPH0445584A (en) 1990-06-13 1990-06-13 Phase transition type memory element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152677A JPH0445584A (en) 1990-06-13 1990-06-13 Phase transition type memory element and its manufacture

Publications (1)

Publication Number Publication Date
JPH0445584A true JPH0445584A (en) 1992-02-14

Family

ID=15545699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152677A Pending JPH0445584A (en) 1990-06-13 1990-06-13 Phase transition type memory element and its manufacture

Country Status (1)

Country Link
JP (1) JPH0445584A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040909A3 (en) * 1997-03-14 1999-06-17 Micron Technology Inc Method of forming etched structures comprising implantation steps
WO2003050872A1 (en) * 2001-12-12 2003-06-19 Matsushita Electric Industrial Co., Ltd. Nonvolatile memory
DE102004011430A1 (en) * 2004-03-09 2005-09-29 Infineon Technologies Ag Semiconductor memory cell, method for its production and semiconductor memory device
WO2005112118A1 (en) * 2004-05-14 2005-11-24 Renesas Technology Corp. Semiconductor memory
JP2005340837A (en) * 2004-05-27 2005-12-08 Samsung Electronics Co Ltd Semiconductor device comprising phase change memory element covered with oxygen barrier film, electronic system using the same, and method of manufacturing the same
WO2006027887A1 (en) 2004-09-08 2006-03-16 Renesas Technology Corp. Nonvolatile memory
US7037749B2 (en) 2003-03-21 2006-05-02 Samsung Electronics Co., Ltd. Methods for forming phase changeable memory devices
JP2007019559A (en) * 2006-10-23 2007-01-25 Hitachi Ltd Semiconductor storage device and its manufacturing method
WO2007116749A1 (en) * 2006-03-30 2007-10-18 Matsushita Electric Industrial Co., Ltd. Nonvolatile memory element and its manufacturing method
JP2008187182A (en) * 2007-01-30 2008-08-14 Samsung Electronics Co Ltd Semiconductor memory device and its manufacturing method
KR100910876B1 (en) * 2004-09-08 2009-08-06 가부시끼가이샤 르네사스 테크놀로지 Nonvolatile memory
JP2013503480A (en) * 2009-08-28 2013-01-31 インターナショナル・ビジネス・マシーンズ・コーポレーション Chemical mechanical polishing stop layer of fully amorphous phase change memory pore cell

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599840B2 (en) 1997-03-14 2003-07-29 Micron Technology, Inc. Material removal method for forming a structure
US6261964B1 (en) 1997-03-14 2001-07-17 Micron Technology, Inc. Material removal method for forming a structure
US6309975B1 (en) 1997-03-14 2001-10-30 Micron Technology, Inc. Methods of making implanted structures
US6461967B2 (en) 1997-03-14 2002-10-08 Micron Technology, Inc. Material removal method for forming a structure
WO1998040909A3 (en) * 1997-03-14 1999-06-17 Micron Technology Inc Method of forming etched structures comprising implantation steps
US6596648B2 (en) 1997-03-14 2003-07-22 Micron Technology, Inc. Material removal method for forming a structure
US6596642B2 (en) 1997-03-14 2003-07-22 Micron Technology, Inc. Material removal method for forming a structure
US7291857B2 (en) 2001-12-12 2007-11-06 Matsushita Electric Industrial Co., Ltd. Non-volatile memory
WO2003050872A1 (en) * 2001-12-12 2003-06-19 Matsushita Electric Industrial Co., Ltd. Nonvolatile memory
US6844564B2 (en) 2001-12-12 2005-01-18 Matsushita Electric Industrial Co., Ltd. Non-volatile memory
US7763878B2 (en) 2003-03-21 2010-07-27 Samsung Electronics Co., Ltd. Phase changeable memory device structures
US7397092B2 (en) 2003-03-21 2008-07-08 Samsung Electronics Co., Ltd. Phase changable memory device structures
US7037749B2 (en) 2003-03-21 2006-05-02 Samsung Electronics Co., Ltd. Methods for forming phase changeable memory devices
DE102004011430A1 (en) * 2004-03-09 2005-09-29 Infineon Technologies Ag Semiconductor memory cell, method for its production and semiconductor memory device
DE102004011430B4 (en) * 2004-03-09 2008-06-19 Qimonda Ag Semiconductor memory device
US7358520B2 (en) 2004-03-09 2008-04-15 Infineon Technologies Ag Semiconductor memory cell, method for fabricating it and semiconductor memory device
KR101029339B1 (en) * 2004-05-14 2011-04-13 르네사스 일렉트로닉스 가부시키가이샤 Semiconductor memory
JPWO2005112118A1 (en) * 2004-05-14 2008-03-27 株式会社ルネサステクノロジ Semiconductor memory device
JP5281746B2 (en) * 2004-05-14 2013-09-04 ルネサスエレクトロニクス株式会社 Semiconductor memory device
WO2005112118A1 (en) * 2004-05-14 2005-11-24 Renesas Technology Corp. Semiconductor memory
JP2005340837A (en) * 2004-05-27 2005-12-08 Samsung Electronics Co Ltd Semiconductor device comprising phase change memory element covered with oxygen barrier film, electronic system using the same, and method of manufacturing the same
KR100910876B1 (en) * 2004-09-08 2009-08-06 가부시끼가이샤 르네사스 테크놀로지 Nonvolatile memory
WO2006027887A1 (en) 2004-09-08 2006-03-16 Renesas Technology Corp. Nonvolatile memory
JPWO2006027887A1 (en) * 2004-09-08 2008-05-08 株式会社ルネサステクノロジ Nonvolatile storage device
JP4795961B2 (en) * 2004-09-08 2011-10-19 ルネサスエレクトロニクス株式会社 Nonvolatile memory device
US7884346B2 (en) 2006-03-30 2011-02-08 Panasonic Corporation Nonvolatile memory element and manufacturing method thereof
US8227786B2 (en) 2006-03-30 2012-07-24 Panasonic Corporation Nonvolatile memory element
WO2007116749A1 (en) * 2006-03-30 2007-10-18 Matsushita Electric Industrial Co., Ltd. Nonvolatile memory element and its manufacturing method
JP2007019559A (en) * 2006-10-23 2007-01-25 Hitachi Ltd Semiconductor storage device and its manufacturing method
JP2008187182A (en) * 2007-01-30 2008-08-14 Samsung Electronics Co Ltd Semiconductor memory device and its manufacturing method
TWI447904B (en) * 2007-01-30 2014-08-01 Samsung Electronics Co Ltd Semiconductor memory device and method of manufacturing the same
JP2013503480A (en) * 2009-08-28 2013-01-31 インターナショナル・ビジネス・マシーンズ・コーポレーション Chemical mechanical polishing stop layer of fully amorphous phase change memory pore cell

Similar Documents

Publication Publication Date Title
US7214632B2 (en) Using selective deposition to form phase-change memory cells
US6908812B2 (en) Phase change material memory device
JP5360496B2 (en) Phase change memory device using a self-aligned phase change material layer and methods of making and using the same.
KR100668825B1 (en) Phase-change memory device and method for manufacturing the same
KR100805857B1 (en) Phase change memory fabricated using self-aligned processing
KR101009512B1 (en) Phase change current density control structure
KR100763916B1 (en) Method of manufacturing gesbte thin film and method of manufacturing phase change random access memory using the same
US6284643B1 (en) Electrical and thermal contact for use in semiconductor devices
US20040166604A1 (en) Phase changeable memory cells and methods of fabricating the same
JPH0445584A (en) Phase transition type memory element and its manufacture
US20040203183A1 (en) Phase change memory element capable of low power operation and method of fabricating the same
JP2006229238A (en) Phase transformation memory element and its production process
JP2879749B2 (en) Phase change memory device and method of manufacturing the same
JPH0445583A (en) Phase transition type memory element and its manufacture
US5128732A (en) Stacked semiconductor device
US20050184282A1 (en) Phase change memory cell and method of its manufacture
JP2002246561A (en) Storage cell, memory matrix using the same, and their manufacturing methods
TW200832694A (en) Phase change memory and manufacturing method thereof
KR100687757B1 (en) Multi-bit phase change memory cell and method of operating using the same
KR20060089401A (en) Phase change memory device
US20130284998A1 (en) Forming heaters for phase change memories
KR20050111469A (en) Method for fabricating phase changeable memory device
KR100701157B1 (en) Non-volatile memory device having phase change material and method of manufacturing the same
KR100895797B1 (en) Phase change device and method of fabricating the same
KR101069280B1 (en) Method of manufacturing phase change RAM device