JPH0445447A - Exposing mask - Google Patents

Exposing mask

Info

Publication number
JPH0445447A
JPH0445447A JP2154532A JP15453290A JPH0445447A JP H0445447 A JPH0445447 A JP H0445447A JP 2154532 A JP2154532 A JP 2154532A JP 15453290 A JP15453290 A JP 15453290A JP H0445447 A JPH0445447 A JP H0445447A
Authority
JP
Japan
Prior art keywords
light
mask
thin film
particles
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2154532A
Other languages
Japanese (ja)
Inventor
Masahiro Yamada
昌宏 山田
Yoshiharu Ichikawa
吉晴 市川
Toshiyuki Imase
今瀬 敏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Japan Ltd
Original Assignee
Texas Instruments Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Japan Ltd filed Critical Texas Instruments Japan Ltd
Priority to JP2154532A priority Critical patent/JPH0445447A/en
Publication of JPH0445447A publication Critical patent/JPH0445447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PURPOSE:To execute exposing of fine patterns with high accuracy by providing a conductive thin film having light transmission in at least the region of a mask where light shielding films exist, thereby obviating the sticking of particles to the mask or drastically decreasing the sticking. CONSTITUTION:The exposing mask 15 is provided with mask patterns 2 consisting of an opaque metallic layer and the metallic thin film 20 having transmission to exposing light 3 and having an electric conductivity so as to cover the entire surface of the regions 4 where the mask patterns do not exist. The thin film 20 is formed by depositing Ti, W, etc., of 300Angstrom thickness on a substrate 1 and is grounded by a grounding terminal 20a. The static electricity tending to be accumulated on the substrate 1 is effectively released by the presence of such metallic thin film 20 and even if particles have the static electricity, such electricity is sufficiently released. Consequently, the fine particles do not adhere any more to the light transmission regions 4 of the mask 15 or the sticking thereof drastically decreases and, therefore, the sticking of the particles further finer (particularly 0.2 to 0.5mum) than ordinary particle sizes is prevented. The important exposing process is thus attained with the fine patterns and the high accuracy.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は露光マスクに関するものである。[Detailed description of the invention] B. Industrial application field The present invention relates to an exposure mask.

口、従来技術 従来、半導体デバイスの製造において、フォトエツチン
グ工程で使用される露光マスクとしては、例えば第6図
に示すものが知られている。
BACKGROUND OF THE INVENTION Conventionally, as an exposure mask used in a photoetching process in the manufacture of semiconductor devices, for example, one shown in FIG. 6 is known.

即ち、露光光に対して透明なガラス基板1上に、Cr等
の不透明なマスクパターン2が設けられ、露光光3を照
射したときにマスクパターン2のない透明領域4を通し
て透過した光によって露光処理が行われる。
That is, an opaque mask pattern 2 made of Cr or the like is provided on a glass substrate 1 that is transparent to exposure light, and when the exposure light 3 is irradiated, the light transmitted through the transparent area 4 without the mask pattern 2 is used for exposure processing. will be held.

第7図には、露光装置の全体を概略的に示したが、上記
の露光マスク5は、マスキング機構6付きの照明系7と
縮小投影レンズ8との間に配され、また半導体ウェハ9
は投影レンズ8の直下に配されて、所定の露光処理が行
われる。なお、図中の10.11は位置決め用の光学系
であって、ステージ12上のウェハ9に対する露光位置
を設定するのに用いられる。
FIG. 7 schematically shows the entire exposure apparatus, in which the exposure mask 5 is arranged between the illumination system 7 with a masking mechanism 6 and the reduction projection lens 8, and
is arranged directly below the projection lens 8, and predetermined exposure processing is performed. Note that 10.11 in the figure is a positioning optical system, which is used to set the exposure position with respect to the wafer 9 on the stage 12.

上記において、露光マスク5としては、いわゆるレティ
クルまたはフォトマスク等が用いられ、また露光装置も
上記以外の種々のタイプの装置が使用される。ところが
、露光時にマスク5の表面、特に遮光膜非存在領域4に
ゴミ、塵埃等の小粒子が付着していると、その粒子が露
光光を透過させなかったり、乱反射し、マスクパターン
通りの露光ができず、集積回路の微細パターン露光、及
びとの後のエツチングを忠実に実現できないことがある
。従来のマスクにおいては、上記の如き小粒子の付着を
防止するために、例えばHE P A (highef
ficiency particulate air)
  フィルタと称されるフィルタをマスクの管理装置に
搭載し、小粒子を除塵している。これだけの対策では、
マスクの取扱いに制約が生じ、量産向きではない。しか
も、付着する小粒子が帯電によってマスク上に付着する
場合は、従来の除塵機構では除塵が十分ではない。これ
では、特に小さい粒子の付着をも問題となる超微細パタ
ーンの露光に対しては、対応することが困難である。
In the above, a so-called reticle or a photomask is used as the exposure mask 5, and various types of exposure devices other than those mentioned above are also used as the exposure device. However, if small particles such as dirt or dust adhere to the surface of the mask 5 during exposure, especially the area 4 where there is no light shielding film, the particles may not allow the exposure light to pass through or reflect diffusely, making it difficult to expose according to the mask pattern. Therefore, fine pattern exposure of integrated circuits and subsequent etching may not be realized faithfully. In conventional masks, in order to prevent the adhesion of small particles as described above, for example, HEPA (highhef
particulate air)
A filter called a filter is installed in the mask management device to remove small particles. With these measures,
There are restrictions on how to handle the masks, and it is not suitable for mass production. Moreover, if small particles adhere to the mask due to charging, the conventional dust removal mechanism is not sufficient to remove dust. This makes it difficult to cope with the exposure of ultra-fine patterns in which adhesion of particularly small particles is a problem.

ハ0発明の目的 本発明の目的は微細な粒子、または粒子の帯電による付
着をも十分に防止することができ、管理面でも取扱い容
易な露光マスクを提供することにある。
OBJECTS OF THE INVENTION An object of the present invention is to provide an exposure mask that can sufficiently prevent the adhesion of fine particles or particles due to charging, and is easy to handle in terms of management.

二1発明の構成 即ち、本発明は、所定波長の光に対して透過性のある基
体上に遮光膜が所定パターンに設けられ、特に、遮光膜
領域上、その側面及びそのエツジ部、遮光膜非存在領域
も含む全ての領域において、前記光に対して透過性のあ
る導電性薄膜が前記基体上に設けられている露光マスク
に係るものである。
21 Structure of the Invention That is, the present invention provides a light-shielding film provided in a predetermined pattern on a substrate that is transparent to light of a predetermined wavelength. The present invention relates to an exposure mask in which a conductive thin film that is transparent to the light is provided on the base in all regions including non-existent regions.

ホ、実施例 以下、本発明の詳細な説明する。E, Example The present invention will be explained in detail below.

第1図は、第1の実施例による露光マスク15を示すも
のである。
FIG. 1 shows an exposure mask 15 according to a first embodiment.

この露光マスク15はレティクルまたはフォトマスク等
として作製されていてよく、基本的には既述したマスク
5と同様の構成からなっている。
This exposure mask 15 may be manufactured as a reticle, a photomask, or the like, and basically has the same structure as the mask 5 described above.

しかし、注目すべき構成は、不透明金属層(例えば厚さ
200AのCr0層と厚さ300人のCr層との積層膜
)からなるマスクパターン2及びマスクパターン非存在
領域4の全面を覆うように、露光光3に対して透過性が
あってしかも導電性のある金属薄膜20が設けられてい
ることである。
However, the notable structure is that the mask pattern 2 is made of an opaque metal layer (for example, a laminated film of a Cr0 layer with a thickness of 200A and a Cr layer with a thickness of 300A), and the entire surface of the mask pattern non-existent area 4 is covered. , a metal thin film 20 that is transparent to the exposure light 3 and is electrically conductive is provided.

金属薄膜20は例えば、厚さ300人のTi、W等をス
パッタリング技術によって基板1上に堆積させたもので
あり、第7図に示した如き露光装置にセットされた状態
(或いは保管状態)で接地端子20aにより接地される
The metal thin film 20 is made by depositing, for example, Ti, W, etc. to a thickness of 300 nm on the substrate 1 by sputtering technology, and when set in an exposure apparatus (or stored) as shown in FIG. It is grounded by the ground terminal 20a.

上記において、マスクパターン2が非導電性である場合
には、上記のように金属薄膜20をマスクパターン2の
表面(上面及び側面)を含む基板1上の全面に設ける。
In the above, when the mask pattern 2 is non-conductive, the metal thin film 20 is provided on the entire surface of the substrate 1 including the surface (top surface and side surface) of the mask pattern 2 as described above.

この場合、パターンが絶縁性であっても、薄膜20を介
して接地可能である。
In this case, even if the pattern is insulating, it can be grounded via the thin film 20.

第1図に示すマスク15の具体例としては、例えば次の
通りとしてよい。
A specific example of the mask 15 shown in FIG. 1 may be as follows, for example.

基板1: 材質 石英 サイズ 横 縦 厚 透過率 90%以上(436na+ フラツトネス 10μm以下 126.6±0.4  mm 126.6±0.4 閣 2.3±0.1  mm の波長光に対し) 遮光膜2: 材質 Cr / Cr○ 反射率 20%以下(436nm 厚み 500人 導電性薄膜20: の波長光に対し) 材質 Ti又はW 透過率 90%以上(436nmの波長光に対し)厚み 300人 上記したように、本実施例の露光マスク15によれば、
金属薄膜2oの存在によって、基板1上に蓄積されよう
とする静電気を効果的に放出し、また上記した粒子が静
電気を帯びていてもこの静電気も十分に放出することが
できる。この結果、マスク15の特に光透過領域4に微
細粒子が付着することがなくなるか或いは大幅に減少す
るので、通常の粒子サイズ(例えば1μm程度)よりも
更に微細な(特に0.2〜0.5μmの)粒子の付着を
防止でき、半導体製造プロセスの重要な露光プロセス(
ひいてはフォトエツチング工程)を微細なパターンで高
精度に実現することができる。
Substrate 1: Material Quartz Size Width, length and thickness Transmittance 90% or more (436na + flatness 10μm or less 126.6±0.4 mm 126.6±0.4 mm for wavelength light 2.3±0.1 mm) Light shielding Film 2: Material Cr / Cr○ Reflectance 20% or less (436 nm thickness, 500 nm) Conductive thin film 20: Transmittance 90% or more (for 436 nm wavelength light) Thickness 300 nm or more As described above, according to the exposure mask 15 of this embodiment,
Due to the presence of the metal thin film 2o, static electricity that tends to accumulate on the substrate 1 can be effectively discharged, and even if the particles mentioned above are charged with static electricity, this static electricity can also be sufficiently discharged. As a result, the adhesion of fine particles, particularly to the light transmitting region 4 of the mask 15, is eliminated or significantly reduced, so that the particle size is even finer (particularly 0.2 to 0.0 μm) than the normal particle size (for example, about 1 μm). It can prevent the adhesion of particles (5 μm in size) and can be used in the exposure process (
In turn, the photo-etching process) can be realized with fine patterns with high precision.

しかも、小粒子の付着防止は、上記の金属薄膜20の接
地によって実現でき、記述したHEPAフィルタの如き
除塵手段を用いるだけでは付着防止が困難であった小粒
子に対しても、有効な除塵手段となりうるため、マスク
の管理や取扱いが容易となり、ひいては量産性を大いに
向上させることができる。
Moreover, the prevention of adhesion of small particles can be realized by grounding the metal thin film 20 described above, and it is an effective dust removal method even for small particles that are difficult to prevent from adhesion only by using dust removal means such as the HEPA filter described above. Therefore, the management and handling of the mask becomes easier, and mass productivity can be greatly improved.

上記の場合、パターンが微細化してくると、遮光パター
ン2の端部に付着するパーティクルが問題となり、同端
部に付着したパーティクルがパターン2の側方に突出し
てパターン寸法を変化させる(即ち、遮光性パーティク
ルとして遮光パターン寸法を変化させてしまう)ことが
ある、従って、パターン2が非導電性の場合は、少なく
ともパターン側部にも光透過性導電性薄膜20が存在し
ているのが望ましいが、第1図の構成ではそれに十分に
対応できる。
In the above case, as the pattern becomes finer, particles adhering to the ends of the light-shielding pattern 2 become a problem, and the particles adhering to the ends protrude to the sides of the pattern 2, changing the pattern dimensions (i.e., Therefore, if the pattern 2 is non-conductive, it is desirable that the light-transmitting conductive thin film 20 is present at least on the side of the pattern. However, the configuration shown in FIG. 1 can adequately accommodate this.

なお、本実施例のマスク15を製作するには、常法に従
って例えば、遮光膜材料を全面にスパッタリング等で被
着し、更に、フォトリソグラフィー技術で所定パターン
に露光後にエツチングして遮光膜2に形成し、しかる後
に基板1上に導電膜20をスパッタリング等によって全
面に堆積させる。
In order to manufacture the mask 15 of this embodiment, for example, a light-shielding film material is deposited on the entire surface by sputtering or the like according to a conventional method, and then the light-shielding film 2 is formed by etching after exposure to a predetermined pattern using photolithography technology. After that, a conductive film 20 is deposited over the entire surface of the substrate 1 by sputtering or the like.

第2図は、第2の実施例を示すものである。FIG. 2 shows a second embodiment.

この例では、マスクパターン2と基板1との間に金属薄
膜20が介在するように、金属薄膜20を基板1の全面
に形成している。従って、この金属薄膜20を介して上
述したと同様に接地することができるが、パターン2が
導電性である場合に好適である。
In this example, the metal thin film 20 is formed over the entire surface of the substrate 1 so that the metal thin film 20 is interposed between the mask pattern 2 and the substrate 1. Therefore, it is possible to connect to the ground via this metal thin film 20 in the same manner as described above, but this is suitable when the pattern 2 is conductive.

なお、この例のマスク15を製作するには、常法に従っ
て例えば、基板1上に導電膜20をスパッタリング等に
よって堆積させた後、Cr−Cr0の積層膜を全面にス
パッタリング等で被着し、更に、フォトリソグラフィー
技術で所定パターンに露光後にエツチングして上記積層
膜を遮光膜2に形成する。この際、下地の金属薄膜20
はエツチングされることはない。
In order to manufacture the mask 15 of this example, for example, the conductive film 20 is deposited on the substrate 1 by sputtering or the like according to a conventional method, and then a Cr-Cr0 laminated film is deposited on the entire surface by sputtering or the like. Furthermore, the laminated film is formed into the light-shielding film 2 by exposing and etching it into a predetermined pattern using photolithography technology. At this time, the underlying metal thin film 20
will not be etched.

第3図は、第3の実施例を示すものである。FIG. 3 shows a third embodiment.

この例の露光マスク15は、いわゆるフェースダウン構
造として用いられ、その遮光膜(不透明金属層)2を光
入射側とは反対の下側とし、かつ、その下側面に対して
N2等の不活性ガス21を吹き付けて酸化防止用のガス
カーテンを形成した状態で、露光処理を行うものである
The exposure mask 15 in this example is used as a so-called face-down structure, and the light shielding film (opaque metal layer) 2 is on the lower side opposite to the light incident side, and the lower side is coated with an inert material such as N2. Exposure processing is performed in a state in which a gas curtain for preventing oxidation is formed by spraying the gas 21.

このガスカーテン21は酸化防止機能に加えて、マスク
下側面上の付着微粒子又は付着しようとする粒子を飛散
又は遮断する作用もあるので、金属薄膜20による静電
気放出作用に加えて更に小粒子の付着を有効に防止する
ことができる。
In addition to its anti-oxidation function, this gas curtain 21 also has the effect of scattering or blocking fine particles adhering to or attempting to adhere to the lower surface of the mask. can be effectively prevented.

第4図は、第2図において基板1の他の面にも透明導電
性薄膜22を設けた例を示す。
FIG. 4 shows an example in which a transparent conductive thin film 22 is also provided on the other surface of the substrate 1 in FIG. 2.

この導電性薄膜22は、上記の薄膜20と同一材質で同
様の方法で形成してよい、この導電性薄膜22によって
、基板1の下側面に小粒子が付着するのも防止できるか
ら、−層露光精度を向上させることができる。
This conductive thin film 22 may be formed of the same material and by the same method as the thin film 20 described above.This conductive thin film 22 can also prevent small particles from adhering to the lower surface of the substrate 1. Exposure accuracy can be improved.

第5図の例は、第2図において導電性薄膜20を遮光膜
非存在領域4にのみ設けたものである。
In the example shown in FIG. 5, the conductive thin film 20 in FIG. 2 is provided only in the region 4 where no light shielding film exists.

この場合も、導電性薄膜20を共通に接地することがで
きる(特に、導電性薄膜が連なっているとき)、導電性
薄膜が分離されているときは、個々に接地すればよい、
いずれにしても、遮光膜非存在領域4では小粒子の付着
はないので、露光に問題はない。
In this case as well, the conductive thin films 20 can be commonly grounded (especially when the conductive thin films are connected), and when the conductive thin films are separated, they can be grounded individually.
In any case, since there are no small particles attached to the light-shielding film-free region 4, there is no problem with exposure.

以上、本発明の詳細な説明したが、上述の実施例は、本
発明の技術的思想に基いて更に変形が可能である。
Although the present invention has been described in detail above, the embodiments described above can be further modified based on the technical idea of the present invention.

例えば、マスクの各部の材質、形状等は種々変更してよ
い。特に上述の透明導電性膜はTi、W以外の金属等で
形成可能であり、その膜厚も露光光に対して光学的に透
明であれば様々であってよく、またその形成方法も無電
解メツキ等でも形成可能である。遮光膜もCr以外の材
質でもよく、その形成方法もメツキに依ってもよい。
For example, the material, shape, etc. of each part of the mask may be changed in various ways. In particular, the above-mentioned transparent conductive film can be formed of metals other than Ti and W, and its film thickness may vary as long as it is optically transparent to the exposure light, and its formation method can also be electroless. It can also be formed using a metal plate or the like. The light shielding film may also be made of a material other than Cr, and its formation method may also depend on plating.

へ0発明の作用効果 本発明は上述したように、マスクの少なくとも遮光膜非
存在領域(特に、遮光膜領域上、側面及びエツジ部、遮
光膜非存在領域も含む全ての領域)に、光透過性のある
導電性薄膜を設けているので、基体上に小粒子が付着す
る機会を減少させたり、基体上に蓄積されようとする静
電気を効果的に放出し、また粒子が静電気を帯びていて
もこの静電気も十分に放出することができる。この結果
、マスクに粒子が付着することがなくなるか或いは大幅
に減少するので、微細パターンの露光を高精度に行うこ
とができる。
Effects of the Invention As described above, the present invention allows light to pass through at least the light-shielding film-free area of the mask (particularly all areas including the light-shielding film area, the side surfaces and edges, and the light-shielding film-free area). Because it has a conductive thin film that reduces the chance of small particles adhering to the substrate, it effectively releases static electricity that would otherwise accumulate on the substrate, and also prevents particles from being charged with static electricity. This static electricity can also be sufficiently discharged. As a result, particles are not attached to the mask or are significantly reduced, so that fine pattern exposure can be performed with high precision.

しかも、粒子の付着防止は、上記の導電性薄膜の接地に
よって実現でき、HEPAフィルタの如き除塵手段を用
いるだけでは困難な小粒子の除塵が可能となるので、マ
スクの管理や取扱いが容易となり、ひいては量産性を大
いに向上させることができる。
In addition, prevention of particle adhesion can be achieved by grounding the conductive thin film described above, and it becomes possible to remove small particles, which is difficult to do only by using dust removal means such as HEPA filters, making it easier to manage and handle the mask. As a result, mass productivity can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図、第5図は本発明の各
側による露光マスクの各断面図である。 第6図は従来の露光マスクの断面図、第7図は露光装置
の概略図である。 なお、図面に示す符号において、 1・・・・・・・・・基板 2・・・・・・・・・遮光膜 3・・・・・・・・・露光光 4−・・・・・・・遮光膜非存在領域(透明領域)5.
15・・・・・・・・・露光マスク7・・・・・・・・
・照明系 8・・・・・・・・・投影レンズ 9・・・・・・・・・半導体ウェハ 20.22・・・・・・・・・透明導電性薄膜21・・
・・・・・・・不活性ガス である。
1, 2, 3, 4, and 5 are cross-sectional views of exposure masks according to each side of the present invention. FIG. 6 is a sectional view of a conventional exposure mask, and FIG. 7 is a schematic diagram of an exposure apparatus. In addition, in the symbols shown in the drawings, 1...... Substrate 2... Light shielding film 3... Exposure light 4-... ... area where no light shielding film exists (transparent area) 5.
15...Exposure mask 7...
・Illumination system 8...Projection lens 9...Semiconductor wafer 20.22...Transparent conductive thin film 21...
・・・・・・It is an inert gas.

Claims (1)

【特許請求の範囲】 1、光に対して透過性のある基体上に遮光部と透光部と
を有し、前記遮光部は遮光膜パターンと透光性導電性薄
膜との積層を有し、前記透光部は前記透光性導電性薄膜
が延在した薄膜を有し、かつ前記遮光膜の端部側は導電
性を与えられている露光マスク。 2、光に対して透過性のある基体上に遮光膜がパターン
形成され、前記遮光膜の少なくとも側面と遮光膜非存在
領域とを覆う光透過性導電性薄膜が形成されている露光
マスク。 3、光に対して透過性のある基体上に光透過性導電性薄
膜が形成され、この光透過性導電性薄膜上に導電性遮光
膜がパターン形成されている露光マスク。 4、所定波長の光に対して透過性のある基体上に光膜非
存在領域において、前記光に対して透過性のある導電性
薄膜が前記基体上に設けられている露光マスク。
[Claims] 1. A light-shielding portion and a light-transmitting portion are provided on a substrate that is transparent to light, and the light-shielding portion has a laminated layer of a light-shielding film pattern and a transparent conductive thin film. . The exposure mask, wherein the light-transmitting part has a thin film in which the light-transmitting conductive thin film extends, and an end side of the light-shielding film is made conductive. 2. An exposure mask, in which a light-shielding film is patterned on a light-transparent substrate, and a light-transmissive conductive thin film is formed to cover at least the side surfaces of the light-shielding film and areas where the light-shielding film is not present. 3. An exposure mask in which a light-transmitting conductive thin film is formed on a light-transparent substrate, and a conductive light-shielding film is patterned on the light-transmitting conductive thin film. 4. An exposure mask, wherein a conductive thin film that is transparent to light of a predetermined wavelength is provided on a substrate that is transparent to light of a predetermined wavelength in a region where no light film exists.
JP2154532A 1990-06-12 1990-06-12 Exposing mask Pending JPH0445447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2154532A JPH0445447A (en) 1990-06-12 1990-06-12 Exposing mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2154532A JPH0445447A (en) 1990-06-12 1990-06-12 Exposing mask

Publications (1)

Publication Number Publication Date
JPH0445447A true JPH0445447A (en) 1992-02-14

Family

ID=15586319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2154532A Pending JPH0445447A (en) 1990-06-12 1990-06-12 Exposing mask

Country Status (1)

Country Link
JP (1) JPH0445447A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294753A (en) * 2005-04-07 2006-10-26 Htl:Kk Method of using photomask

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294753A (en) * 2005-04-07 2006-10-26 Htl:Kk Method of using photomask

Similar Documents

Publication Publication Date Title
TWI270746B (en) Anti-ESD photomask blank
EP0083397A2 (en) Methods of forming electronic microcircuits
JPH0690506B2 (en) Photo mask
JP3912949B2 (en) Photomask forming method and semiconductor device manufacturing method
JPS6086545A (en) Mask protective film
JPH0445447A (en) Exposing mask
JP2000098585A (en) Semiconductor manufacture equipment and storage facility therefor
EP0051402B1 (en) A photomask for, and a method of, producing semiconductor devices
KR100526527B1 (en) Photomask and foaming mask pattern using the same
JPH05100410A (en) Reticule
KR20010088340A (en) A method of isolating a reticle from electrostatic discharge
JP2500526B2 (en) Photomask blanks and photomasks
JP3242840U (en) An optical element with an optical film having a coating pattern structure capable of anti-scattering and anti-interference
JPH01237660A (en) Photomask
JPH03157653A (en) Reticle
JP2589060B2 (en) Reduction projection exposure method
JPS6118955A (en) Reticle mask
JPH03168641A (en) Photomask
JPS6053871B2 (en) Exposure method
JP2658317B2 (en) Mask substrate
JPH0547624A (en) Exposure apparatus
JPS63212937A (en) Photomask blank and photomask
KR0138279B1 (en) Exposure method and therein used mask
JP2791757B2 (en) Semiconductor mask and method of manufacturing the same
JPH05265179A (en) Photomask and its production