JPH0445430A - Waveguide type wavelength converting element - Google Patents

Waveguide type wavelength converting element

Info

Publication number
JPH0445430A
JPH0445430A JP15456190A JP15456190A JPH0445430A JP H0445430 A JPH0445430 A JP H0445430A JP 15456190 A JP15456190 A JP 15456190A JP 15456190 A JP15456190 A JP 15456190A JP H0445430 A JPH0445430 A JP H0445430A
Authority
JP
Japan
Prior art keywords
waveguide
light
wave
refractive index
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15456190A
Other languages
Japanese (ja)
Inventor
Yoshinori Ota
太田 義徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15456190A priority Critical patent/JPH0445430A/en
Publication of JPH0445430A publication Critical patent/JPH0445430A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the stable, high-productivity element which has no spherical aberration to SHG output light and high tolerance to design, manufacture, and temperature variation by structuring the element so that both fundamental wave light and secondary higher harmonic generating(SHG) output light become channel waveguide light. CONSTITUTION:A linear channel type waveguide 2 where light is transmitted in a (z)-axis direction is formed on the (x) (or (y)) surface of a crystal material which has a constant dxy (x, y=1,2, or 3, and xnot equal to y) contributing to the secondary nonlinear optical effect between orthogonal polarized light beams, a dielectric film 3 which has a lower refractive index than the channel type waveguide is provided on the channel type waveguide, and a metal film 4 is provided which varying in the covering width of the channel waveguide on the dielectric film in the light transmitting direction. The equivalent refractive indexes of the fundamental wave and secondary higher harmonic cross the propagation direction slantingly and the energy of the wave motion of one wave is converted into the other as the wave is propagated. Even if there is variation in equivalent refractive index due to variation in ambient temperature or a setting error due to a manufacture error to some extent, the conversion efficiency does not vary, so the element is rich in stability and productivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コヒーレントな短波長小型光源の実現を可能
にする、導波路型の波長変換素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a waveguide-type wavelength conversion element that makes it possible to realize a coherent short-wavelength compact light source.

〔従来の技術〕[Conventional technology]

波長変換素子とくに第2次高調波発生(SHG)素子は
、エキシマレーザなどでは得にくいコヒーレントな短波
長光を得るデバイスとして産業上極めて重要である。
Wavelength conversion elements, especially second harmonic generation (SHG) elements, are extremely important in industry as devices that obtain coherent short wavelength light that is difficult to obtain with excimer lasers or the like.

半導体レーザ(LD)は小型で高出力のコヒーレント光
を発振する光源として各種の光通信機器や光情報機器に
使用されている。現在この半導体レーザから得ら7れる
光の波長は0.78μm〜1.55μmの近赤外領域の
波長である。この半導体レーザをデイスプレィ等、さら
に広く機器に応用するために、赤色、緑色、青色等、よ
り短波長の光が求められているが、現在の技術ではこの
種の半導体レーザをにわかに実現するのは難しい、半導
体レーザ出力程度の低入力パワーでも、効率よく波長変
換できる波長変換素子が実現されれば、その効果は甚大
である。
Semiconductor lasers (LDs) are used in various optical communication devices and optical information devices as compact light sources that oscillate high-power coherent light. Currently, the wavelength of light obtained from this semiconductor laser is in the near-infrared region of 0.78 μm to 1.55 μm. In order to apply this semiconductor laser to a wider range of devices such as displays, light with shorter wavelengths such as red, green, and blue is required, but with current technology, it is difficult to quickly realize this type of semiconductor laser. If a wavelength conversion element that can efficiently convert wavelengths even with difficult input power as low as the output of a semiconductor laser could be realized, the effect would be enormous.

近年半導体レーザの製作技術が発達して、従来にも増し
て高出力の特性が得られるようになってきた。このなめ
、先導波路型のSHG素子を構成すれば、基本波を導波
路に閉じ込めることによるパワー密度の増大と、光の回
折によるエネルギ密度の減少の回避が期待でき、半導体
レーザ程度の光強度でも、比較的高い変換高率で波長変
換素子を実現できる可能性がある。その様な例として、
ニオブ酸リチウム結晶に光導波路を形成し、この先導波
路に近赤外光を透過し、これがら結晶基板中に放射(チ
ェレンコフ輻射)される第2次高調波を得る方式のSH
G素子の発明がある(特開昭60−14222、特開昭
6l−94031)。
In recent years, semiconductor laser manufacturing technology has developed, and it has become possible to obtain higher output characteristics than ever before. By configuring a guided waveguide type SHG element, it is expected to increase the power density by confining the fundamental wave in the waveguide and avoid reducing the energy density due to light diffraction. , it is possible to realize a wavelength conversion element with a relatively high conversion rate. As such an example,
SH is a method in which an optical waveguide is formed in a lithium niobate crystal, near-infrared light is transmitted through the leading waveguide, and second harmonics are obtained from this light which is radiated into the crystal substrate (Cherenkov radiation).
There is an invention of a G element (Japanese Patent Laid-Open No. 60-14222, Japanese Patent Laid-Open No. 61-94031).

この方式のSHG素子は、基本波とSHG波との位相整
合条件(位相速度の一致化)が自動的に取れているため
、精密な温度調節が必要ないという特長を持つ反面、S
HG出力が基板放射光であるため波面が特異で、収差の
きつい、あたかも「細い眉毛」の様な強度分布の光が基
板の端面がら出てくる。このため、この光をガウス状強
度分布の通常の使いやすいビームに変換するには、この
収差を補正する高級なレンズを必要とする。また、この
構成ではSHG波の伝搬方向が基本波とは角度を有して
異なるため、変換効率が、同方向の場合には素子の長さ
しの2乗に比例するのに反し、単にLの1乗に比例する
だけであって、導波光の回折損が少ないという特徴は利
用されていない。
This type of SHG element has the advantage that it does not require precise temperature control because the phase matching condition (matching of phase velocity) between the fundamental wave and the SHG wave is automatically established.
Since the HG output is substrate radiation, light with a unique wavefront, severe aberrations, and an intensity distribution resembling a "thin eyebrow" is emitted from the end surface of the substrate. Therefore, converting this light into a normal, easy-to-use beam with a Gaussian intensity distribution requires a high-grade lens that corrects for this aberration. In addition, in this configuration, since the propagation direction of the SHG wave is angularly different from the fundamental wave, the conversion efficiency is simply proportional to the square of the length of the element, whereas in the case of the same direction, the conversion efficiency is proportional to the square of the length of the element. It is only proportional to the first power of , and the characteristic that the diffraction loss of the guided light is small is not utilized.

SHG波も基本波も同じチャンネル導波光であれば、こ
のような不都合は生じない。
If the SHG wave and the fundamental wave are guided in the same channel, such a problem will not occur.

位相整合条件すなわち位相速度の一致化の程度は、10
−5以下の精度を必要とする。導波光の位相速度すなわ
ち等偏屈折率は、波長や屈折率の温度変化のみならず、
導波路の屈折率、厚さ、幅によって大きく影響を受け、
各種の導波路製作技術を駆使しても、再現性、生産性よ
く上記の条件を実現するのは困難であり工業製品として
世にまだ出現していない。
The phase matching condition, that is, the degree of matching of phase velocities is 10
Requires accuracy of -5 or less. The phase velocity of guided light, that is, the equipolarized refractive index, is affected not only by temperature changes in wavelength and refractive index, but also by changes in wavelength and refractive index.
It is greatly influenced by the refractive index, thickness, and width of the waveguide.
Even if various waveguide manufacturing techniques are used, it is difficult to achieve the above conditions with good reproducibility and productivity, and no industrial product has yet appeared in the world.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、上述の従来の導波型SHG素子の持つ
難点を取り除き、基本波光も5H(Jカ光もともにチャ
ンネル導波光となる構造であって、生産性の高い導波路
型波長変換素子を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the conventional waveguide-type SHG element described above, and to provide a structure in which both the fundamental wave light and the 5H (J) light become channel-guided light, thereby achieving highly productive waveguide-type wavelength conversion. The purpose is to provide devices.

〔課題を解決するための手段〕[Means to solve the problem]

直交する偏光間の2次の非線形光学効果に関与する定数
dxy(X、y=1.2,3、x#y)を有する結晶材
料のX面(またはy面)に、光透過方向が2軸方向の直
線のチャンネル状の導波路を形成し、該チャンネル状導
波路の上に該導波路の有する屈折率よりも低い屈折率の
誘電体の膜を設け、該誘電体膜の上にあって前記チャン
ネル導波路を覆う幅を光透過方向に変化させて金属膜を
設けることによって、基本波に直交する偏光で無調整で
安定に2次高調波を発生できる導波路型波長変換素子が
得られる。
The light transmission direction is 2 on the A straight channel-shaped waveguide in the axial direction is formed, a dielectric film having a refractive index lower than that of the waveguide is provided on the channel-shaped waveguide, and a dielectric film having a refractive index lower than that of the waveguide is provided. By providing a metal film with the width covering the channel waveguide changed in the light transmission direction, a waveguide-type wavelength conversion element that can stably generate second harmonics without adjustment with polarized light orthogonal to the fundamental wave can be obtained. It will be done.

〔実施例〕〔Example〕

以下本発明を実施例に基づき、図面を用いて詳細に説明
する。
Hereinafter, the present invention will be described in detail based on examples and with reference to the drawings.

第1図は本発明の導波路型波長変換素子の一実施例の構
造を示す図である。1は二次の非線形光学効果を有する
結晶、例えばβ−BaB204(ベータはう酸バリウム
結晶、通称BBO)結晶板であり、基板方位はX板(す
なわち、基板に立てた法線はX軸)である。2はBBO
結晶1のX面に形成されたBBO結晶より屈折率の少し
高い例えばMgO(酸化マグネシウム)のストリップ状
の装荷型導波路で、その光透過方向は結晶のy軸方向に
採っである。MgOの装荷型チャンネル導波路2をもっ
たBBO結晶の表面は、MgOより屈折率の低い誘電体
、本実施例てはSi○2膜3、をCVD法やスパッタ法
等の成膜法を用いて全面にかぶせである。さらに、5i
02膜3の上には、金等の金属膜4が設けである。この
金属膜4はS i 02 MBの全面ではなく部分的で
あって、金属膜のある部分の幅がチャンネル導波路2の
上で光透過方向に徐々に変わるように設定されている。
FIG. 1 is a diagram showing the structure of an embodiment of the waveguide type wavelength conversion element of the present invention. 1 is a crystal having a second-order nonlinear optical effect, for example, a β-BaB204 (beta barium oxalate crystal, commonly known as BBO) crystal plate, and the substrate orientation is the X plate (that is, the normal line to the substrate is the X axis). It is. 2 is BBO
It is a strip-shaped loaded waveguide made of, for example, MgO (magnesium oxide), which has a slightly higher refractive index than the BBO crystal formed on the X-plane of the crystal 1, and its light transmission direction is taken in the y-axis direction of the crystal. The surface of the BBO crystal having the MgO-loaded channel waveguide 2 is coated with a dielectric material having a refractive index lower than that of MgO, such as a Si○2 film 3 in this example, using a film forming method such as CVD or sputtering. It is covered completely. Furthermore, 5i
A metal film 4 made of gold or the like is provided on the 02 film 3. The metal film 4 is not formed on the entire surface of the S i 02 MB but on a portion thereof, and is set so that the width of a certain portion of the metal film gradually changes in the light transmission direction on the channel waveguide 2 .

基本波として波長0.83μmのTMMB2導波路の一
端から入射させる。基本波5は、MgOのチャンネル導
波路2とBBO結晶1の境界付近に閉じ込められて進む
につれ、BBO結晶1の持つ二次の非線形光学定数d3
1を介して、基本波5とは偏光が直交するTE波の二次
高調波が励起されていく。この二次高調波も基本波と同
様にチャンネル導波路2とBBO結晶1の境界付近に閉
じ込められた導波モードとなって伝搬し出射光6となっ
て結晶を出射する。
A fundamental wave having a wavelength of 0.83 μm is made to enter from one end of the TMMB2 waveguide. As the fundamental wave 5 is confined near the boundary between the MgO channel waveguide 2 and the BBO crystal 1 and propagates, the second-order nonlinear optical constant d3 of the BBO crystal 1
1, the second harmonic of the TE wave whose polarization is orthogonal to the fundamental wave 5 is excited. Like the fundamental wave, this second harmonic also becomes a waveguide mode confined near the boundary between the channel waveguide 2 and the BBO crystal 1, propagates, and exits the crystal as an output light 6.

BBO結晶は、noonsの光学的1軸性の異方性を持
つ。第1図でS i 02と金属膜がなく、BBO結晶
の上に単にMgOのチャンネル導波路が載った状態での
光の伝搬を想定したとき、MgOの厚さに対する基本波
の伝搬モード、二次高調波モード導波の等偏屈折率の変
化を表わしたのが第2図である(基本波を波長0.83
μmの半導体レーザ光としている)。MgOの厚さtを
0.19μmより薄く設定すると、基本波(TM(ω)
)の等偏屈折率は、2次高調波の等偏屈折率(TE (
2ω))より大きくなる。MgOの厚さtを0.18μ
m付近に設定し、この上に5i02と金属膜とを上述の
第1図の構成で説明したように設ける。
The BBO crystal has optical uniaxial anisotropy of noons. In Figure 1, assuming light propagation in a state where there is no S i 02 and metal film and only an MgO channel waveguide is placed on the BBO crystal, the fundamental wave propagation mode with respect to the MgO thickness, Figure 2 shows the change in the equipolarized refractive index of harmonic mode waveguide (the fundamental wave is set at a wavelength of 0.83
(μm semiconductor laser light). When the thickness t of MgO is set to be thinner than 0.19 μm, the fundamental wave (TM(ω)
) is the equipolarized refractive index of the second harmonic (TE (
2ω)) becomes larger. The thickness t of MgO is 0.18μ
5i02 and a metal film are provided thereon as explained in connection with the structure of FIG. 1 above.

よく知られているように、導波路の上にクラッド層を介
して金属膜を近付けると、7Mモードの等偏屈折率は大
幅に減少し、逆にTEモードは殆ど変化しない(この現
象を理論的ならびに実験的に検討した論文としては、電
子通信学会論文誌C所収、論文番号昭55−141、伊
藤正隆他著「モードカットオフ形金属クラッド光ストリ
ップライン構造モードフィルタ」がある)。
As is well known, when a metal film is brought close to the top of the waveguide via a cladding layer, the equipolarized refractive index of the 7M mode decreases significantly, while the TE mode hardly changes (this phenomenon can be explained theoretically). A paper that has been experimentally and experimentally investigated is ``Mode cut-off type metal clad optical strip line structure mode filter'' by Masataka Ito et al., published in the Transactions of the Institute of Electronics and Communication Engineers C, paper number 1982-141).

第1図の実施例の構造で示したように、チャンネル導波
路2上に載っている金属膜の幅が光透過方向に徐々に変
化している構成では、基本波TMモードおよび二次高調
波TEモード各々の等偏屈折率の光透過方向への変化の
様子は、第3図に示すように、基本波7Mモードの透過
屈折率は、光の進む方向につれチャンネル導波路の上に
位置する金属膜の面積の大きさに連れて徐々に低下する
のに対し、2次高調波TEモードは殆ど一定であり、導
波路途中の何処かで二つの等偏屈折率は交差する。
As shown in the structure of the embodiment shown in FIG. As shown in Figure 3, the change in the equipolarized refractive index of each TE mode in the light transmission direction is such that the transmission refractive index of the fundamental wave 7M mode is located above the channel waveguide as the light travels. While it gradually decreases as the area of the metal film increases, the second harmonic TE mode remains almost constant, and the two equipolarized refractive indices intersect somewhere along the waveguide.

これもよく知られているように、二つの結合した波動の
チャンネル導波路(この場合には、基本波7Mモードと
二次高調波TEモード)の位相定数(等偏屈折率)が伝
搬方向に斜めに交差しており、その傾き角が適切であれ
ば、チャンネル導波路の長さを成る長さ以上にしておけ
ば長さを厳密に定めなくとも、一方の波動のエネルギー
は伝搬するにつれて他方に(理論的には100%)変換
される(M、G、F、ウィルソン氏ならびにG。
As is also well known, the phase constant (equipolarized refractive index) of the two coupled wave channel waveguides (in this case, the fundamental 7M mode and the second harmonic TE mode) is in the propagation direction. If they intersect diagonally, and the inclination angle is appropriate, the energy of one wave will be transferred to the other as it propagates, even if the length is not strictly determined, as long as the length of the channel waveguide is greater than or equal to the length of the channel waveguide. (theoretically 100%) (M, G, F, Wilson and G.

A、チー氏の共著の論文「楔状光方向性結合器(Tap
ered 0ptical Directiona! 
Coupler ) JI E E E Transa
ction on Microwave Theory
 andTechniques第23巻、第1号、85
頁から94頁、1975年1月発行に詳述されている)
、即ち、第1図の本実施例においては、S i 02膜
3の厚さや、金属膜4のチャンネル導波路上の輪郭線の
導波路となす傾きやカーブを適切に定めておけば、基本
波から二次高調波への完全変換が実現する。さらに、等
偏屈折率の交差は光透過方向の何処かで生ずる。このた
め、周囲の温度の変動による等偏屈折率の変化や製作誤
差による設定誤差が成程度あっても、変換効率の変動が
起こることがなく、安定性に富み、生産性に富む。
A paper co-authored by Mr. Qi “Wedge-shaped optical directional coupler (Tap
ered 0ptical Directiona!
Coupler ) JI E E E Transa
ction on Microwave Theory
andTechniques Volume 23, No. 1, 85
(pages 94, published January 1975)
That is, in the present embodiment shown in FIG. 1, if the thickness of the S i 02 film 3 and the slope and curve of the contour line on the channel waveguide of the metal film 4 are determined appropriately, the basic Complete conversion of waves to second harmonics is achieved. Furthermore, the intersection of equipolarized refractive indices occurs somewhere in the light transmission direction. Therefore, even if there is a change in the equipolar refractive index due to fluctuations in ambient temperature or a setting error due to manufacturing error, the conversion efficiency does not fluctuate, resulting in high stability and high productivity.

このような条件は、非線形光学結晶としては上の実施例
で上げたBBOに限るものではない。短い波長まで透過
波長領域の延びており、直交する偏光間の2次の非線形
光学効果・に関与する定数631やd32が大きい他の
非線形光学結晶材料、例えばLiB505(リチウム・
トリボレイト;ホウ素酸リチウム)結晶やL i N 
b O3、(リチウム・ナイオベイト;ニオブ酸リチウ
ム)結晶、KNbO,(ボタシウム・ナイオベイト;ニ
オブ酸カリウム)結晶、K T’ i 0 P O4(
ボタシウム・タイタニル・フォスフエイト)結晶等を用
いても可能である。
Such conditions are not limited to the BBO mentioned in the above embodiment as a nonlinear optical crystal. Other nonlinear optical crystal materials, such as LiB505 (lithium
triborate; lithium borate) crystals and LiN
b O3, (lithium niobate; lithium niobate) crystal, KNbO, (bothium niobate; potassium niobate) crystal, K T' i 0 P O4 (
It is also possible to use crystals such as botium titanyl phosphate.

これらの結晶の場合には、二次高調波が0.4μm帯(
基本波が半導体レーザ光の波長帯(〜0゜8μm帯))
では、n、> n、 、n、であるため、2偏光のモー
ドがTMとなるように、すなわち、2板を用いればよい
In the case of these crystals, the second harmonic is in the 0.4 μm band (
The fundamental wave is in the wavelength range of semiconductor laser light (~0°8μm band))
Then, since n, > n, , n, it is sufficient to use two plates so that the two polarized light modes become TM.

また、近年材料開発のすすんでいる、有機非線形結晶も
同様に用いることが出来る。
Furthermore, organic nonlinear crystals, whose materials have been developed in recent years, can also be used in the same way.

また、導波路を形成する方法として誘電体を装荷する場
合を述べたが、ニオブ酸リチウム結晶でよく知られてい
る、Ti等の原子半径の大きい原子の熱拡散やプロトン
交換法、外拡散法などの導波路形成技術を用いることも
できる。
In addition, we have described the case of loading a dielectric as a method for forming a waveguide, but thermal diffusion of atoms with a large atomic radius such as Ti, proton exchange method, and external diffusion method, which are well known for lithium niobate crystals, It is also possible to use waveguide formation techniques such as the following.

〔発明の効果〕〔Effect of the invention〕

以上説明のように、本発明によれば基本波光もSHG出
力光も、ともにチャンネル導波光となる構造であって、
従って、SHG出力光に波面収差のない、また設計トレ
ランス、製作トレランス、周囲温度変化に対するトレラ
ンスのいずれも高く、安定で生産性の高い導波路型波長
変換素子が得られる。
As explained above, according to the present invention, both the fundamental wave light and the SHG output light are channel guided light, and
Therefore, it is possible to obtain a waveguide type wavelength conversion element that has no wavefront aberration in the SHG output light, has high design tolerance, manufacturing tolerance, and tolerance to changes in ambient temperature, and is stable and highly productive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の導波路型波長変換素子の構
造を説明する斜視図であり、第2図及び第3図は、本発
明の詳細な説明するための基本波、2次高調波の透過屈
折率の振舞いを説明する図である。 ・・・ B B○結晶、 2・・・MgO, 3・・・S i ○2 膜、 4・・・金属膜。
FIG. 1 is a perspective view illustrating the structure of a waveguide type wavelength conversion element according to an embodiment of the present invention, and FIGS. 2 and 3 are fundamental wave, secondary wave, and FIG. 3 is a diagram illustrating the behavior of the transmission refractive index of harmonics. ...B B○ crystal, 2...MgO, 3...Si○2 film, 4...metal film.

Claims (1)

【特許請求の範囲】[Claims] 直交する偏光間の2次の非線形光学効果に関与する定数
d_x_y(x、y=1、2、3、x≠y)を有する結
晶材料のx面(またはy面)に、光透過方向がz軸方向
の直線のチャンネル状の導波路を形成し、該チャンネル
状導波路の上に該導波路の有する屈折率よりも低い屈折
率の誘電体の膜を設け、該誘電体膜の上にあって前記チ
ャンネル導波路を覆う幅を光透過方向に変化させて金属
膜を設けたことを特徴とする導波路型波長変換素子。
The light transmission direction is z in the x-plane (or y-plane) of a crystal material having a constant d_x_y (x, y=1, 2, 3, x≠y) that is involved in the second-order nonlinear optical effect between orthogonal polarizations. A straight channel-shaped waveguide in the axial direction is formed, a dielectric film having a refractive index lower than that of the waveguide is provided on the channel-shaped waveguide, and a dielectric film having a refractive index lower than that of the waveguide is provided. A waveguide-type wavelength conversion element characterized in that a metal film is provided with a width covering the channel waveguide varying in the light transmission direction.
JP15456190A 1990-06-13 1990-06-13 Waveguide type wavelength converting element Pending JPH0445430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15456190A JPH0445430A (en) 1990-06-13 1990-06-13 Waveguide type wavelength converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15456190A JPH0445430A (en) 1990-06-13 1990-06-13 Waveguide type wavelength converting element

Publications (1)

Publication Number Publication Date
JPH0445430A true JPH0445430A (en) 1992-02-14

Family

ID=15586937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15456190A Pending JPH0445430A (en) 1990-06-13 1990-06-13 Waveguide type wavelength converting element

Country Status (1)

Country Link
JP (1) JPH0445430A (en)

Similar Documents

Publication Publication Date Title
US5022729A (en) Optical waveguide and second harmonic generator
JP2693582B2 (en) Wavelength conversion element
JP3848093B2 (en) Optical waveguide device, optical wavelength conversion device, and optical waveguide device manufacturing method
EP0377988A2 (en) Wavelength converting optical device
US4974923A (en) Gap tuned optical waveguide device
JP2822778B2 (en) Wavelength conversion element
JPH0263026A (en) Waveguide type wavelength converting element
JP2676743B2 (en) Waveguide type wavelength conversion element
JPH0445430A (en) Waveguide type wavelength converting element
US5168388A (en) Optical waveguide device and optical second harmonic generator using the same
JP2658381B2 (en) Waveguide type wavelength conversion element
JPH01257922A (en) Waveguide type wavelength converting element
JPH0451124A (en) Waveguide type wavelength converting element
JP2982366B2 (en) Waveguide type wavelength conversion element
JP2004020571A (en) Wavelength transformation device
JPH03213832A (en) Second higher harmonics generating element and production thereof
Lotspeich Single-crystal electrooptic thin-film waveguide modulators for infrared laser systems
JP2738155B2 (en) Waveguide type wavelength conversion element
JPH0262522A (en) Waveguide type wavelength converting element
JPH06194703A (en) Wavelength converting element
JPH03256031A (en) Waveguide-type wavelength conversion element
JPH05249520A (en) Optical second higher harmonic generator
JP2973463B2 (en) Optical waveguide device
JP2666540B2 (en) Waveguide type wavelength conversion element
JPH02189527A (en) Waveguide type wavelength converting element