JPH0445278A - Method and device for synthesizing thin film - Google Patents
Method and device for synthesizing thin filmInfo
- Publication number
- JPH0445278A JPH0445278A JP15478690A JP15478690A JPH0445278A JP H0445278 A JPH0445278 A JP H0445278A JP 15478690 A JP15478690 A JP 15478690A JP 15478690 A JP15478690 A JP 15478690A JP H0445278 A JPH0445278 A JP H0445278A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- positive electrode
- light
- photoreceptor
- vacuum container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 29
- 230000002194 synthesizing effect Effects 0.000 title claims description 4
- 238000000034 method Methods 0.000 title claims 3
- 239000002245 particle Substances 0.000 claims abstract description 15
- 230000001678 irradiating effect Effects 0.000 claims abstract 3
- 239000000758 substrate Substances 0.000 claims description 16
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 238000003786 synthesis reaction Methods 0.000 claims description 8
- 239000000470 constituent Substances 0.000 claims description 2
- 108091008695 photoreceptors Proteins 0.000 abstract description 20
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 229910003460 diamond Inorganic materials 0.000 abstract description 2
- 239000010432 diamond Substances 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は原料ガスのイオン化粒子を利用して高品質な薄
膜を、複写狼 レーザープリンター等に用いられる感光
体に代表される光導電性基体上に合成する薄膜合成方法
および薄膜合成装置に関するものであも
従来の技術
以下へ ダイヤモンド状薄膜の合成について従来の技術
を説明する。[Detailed Description of the Invention] Industrial Field of Application The present invention utilizes ionized particles of a raw material gas to form a high-quality thin film onto a photoconductive substrate, such as a photoreceptor used in a laser printer or the like. Prior Art Regarding Thin Film Synthesis Methods and Thin Film Synthesis Apparatus Conventional techniques for synthesizing diamond-like thin films will be explained below.
第2図は例えCL Th1n 5olid Fi
1ms第35巻(1976年)第255頁に示された従
来の直流プラズマCVD法によるダイヤモンド状薄膜の
合成例であa 直流プラズマCVD法は装置構成が簡素
であり、基体が電極と対向して配置されるた数 大面積
基体への薄膜の均一合成が容易である等の優れた特徴を
有していも第2図において、ダイヤモンド状薄膜15が
その表面上に合成される基体16は負電極17上に設置
され 真空容器12にメタンガスをガス供給源11から
所望の圧力となるように供給すa しかる後に負電極1
7と正電極13との間に直流電源19の調整で所望の電
圧を印加すると、前記負電極17と正電極13との間で
メタンガスのプラズマ14が発生す4
プラズマ14中にはダイヤモンド状薄膜15の構成元素
である炭素を含むイオン化粒子が存在しこのイオン化粒
子が負電極17方向に加速され基体16上を照射するこ
とでダイヤモンド状薄膜15が期待16上に合成されも
発明が解決しようとする課題
ところが前記従来の技術では基体として光導電性基体を
用いて、その表面にダイヤモンド状薄膜を合成すること
は不可能であった
その原因ζ瓜 光導電性基体は光が照射されないと絶縁
性を示すた八 従来の直流プラズマCVD法では光導電
性基体上にイオン化粒子がチャージアップしてしま八
炭化水素ガスのプラズマが瞬時に消滅してしまうためで
あム このようにプラズマが消滅してしまうと、イオン
化粒子の加速も行われな(なることは言うまでもな(〜
そのたa 具体的にCat 例えば耐久寿命の向上が
望まれている感光体に その表面保護膜としてダイヤモ
ンド状薄膜を合成することは 以上記した従来の技術で
は不可能であつ九
課題を解決するための手段
上記課題を解決するために 請求項(1)記載の発明に
あって(よ イオン化粒子の照射と同時に前記基体が光
導電性を示す光を前記基体表面に照射する様になすもの
であム
また請求項(2)記載の発明にあってEL ガス供給
源と、真空容器と、真空ポンプとイオン化粒子発生手段
とを有し 真空容器内に光導電性基体を設置する負電極
と、光が透過可能な正電極を基体に対向して設置すると
ともに 基体が光導電性を示す光を発生する光源を真空
容器1 もしくは真空容器外の少なくともいずれか一方
の空間凶正電極を介して設置して薄膜合成装置を構成す
る様になすものであム
作用
上記手段により、ダイヤモンド状薄膜の合成中に感光体
表面上に光を照射り、、Ji光体に導電性を付与するこ
とが可能となム その結果 感光体にはイオン化粒子に
よるチャージアップが発生しなし〜 従って、炭化水素
ガスのプラズマは安定して持続し またイオン化粒子が
負電極方向に加速され 感光体上を照射することでダイ
ヤモンド状薄膜の合成が可能となる。Figure 2 is an example of CL Th1n 5olid Fi
This is an example of synthesis of a diamond-like thin film by the conventional DC plasma CVD method shown in 1ms Vol. 35 (1976), p. In FIG. 2, the substrate 16 on which the diamond-shaped thin film 15 is synthesized has a negative electrode. 17, methane gas is supplied to the vacuum container 12 from the gas supply source 11 to a desired pressure, and then the negative electrode 1
When a desired voltage is applied between the negative electrode 17 and the positive electrode 13 by adjusting the DC power source 19, a methane gas plasma 14 is generated between the negative electrode 17 and the positive electrode 13. Even if there are ionized particles containing carbon, which is a constituent element of 15, and these ionized particles are accelerated in the direction of the negative electrode 17 and irradiated onto the substrate 16, a diamond-like thin film 15 is synthesized on the expected 16. However, with the conventional techniques mentioned above, it was impossible to synthesize a diamond-like thin film on the surface of a photoconductive substrate. In the conventional DC plasma CVD method, ionized particles are charged up on the photoconductive substrate.
This is because the hydrocarbon gas plasma instantly disappears.It goes without saying that when the plasma disappears like this, the ionized particles are not accelerated (~
Specifically, for example, it is impossible to synthesize a diamond-like thin film as a surface protective film on a photoreceptor whose durability is desired to be improved using the conventional techniques described above. Means for Solving the Problems In the invention as set forth in claim (1), the surface of the substrate is irradiated with light that causes the substrate to exhibit photoconductivity at the same time as the ionized particles are irradiated. In addition, the invention according to claim (2) includes an EL gas supply source, a vacuum container, a vacuum pump, and an ionized particle generating means, and a negative electrode in which a photoconductive substrate is placed in the vacuum container; A positive electrode through which the light can be transmitted is installed opposite to the substrate, and a light source that generates light that shows the substrate is photoconductive is installed via the spatial positive electrode in at least one of the vacuum container 1 or outside the vacuum container. By the above means, it is possible to irradiate light onto the surface of the photoreceptor during the synthesis of a diamond-like thin film, thereby imparting conductivity to the Ji photoreceptor. As a result, no charge-up occurs on the photoreceptor due to ionized particles. Therefore, the hydrocarbon gas plasma continues stably, and the ionized particles are accelerated toward the negative electrode and irradiated onto the photoreceptor, causing diamond formation. This makes it possible to synthesize thin films with similar shapes.
また請求項(2)記載の発明(友 光が透過可能な正電
極を介して、感光体が光導電性を示す光源を前記真空容
器へ もしくは真空容器外の少なくともいずれか一方の
空間に設置した装置構成であム このたぬ 従来の直流
プラズマCVD法の特徴を損なうことなく、かつ大面積
の感光体に対しても均一な光照射が可能となり、ダイヤ
モンド状薄膜の大面積均一合成が可能であ一
実施例
以下に第1図を用いて本発明の一実施例を示す。In addition, the invention according to claim (2) (a light source in which a photoreceptor exhibits photoconductivity is installed in at least one of the vacuum container or a space outside the vacuum container through a positive electrode through which light can pass). The equipment configuration makes it possible to uniformly irradiate light onto a large area photoreceptor without impairing the features of the conventional DC plasma CVD method, making it possible to uniformly synthesize a diamond-like thin film over a large area. Another Embodiment An embodiment of the present invention will be described below with reference to FIG.
第1図において、 4は光源であり、複写機に使用され
る感光体露光用のものを用い九 光が透過可能な正電極
としてはステンレスのメツシュ状正電極3を使用しμ
イオン化粒子発生手段はメツシュ状正電極3と負電極8
と直流電源IOであム感光体7は負電極s上に設置され
真空容器2にメタンガスをガス供給源lから0.2T
orrの圧力となるように供給すa しかる後に光源4
を点灯し感光体7での光量を71ux−secとした
そして負電極8と正電極3 a、 およびメツシュ状
正電極3との間に直流電源10の調整で0゜7kVの電
圧を印加すると、メタンガスのプラズマ5が発生し ダ
イヤモンド状薄膜6が感光体7の表面に合成されも
光源4の光量は上記実施例でt友 感光体7の表面にお
いて71uX−3ecとなるように調整した力(感光体
7の光感度詩法 ダイヤモンド状薄膜の合成条へ 薄膜
の種類 薄膜合成装置の寸法形状等々によって適宜調整
されも
また 光が透過可能な正電極に沫 例えばITOなどの
透明導電性薄膜をガラス表面に合成したものも使用でき
も
更へ 上記実施例でζよ 光源は真空容器2内に設置し
た力丈 真空容器2に透明窓を設けるとともく 大気中
に設けた光源からの光を透明窓を介して感光体上に照射
するようになしてもよい。In Fig. 1, reference numeral 4 denotes a light source, which is used for exposing a photoreceptor used in a copying machine.As a positive electrode through which light can pass, a mesh-like positive electrode 3 made of stainless steel is used.
The ionized particle generating means includes a mesh-like positive electrode 3 and a negative electrode 8.
The photoreceptor 7 is installed on the negative electrode s with a DC power supply IO, and methane gas is supplied to the vacuum container 2 from the gas supply source 1 at 0.2T.
Supply the light source 4 so that the pressure is orr.
was turned on and the amount of light on the photoreceptor 7 was set to 71ux-sec.
Then, when a voltage of 0.7 kV is applied between the negative electrode 8, the positive electrode 3a, and the mesh-like positive electrode 3 by adjusting the DC power supply 10, a methane gas plasma 5 is generated, and a diamond-shaped thin film 6 is transferred to the photoreceptor 7. The amount of light from the light source 4 was adjusted to 71uX-3ec on the surface of the photoconductor 7 in the above example. The type of ζ may be adjusted as appropriate depending on the size and shape of the thin film synthesis apparatus, etc. In addition, it is also possible to use a transparent conductive thin film such as ITO on the glass surface. The light source is a power source installed inside the vacuum container 2.Although a transparent window is provided in the vacuum container 2, light from a light source provided in the atmosphere may be irradiated onto the photoreceptor through the transparent window. .
発明の効果
以上記したように本発明によれば、光導電性基体上にも
ダイヤモンド状薄膜等の高品質な各種薄膜が合成可能と
なり工業的効果が大きい。Effects of the Invention As described above, according to the present invention, various high-quality thin films such as a diamond-like thin film can be synthesized even on a photoconductive substrate, which has great industrial effects.
特に感光体へのダイヤモンド状薄膜の合成が可能となっ
たことは、感光体の耐久寿命を飛躍的に向上して電子写
真機器の発展に寄与すること極めて大きく、産業上の効
果が顕著である。In particular, the ability to synthesize diamond-like thin films on photoreceptors has greatly improved the durability of photoreceptors and contributed to the development of electrophotographic equipment, which has a significant industrial effect. .
第1図は本発明の一実施例を示す薄膜合成装置の概略図
、第2図は従来例の薄膜合成装置の概略図である。
1・・・ガス供給源、2・・・真空容器、3・・・メツ
シュ状正電、4・・・光源、5・・・プラズマ、6・・
・ダイヤモンド状薄膜、7・拳・感光体、8・・・負電
極、9・・・真空ポンプ、10・・・直流電源。
代理人の氏名 弁理士 粟野重孝 はか18第
図FIG. 1 is a schematic diagram of a thin film synthesis apparatus showing an embodiment of the present invention, and FIG. 2 is a schematic diagram of a conventional thin film synthesis apparatus. DESCRIPTION OF SYMBOLS 1... Gas supply source, 2... Vacuum container, 3... Mesh-like positive electrode, 4... Light source, 5... Plasma, 6...
・Diamond-like thin film, 7. Fist/photoreceptor, 8. Negative electrode, 9. Vacuum pump, 10. DC power supply. Name of agent: Patent attorney Shigetaka Awano Figure 18
Claims (2)
子を照射して行なう薄膜合成方法であって、前記イオン
化粒子の照射時に、前記基体が光導電性を示す光を前記
基体表面に照射するようになした薄膜合成方法。(1) A method for synthesizing a thin film by irradiating a photoconductive substrate with ionized particles containing constituent elements of the thin film, the surface of the substrate being irradiated with light that causes the substrate to exhibit photoconductivity during irradiation with the ionized particles. A method for synthesizing thin films.
ン化粒子発生手段とからなる薄膜合成装置であって、前
記真空容器内に光導電性基体を設置する負電極と、光が
透過可能な正電極を前記基体に対向して設置するととも
に、前記基体が光導電性を示す光を発生する光源を前記
真空容器内、もしくは真空容器外の少なくともいずれか
一方の空間に、前記正電極を介して設置した薄膜合成装
置。(2) A thin film synthesis apparatus comprising a gas supply source, a vacuum container, a vacuum pump, and an ionized particle generating means, the negative electrode having a photoconductive substrate placed in the vacuum container, through which light can pass. A positive electrode is installed facing the substrate, and a light source that generates light that shows photoconductivity is placed in at least one of the spaces inside the vacuum container or outside the vacuum container, and the positive electrode is placed in a space outside the vacuum container. Thin film synthesis equipment installed through the
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15478690A JP2811920B2 (en) | 1990-06-13 | 1990-06-13 | Thin film synthesis method and thin film synthesis apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15478690A JP2811920B2 (en) | 1990-06-13 | 1990-06-13 | Thin film synthesis method and thin film synthesis apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0445278A true JPH0445278A (en) | 1992-02-14 |
JP2811920B2 JP2811920B2 (en) | 1998-10-15 |
Family
ID=15591870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15478690A Expired - Fee Related JP2811920B2 (en) | 1990-06-13 | 1990-06-13 | Thin film synthesis method and thin film synthesis apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2811920B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012209650A1 (en) * | 2012-06-08 | 2013-12-12 | Hoffmann & Co. Elektrokohle Ag | Plasma enhanced chemical vapor deposition enhanced plasma density method and apparatus for implementing the method |
-
1990
- 1990-06-13 JP JP15478690A patent/JP2811920B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012209650A1 (en) * | 2012-06-08 | 2013-12-12 | Hoffmann & Co. Elektrokohle Ag | Plasma enhanced chemical vapor deposition enhanced plasma density method and apparatus for implementing the method |
DE102012209650B4 (en) * | 2012-06-08 | 2014-10-23 | Schunk Kohlenstofftechnik Gmbh | Plasma assisted chemical vapor deposition process with increased plasma density |
US9490121B2 (en) | 2012-06-08 | 2016-11-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Plasma-assisted chemical gas separation method having increased plasma density and device for implementing the method |
Also Published As
Publication number | Publication date |
---|---|
JP2811920B2 (en) | 1998-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4634648A (en) | Electrophotographic imaging members with amorphous carbon | |
US2914221A (en) | Aerosol bomb development | |
AU1430683A (en) | Photochemical vapour deposition method and apparatus | |
JP3530667B2 (en) | Electrophotographic photoreceptor and method of manufacturing the same | |
JPH0445278A (en) | Method and device for synthesizing thin film | |
US4698288A (en) | Electrophotographic imaging members having a ground plane of hydrogenated amorphous silicon | |
JPH0353259A (en) | Electrophotographic recording material and manufacturing method of the same | |
JPS57114167A (en) | Method of transcribing pigment image | |
JPS6227748A (en) | Printing drum for electrophotography | |
JPS6381361A (en) | Manufacture of electrophotographic sensitive body | |
JP2929862B2 (en) | Electrophotographic photoreceptor and electrophotographic method | |
US7295797B2 (en) | Charge generating device and method thereof for reducing development of nitrogen oxide species formation | |
JPH0731407B2 (en) | Image forming member for electrostatic photography using amorphous boron | |
JPS58107546A (en) | Manufacture of electrophotographic receptor | |
JP2887828B2 (en) | Electrophotographic photoreceptor and electrophotography | |
JPH0364467A (en) | Method and device for synthesizing carbon film | |
JPH0285368A (en) | Formation of amorphous silicon film | |
JPS6325662A (en) | Electrophotographic sensitive body | |
JP3589545B2 (en) | Corona charging device and image forming device | |
JPS59143166A (en) | Copying method | |
JPH0614221B2 (en) | Development device | |
JP4890897B2 (en) | Image forming apparatus | |
KR960029925A (en) | Electronic copier | |
JPS61288077A (en) | Thin film forming device | |
JPS63288992A (en) | Method for synthesizing diamond in gaseous phase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070807 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080807 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |