JPH0364467A - Method and device for synthesizing carbon film - Google Patents

Method and device for synthesizing carbon film

Info

Publication number
JPH0364467A
JPH0364467A JP1198986A JP19898689A JPH0364467A JP H0364467 A JPH0364467 A JP H0364467A JP 1198986 A JP1198986 A JP 1198986A JP 19898689 A JP19898689 A JP 19898689A JP H0364467 A JPH0364467 A JP H0364467A
Authority
JP
Japan
Prior art keywords
plasma
substrate
mesh
shaped electrode
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1198986A
Other languages
Japanese (ja)
Inventor
Hideo Kurokawa
英雄 黒川
Tsutomu Mitani
力 三谷
Yuichi Nakagami
裕一 中上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1198986A priority Critical patent/JPH0364467A/en
Priority to EP90114140A priority patent/EP0411435B1/en
Priority to DE69005938T priority patent/DE69005938T2/en
Priority to US07/558,241 priority patent/US5203924A/en
Publication of JPH0364467A publication Critical patent/JPH0364467A/en
Priority to US08/174,169 priority patent/US5674573A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a carbon film on the surface of an org. photosensitive body layer by trapping the ions in plasma by a meshed electrode and irradiating a substrate with a gas contg. active species at the time of irradiating the substrate with the gaseous hydrocarbon converted to plasma. CONSTITUTION:The gaseous hydrocarbon flowing from a gas inlet 4a into a vacuum vessel 1 is converted to the plasma by using a plasma generating means 12. The meshed electrode 8 and the substrate 7 on the downstream side thereof are disposed in the flow route of this plasma and the circumference of the substrate 7 is coated with the electrode 8. The pressure on the upstream side of the above-mentioned substrate 7 is set higher by >=11 digit than the pressure on the downstream side. Potential is impressed to the electrode 8 by a voltage impressing means 6 simultaneously therewith and the ions in the plasma are removed. The substrate 7 is irradiated with the gas contg. the active species obtd. as a result thereof, by which the carbon film is obtd. thereon.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は 一部ダイヤモンド結合を含みダイヤモンドに
近い特性を示す硬質炭素膜(ダイヤモンド状薄庶1−C
arboa  とも称される)の合成方法及び合成装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a hard carbon film (diamond-like thin layer 1-C) containing some diamond bonds and exhibiting properties similar to those of diamond.
arboa) and a synthesis apparatus.

従来の技術 最近では各種気相合成法で比較的低温低圧の条件でもダ
イヤモンドが合成されるようになり、その機械直 光学
白41  電気は 熱的特性を利用した応用展開が期待
されている。
Conventional Technology Recently, diamond has been synthesized using various gas phase synthesis methods even under relatively low temperature and low pressure conditions, and its mechanical direct thermal properties are expected to be used to develop applications.

現在合成されている膜に(よ 通常、ダイヤモンド薄膜
と称される多結晶質の薄膜と、ダイヤモンド状薄膜と称
される非晶質の硬質炭素膜とがある。
Films currently synthesized include polycrystalline thin films, which are usually called diamond thin films, and amorphous hard carbon films, which are called diamond-like thin films.

ダイヤモンド薄膜は1−20μmのダイヤモンド粒が集
積されたものであり、緒特性はダイヤモンドとほぼ同じ
値を示す力交 合成時の基体温度か高い(600℃以上
)、大面積高速合成が困繁(基体との付着性が悪(\ 
等の理由から現状では工業的に利用されることは少な賎 一方硬質炭素膜は、非晶質ではあるものの硬度、比抵抗
等の特性がダイヤモンドに近い値を示す。
A diamond thin film is an accumulation of diamond grains of 1-20 μm in diameter, and its properties are almost the same as those of diamond. Poor adhesion to the substrate (\
For these reasons, it is rarely used industrially at present.Although hard carbon films are amorphous, they exhibit properties such as hardness and resistivity that are close to those of diamond.

これは原子の結合に規則性はないが微視的にはダイヤモ
ンド結合(SF3)を含んでいるためと考えられている
。また基体温度や合成速度等のプロセス面での制約も比
較的少なく、実用性の高い膜と期待されている。硬質炭
素膜の合成方法については、炭素や炭化水素のイオンを
基体に衝突させる方法が報告されている(例えば時開N
o[1O−2993fi号)。
This is thought to be due to the fact that although there is no regularity in the atomic bonds, microscopically they include diamond bonds (SF3). Furthermore, there are relatively few restrictions on process aspects such as substrate temperature and synthesis speed, and it is expected to be a highly practical film. Regarding the synthesis method of hard carbon membranes, a method in which carbon or hydrocarbon ions are bombarded with a substrate has been reported (for example, a method using time-opening N
o [No. 1O-2993fi).

図4に従来の硬質炭素膜の合成装置の代表例を示す。1
O−6Torr以上に真空引きした真空容器lに炭化水
素ガスを導入し、IO”Torrの減圧で誘発する高周
波プラズマ空間で炭化水素イオンを生成させ、これを平
行平板の電極2間に加えた直流電界で加速して基体3に
衝突させることで硬質炭素膜が合成される。
FIG. 4 shows a typical example of a conventional hard carbon film synthesis apparatus. 1
Hydrocarbon gas is introduced into a vacuum chamber l evacuated to O-6 Torr or more, hydrocarbon ions are generated in a high-frequency plasma space induced by a reduced pressure of IO'' Torr, and then a DC current is applied between two parallel plate electrodes. A hard carbon film is synthesized by accelerating in the field and colliding with the base 3.

発明が解決しようとする課題 しかしながらイオンを加速して基体に衝突させる従来の
方法では、イオンの衝突により基体が損傷するという課
題があった。特に有機薄膜等の軟質な基体やスパッタさ
れやすい基体の場合、この損傷は非常に大きな問題とな
る。
Problems to be Solved by the Invention However, in the conventional method of accelerating ions to collide with a substrate, there was a problem that the substrate was damaged by the ion collision. Particularly in the case of soft substrates such as organic thin films or substrates that are easily sputtered, this damage becomes a very serious problem.

具体例として、複写機などに使用される感光体ドラムの
表面に硬質炭素膜を合成する場合を例に説明する。
As a specific example, a case will be described in which a hard carbon film is synthesized on the surface of a photoreceptor drum used in a copying machine or the like.

感光体ドラムに使用される感光体材料の主流(よコスト
、安全性等の観点から、従来のSe等の無機材料から有
機感光材料へと変わりつつある。
The mainstream of photosensitive materials used in photosensitive drums is changing from conventional inorganic materials such as Se to organic photosensitive materials from the viewpoints of cost, safety, etc.

しかし有機感光体材料は摩耗し易いために頻繁に感光体
ドラムを交換しなければなら′?l”、  耐摩耗性の
向上が課題であった そこで有機感光体の保護膜に硬質炭素膜を応用してこの
課題を解決しようとする取り組みが行われている(時開
N○60−107327号)。しかしながら有機感光体
材料は軟質であるたム イオンを加速して衝突させる従
来の方法で硬質炭素膜を合成すると材質が変化して感光
体としての特性が劣化したり、衝突の条件によっては有
機感光体層が破壊してしまうという課題があった 本発明は これら課題を解決して、絶縁性の基体や有機
感光体のような損傷を受けやずいu $1の上にもその
特性を劣化させることなく硬質炭素膜を合成することが
できる合成方法及び合成装置を提供するものである。
However, organic photoreceptor materials are susceptible to wear, requiring frequent replacement of the photoreceptor drum. Therefore, efforts are being made to solve this problem by applying a hard carbon film to the protective film of the organic photoreceptor (Jkai No. 60-107327). ).However, since organic photoreceptor materials are soft, if a hard carbon film is synthesized using the conventional method of accelerating and colliding ions, the material may change and the properties as a photoreceptor may deteriorate, or depending on the conditions of collision, The present invention, which had the problem of the organic photoreceptor layer being destroyed, solves these problems and provides its properties even on materials that are easily damaged, such as insulating substrates and organic photoreceptors. An object of the present invention is to provide a synthesis method and a synthesis apparatus that can synthesize a hard carbon film without deteriorating it.

課題を解決するための手段 本発明(よ 炭化水素等の炭素原アイ:含むガスをプラ
ズマ化し プラズマより低い111位のメ・・・シュ形
状電極を介して基体にこれを照14シて炭素+IQを合
成する方法である。
Means for Solving the Problems The present invention is based on carbon sources such as hydrocarbons, etc., by converting the gas containing gas into plasma and shining it onto the substrate through a mesh-shaped electrode at position 111, which is lower than the plasma, to generate carbon + IQ. This is a method of synthesizing.

ま瓢 本発明は 真空容器内と、その容器内で原料ガス
をプラズマ化するプラズマ発生手段と、プラズマ雰囲気
中に基体を保持する基体の保持部材と、前記保持部材に
保持される基体の周囲を覆うメツシュ形状電極を備えた
炭素膜の合成装置である。
The present invention includes a vacuum container, a plasma generating means for converting raw material gas into plasma in the container, a substrate holding member for holding the substrate in a plasma atmosphere, and a surrounding area of the substrate held by the holding member. This is a carbon membrane synthesis device equipped with a covering mesh-shaped electrode.

また 本発明(よ 特にガスの流入口を備えた第1の空
間部とガスの流出口を備えた第2の空間部を有し かつ
第1、第2の空間部は連通部によって連通した構造の真
空容器を有し 前記第1の空間でガスをプラズマ化し 
プラズマの流動経路である前記連通部近傍に基体を保持
する保持部刊を備えた炭素膜の合成装置である。
In addition, the present invention (particularly the present invention) has a structure including a first space having a gas inlet and a second space having a gas outlet, and the first and second spaces communicate with each other through a communication part. has a vacuum container, and converts the gas into plasma in the first space.
This is a carbon film synthesis apparatus equipped with a holding section that holds a substrate near the communication section that is a plasma flow path.

作用 プラズマ化した炭化水素ガスが基体に照射される時、プ
ラズマ中のイオンはプラズマより低電位のメツシュ形状
電極にトラップされ ラジカル等の活性種を含んだ中性
粒子のみか基体に到達する。
When a substrate is irradiated with a hydrocarbon gas that has been turned into a plasma, the ions in the plasma are trapped by a mesh-shaped electrode that has a lower potential than the plasma, and only neutral particles containing active species such as radicals reach the substrate.

このためイオンの衝突無しに膜が合成され 有機感光体
材料等の損傷し易い基体にも炭素膜を合成することがで
きる。
Therefore, a film can be synthesized without ion collision, and a carbon film can be synthesized even on easily damaged substrates such as organic photoreceptor materials.

また上記のような装置構成により、基体は第1の空間部
と第2の空間部の連通部近傍に保持されるので、その結
果ガスが流入する第1の空間とガスが流出する第2の空
間で(よ 第1の空間内部の圧力の方が第2の空間部の
圧力よりも高くなる。
Furthermore, with the above device configuration, the base body is held near the communication portion between the first space and the second space, so that the first space into which gas flows and the second space into which gas flows out are separated. The pressure inside the first space is higher than the pressure inside the second space.

この圧力差により活性種を効率よく基体に照射すること
が可能となるのである。
This pressure difference makes it possible to efficiently irradiate the active species onto the substrate.

実施例 第1図に本発明の第一の実施例を示す。以下、第1図の
構成をその動作と共に説明する。
Embodiment FIG. 1 shows a first embodiment of the present invention. The configuration of FIG. 1 will be explained below along with its operation.

真空容器Iの第1の空間部4に設けられた流入口4aか
ら流入したガスは、コイル9、整合器10.  高周波
電源11から構成されるプラズマ発生手段12によって
、第1の空間4内でプラズマ化され、第1の空間部4と
第2の空間部5との連通部■3を経て、第2の空間部5
に設けられたガス流出口5aから、真空容器1外へ流出
する。このプラズマの流動経路中に、メツシュ形状電極
8と、それより下流側に基体7が配設されている。基体
7は、その端部において、保持部材7aの保持用凹部に
挿入して保持される。保持部材7aは長穴7bにより、
連通部13との距離が調整可能である。7Cは、保持部
材7aを固定するボルトである。
The gas flowing from the inlet 4a provided in the first space 4 of the vacuum container I flows through the coil 9, the matching device 10. The plasma is turned into plasma in the first space 4 by the plasma generating means 12 constituted by a high frequency power source 11, and is then transferred to the second space through the communication section (3) between the first space 4 and the second space 5. Part 5
The gas flows out of the vacuum container 1 from the gas outlet 5a provided in the. In the flow path of this plasma, a mesh-shaped electrode 8 and a base 7 are arranged on the downstream side thereof. The base body 7 is held at its end by being inserted into the holding recess of the holding member 7a. The holding member 7a has an elongated hole 7b.
The distance to the communication portion 13 can be adjusted. 7C is a bolt that fixes the holding member 7a.

メツシュ形状電極8には、電圧印加手段である直流電源
6により負電位が印加される。第1の空間部4の外周に
巻回されたコイル9には、整合器10を介して高周波電
源11から高周波電力が印加される。
A negative potential is applied to the mesh-shaped electrode 8 by a DC power supply 6 which is a voltage application means. High frequency power is applied to the coil 9 wound around the outer periphery of the first space 4 from a high frequency power source 11 via a matching box 10 .

真空容器1を10−’Torr以上に真空引きした後、
第1の空間部4にCHaガスを導入する。
After evacuating the vacuum container 1 to 10-'Torr or more,
CHa gas is introduced into the first space 4.

空間部4と5の圧力については、基体7と連通部13と
の距離を調整してガスの流動抵抗を高めることにより空
間部4の圧力を空間部5の圧力よりも高く設定すること
が容易に行える。第1の空間部4の圧力(よ 第2の空
間部5の圧力より高い1O−3Torr台に保持する。
Regarding the pressure in the spaces 4 and 5, it is easy to set the pressure in the space 4 higher than the pressure in the space 5 by adjusting the distance between the base 7 and the communication part 13 to increase the gas flow resistance. can be done. The pressure in the first space 4 is maintained at 10-3 Torr, which is higher than the pressure in the second space 5.

その後コイル9に高周波電力を印加してプラズマを発生
させる。プラズマ(よ 2つの空間部の圧力差によって
生じる流れにより、メツシュ形状電極8を介して基体7
に照射される力丈 プラズマ中のイオンは負電位が印加
されたメツシュ形状電極8で除去された状態で、基体7
に照射される。
Thereafter, high frequency power is applied to the coil 9 to generate plasma. Due to the flow caused by the pressure difference between the two spaces, the plasma flows through the mesh-shaped electrode 8 to the substrate 7.
The ions in the plasma are removed by the mesh-shaped electrode 8 to which a negative potential is applied.
is irradiated.

表1の条件でガラス基体上に合成した膜の硬度、膜質を
評価すると、硬度はビッカース硬さ2500kg/mm
2と硬く、またラマン分光分析の結果 従来から報告さ
れている良質の硬質炭素膜と同じラマンスペクトルが確
認された さらに有機感光体層を備えたアルミニューム
基体表面への合成を試みたとこム 膜厚が3μmまでは
付着性良く膜が合成され剥離やクラックは認められなか
った また第■の空間部4と第2の空間部5との間の圧力差が
2桁以上になるように基体を設置した場合、均一な膜(
膜厚ムラ上5%、硬度ムラ上10%)が合成された。圧
力差が大きくなるにつれて均一性、特に膜厚の均一性が
向上する。圧力差がほとんどない状態では膜厚ムラは±
30%程度である。
When evaluating the hardness and film quality of the film synthesized on the glass substrate under the conditions shown in Table 1, the hardness was 2500 kg/mm in Vickers hardness.
2, and the results of Raman spectroscopy confirmed that it had the same Raman spectrum as the high-quality hard carbon film that has been previously reported.Furthermore, we attempted to synthesize the film onto the surface of an aluminum substrate with an organic photoreceptor layer. The film was synthesized with good adhesion up to a thickness of 3 μm, and no peeling or cracking was observed.The substrate was also adjusted so that the pressure difference between the space 4 and the second space 5 was two orders of magnitude or more. When installed, a uniform film (
5% of film thickness unevenness and 10% of hardness unevenness) were synthesized. As the pressure difference increases, the uniformity, especially the uniformity of the film thickness, improves. When there is almost no pressure difference, the film thickness unevenness is ±
It is about 30%.

従って、膜厚の均一性が殆ど要求されない場合には、上
記圧力差は必要ではない。その場合においても、炭素膜
の付着性、クラックや剥離等の欠陥は生じない。
Therefore, if little uniformity of film thickness is required, the above pressure difference is not necessary. Even in this case, defects such as adhesion, cracking, and peeling of the carbon film do not occur.

表1 合成条件 また、ある程度の膜厚の均一性が要求される場合は、2
つの空間部には少なくとも1桁以上の圧0 力差が生じるよう流動抵抗を設定することが望ましく、
この圧力差はできるだけ大きい方が望まし1、% 第2図に本発明の第二の実施例を示づ; 第一の実施例
と同じように 真空容器は 2つの空間部4.5を有す
る。第1の空間部内には相対する一組のメツシュ形状電
極17a、 17bが設置され 直流電源16により、
図示の極性で直流電界が印加される。
Table 1 Synthesis conditions In addition, if a certain degree of film thickness uniformity is required, 2
It is desirable to set the flow resistance so that there is a pressure difference of at least one order of magnitude between the two spaces.
It is desirable that this pressure difference be as large as possible, and 1.% Figure 2 shows a second embodiment of the present invention; as in the first embodiment, the vacuum vessel has two spaces 4.5. . A pair of opposing mesh-shaped electrodes 17a and 17b are installed in the first space, and are powered by a DC power source 16.
A DC electric field is applied with the polarity shown.

第二の空間部5に(よ 基体として、アルミニューム粗
管の表面に有機感光体層を備えた感光体ドラム14が設
置され 回転駆動機構(図示せず)により、そのドラム
中心軸まわりに必要に応じて回転できる構成となってい
る。
A photoreceptor drum 14 having an organic photoreceptor layer on the surface of an aluminum rough tube is installed as a base in the second space 5, and is rotated around the central axis of the drum by a rotational drive mechanism (not shown). It has a structure that can be rotated according to the

メツシュ形状電極17ai1  連通部13の領域で感
光体ドラム14よりも若干大きな半径の円弧状に設定さ
し感光体ドラム14と連通口13との間の距離を調整す
ることでガスの流動抵抗を調整することで、第1図の場
合と同様に 空間部4の圧力を空間部5の圧力よりも高
くすることが容易に行える。
Mesh-shaped electrode 17ai1 is set in an arc shape with a radius slightly larger than that of the photoreceptor drum 14 in the area of the communication portion 13, and gas flow resistance is adjusted by adjusting the distance between the photoreceptor drum 14 and the communication port 13. By doing so, the pressure in the space 4 can be easily made higher than the pressure in the space 5, as in the case of FIG.

2つの空間部を10−’Torr以」二に真空引きした
後、第一の空間部12にCeHeガスを導入して圧力を
1O−3Torr台に保持する。その後直流電源16に
よりメツシュ形状電極17a、 17bの間に直流電界
を印加して、Ce Hsガスをプラズマ化し 膜の合成
を開始する。
After the two spaces are evacuated to 10-' Torr or more, CeHe gas is introduced into the first space 12 to maintain the pressure at 10-3 Torr. Thereafter, a DC electric field is applied between the mesh-shaped electrodes 17a and 17b by the DC power supply 16 to turn the Ce Hs gas into plasma and start film synthesis.

この時、プラズマ中のイオンはメツシュ形状電極17a
により除去される。その結果、メツシュ形状電極17a
よりも下流側にある感光ドラム14に(上 このメツシ
ュ形状電極17aを通過して、活性種を含んだ中性のガ
スが照射され 感光層表面上に炭素膜を形成する。
At this time, ions in the plasma are transferred to the mesh-shaped electrode 17a.
removed by As a result, the mesh-shaped electrode 17a
A neutral gas containing active species is irradiated onto the photosensitive drum 14 on the downstream side (upper side) through the mesh-shaped electrode 17a to form a carbon film on the surface of the photosensitive layer.

有機感光体層を備えた感光体ドラムの表面に表2に示し
た条件で合成したとこ& 有機感光体層に損傷や特性の
劣化を生じることなくビッカース硬さ2300kg/m
m2の硬質炭素膜を合成することができた 2つの真空容器間に(よ 第一の実施例の場合と同じく
膜の均一化を図る上で少なくとも1桁以上の圧力差が生
じるようガスの流動抵抗を設定することが望ましい。
When synthesized under the conditions shown in Table 2 on the surface of a photoreceptor drum equipped with an organic photoreceptor layer, it achieved a Vickers hardness of 2300 kg/m without causing damage or deterioration of properties to the organic photoreceptor layer.
Between the two vacuum vessels in which the hard carbon film of m2 was synthesized (as in the case of the first example), gas flow was carried out to create a pressure difference of at least one order of magnitude in order to make the film uniform. It is desirable to set a resistance.

1 2− 表2 合成条件 本実施例により、膜厚が0.5μmの硬質炭素膜を表面
に合成した感光体ドラムについて寿命試験を行ったとこ
水 硬質炭素膜を備えていない感光体ドラムに比べて1
0倍以上の寿命を確認できた 有機感光体の保護膜とし
て硬質炭素膜を使用する場合、その膜厚は0.02−2
μmさらにはO,Oll p mが望ましい。これは膜
厚が0.02μm以下になると保護効果が弱まり、また
2μm以上になると硬質炭素膜の光の吸収によって有機
感光体層に照射される光量が低下するためである。
1 2- Table 2 Synthesis Conditions According to this example, a life test was conducted on a photoreceptor drum whose surface was synthesized with a hard carbon film with a film thickness of 0.5 μm. te1
When using a hard carbon film as a protective film for an organic photoreceptor, the film thickness is 0.02-2.
μm, more preferably O, Oll p m. This is because when the film thickness is less than 0.02 μm, the protective effect is weakened, and when it is more than 2 μm, the amount of light irradiated to the organic photoreceptor layer is reduced due to absorption of light by the hard carbon film.

な抵 本実施例(上盛光体層は有機感光体層に限るもの
ではなく、Cd、 Hg、 Sb、 Si、 Bi、 
Ti、 Se、等の無機感光体層にも適応できることは
勿論である。まf−感光体は ドラム状のものであった
力交 ベルト状のものであっても構わなし1 更に 第
2図で(よ プラズマ発生手段として(よ 相対向する
メツシュ電極間の放電を用いた力支 勿施 第1図の発
生手段であってもよい 第3図に本発明の第三の実施例について示す。
In this example, the upper photoreceptor layer is not limited to an organic photoreceptor layer, and may include Cd, Hg, Sb, Si, Bi,
Of course, it can also be applied to inorganic photoreceptor layers such as Ti, Se, etc. The photoreceptor was drum-shaped, but it could also be belt-shaped.1 In addition, as shown in Figure 2, a discharge between opposing mesh electrodes was used as a means of plasma generation. A third embodiment of the present invention is shown in FIG. 3, which may be the generating means shown in FIG. 1.

基本的な構成は従来例と同じで、真空容器18の中に一
組の平行平板電極22.23が配設され これに高周波
電源21により高周波電力が印加される。同時に直流電
源20により両電極間には直流電界が印加される。電極
23(ヨ  基体24の保持部材も兼ねており、基体2
4が設置される電極23の周囲に(よ 電極23と同電
位のメツシュ形状電極19が設置される。
The basic configuration is the same as the conventional example, with a pair of parallel plate electrodes 22 and 23 arranged in the vacuum vessel 18, to which high frequency power is applied by the high frequency power source 21. At the same time, a DC electric field is applied between the two electrodes by the DC power supply 20. The electrode 23 (Y) also serves as a holding member for the base 24, and
A mesh-shaped electrode 19 having the same potential as the electrode 23 is installed around the electrode 23 where the electrode 4 is installed.

真空容器18内let、  CH4ガスを導入して1O
−3Torr台に圧力を保持した後、電極22.23に
印加した高周波電力によりこれをプラズマ化する。プラ
ズマ中の3− 4 イオンは電極22と電極23との間の電位差で基体24
方向に加速される力\ 基体24に到達するまでにメツ
シュ形状電極19て除去される。このため基体24には
活性種を含む中性のガスのみが照射される。
Let CH4 gas be introduced into the vacuum container 18 to 1O
After maintaining the pressure at -3 Torr level, this is turned into plasma by high frequency power applied to the electrodes 22 and 23. The 3-4 ions in the plasma move to the substrate 24 due to the potential difference between the electrodes 22 and 23.
The force accelerated in the direction \ is removed by the mesh-shaped electrode 19 before reaching the base 24. Therefore, the substrate 24 is irradiated only with neutral gas containing active species.

真空容器中の圧カニ  3x 10−”Torr、高周
波電力=50W、直流電界・ 500v、の条件で膜を
合皮したとこ水 ガラスやポリエチレンプラスデックフ
ィルム等の絶縁基体上にもビッカース硬さ2000kg
/mm2以上の硬質炭素膜を合成することができtも 
 また有機感光体層を備えたAI根板上の合皮にも成功
しほぼ同じ硬さの膜を有機感光体の特性を劣化させるこ
となしに台底することができ九 ここに示した実施例では原料ガスとしてCH4及びCo
 Heを使用した八 本発明ではこれらに限るものでは
なくいずれの炭化水素ガスでもかまわない。
Pressure Crab in a Vacuum Container 3x 10-” Torr, High Frequency Power = 50W, DC Electric Field, 500V.
It is possible to synthesize hard carbon films with a diameter of /mm2 or more.
We have also succeeded in creating a synthetic skin on an AI base plate with an organic photoreceptor layer, and it is possible to use a film with almost the same hardness as the base without deteriorating the characteristics of the organic photoreceptor. In this case, CH4 and Co are used as raw material gases.
8. Using He The present invention is not limited to these gases, and any hydrocarbon gas may be used.

また炭化水素ガスとAr等の不活性ガスとの混合ガスで
もかまわなしも 本発明ではガスをプラズマ化する手段についても限定は
なく、実施例で示した高周波電力や直流電界をはじめと
してマイクロ波や熱電子などいずれの方法でもかまわな
し)。またプラズマの密度を高めるために磁場を併用し
てもかまわない。
In addition, a mixed gas of hydrocarbon gas and an inert gas such as Ar may be used. In the present invention, there is no limitation on the means for turning gas into plasma, and it is possible to use a microwave or (Any method such as thermionic is acceptable). Furthermore, a magnetic field may be used in combination to increase the density of the plasma.

な抵 メツシュ形状電極のメツシュ間隔について(よ 
それがプラズマ発生状態におけるデバイ長より大きいと
イオンの一部は電極にトラップされずにメツシュ間を通
過してしまうたム 特に軟質材料やスパッタされ易い材
料に炭素膜を形成する場合(よ メツシュ間隔はデバイ
長以下にすることが有効である。
Regarding the mesh spacing of mesh-shaped electrodes (more
If it is larger than the Debye length in the plasma generation state, some of the ions will pass between the meshes without being trapped by the electrodes. Especially when forming a carbon film on a soft material or a material that is easily sputtered (the mesh spacing is It is effective to make it less than the Debye length.

発明の効果 以上のように 本発明によれば絶縁性の基体や軟質でス
パッタされ易い基体上にもこれを損傷することなく硬質
炭素膜を合皮することかできるようになり、工業的な効
果は非常に大きい。
Effects of the Invention As described above, according to the present invention, it is possible to synthetically coat a hard carbon film on an insulating substrate or a soft substrate that is easily sputtered without damaging the substrate, resulting in industrial effects. is very large.

また 膜の合成速度を高めることができ、さらに合成域
の圧力が均一化され 膜限 膜質の均一化も図れる。
In addition, the rate of membrane synthesis can be increased, and the pressure in the synthesis zone can be made uniform, resulting in uniform membrane quality.

特に従来の方法では困難であった有機感光体層の表面に
硬質炭素膜を台底することができるようになったこと(
よ 有機感光体の寿命を飛躍的に改5− 6− 善して電子写真機器の発展に寄与すること極めて大きく
非常に有用なものである。
In particular, it has become possible to apply a hard carbon film to the surface of the organic photoreceptor layer, which was difficult with conventional methods (
It is extremely important to dramatically improve the lifespan of organic photoreceptors and contribute to the development of electrophotographic equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1は 第2@ 第3図(よ それぞれ 本発明の第一
、第二 第三の実施例の概略は 第4図は従来例の概略
図である。 1・・・・真空容滑 4・・・・第1の空間訊 5・・
・・第2の空1”!  6. 16・・・・電圧印加手
段、7.24・・・・基イ木7a・・・・保持部材、&
  17a、19・・・・メツシュ形状電極12・・・
・プラズマ発生手段、13・・・・連通敵14・・・・
感光体
The first is the second @ Figure 3 (respectively) The outline of the first, second and third embodiments of the present invention is as follows. Figure 4 is a schematic diagram of the conventional example. ...First Space Question 5...
...Second space 1"! 6. 16... Voltage application means, 7.24... Base tree 7a... Holding member, &
17a, 19...Mesh-shaped electrode 12...
・Plasma generation means, 13...Communication enemy 14...
photoreceptor

Claims (5)

【特許請求の範囲】[Claims] (1)少なくとも炭化水素ガスを含む原料ガスをプラズ
マ化し、プラズマ中のイオンの一部もしくは全てを除去
し基体上に膜を合成する炭素膜の合成方法。
(1) A method for synthesizing a carbon film, in which a raw material gas containing at least a hydrocarbon gas is turned into plasma, some or all of the ions in the plasma are removed, and a film is synthesized on a substrate.
(2)炭化水素ガスを含む原料ガスをプラズマ化するプ
ラズマ発生手段と、プラズマ雰囲気中に基体を保持する
基体の保持部材と、前記保持部材に基体が保持された状
態で、前記基体の周囲を覆うメッシュ形状電極と、前記
メッシュ形状電極への電圧印加手段を備えた炭素膜の合
成装置。
(2) a plasma generation means for turning raw material gas containing hydrocarbon gas into plasma; a base body holding member for holding the base body in a plasma atmosphere; A carbon film synthesis apparatus comprising a covering mesh-shaped electrode and means for applying a voltage to the mesh-shaped electrode.
(3)ガスの流入口を有した第1の空間部およびガスの
流出口を有し前記第1の空間と連通する第2の空間部を
有する真空容器と、前記第1の空間部において前記ガス
のプラズマを発生させるプラズマ発生手段と、前記真空
容器内においてプラズマの流動経路中に保持されるメッ
シュ形状電極前記プラズマ流動経路中で前記メッシュ形
状電極よりも下流側において基体を保持する基体の保持
部材とを有する炭素膜の合成装置。
(3) a vacuum container having a first space having a gas inlet and a second space having a gas outlet and communicating with the first space; a plasma generating means for generating gas plasma; and a mesh-shaped electrode held in a plasma flow path in the vacuum container; a substrate holding member that holds a substrate downstream of the mesh-shaped electrode in the plasma flow path; A carbon film synthesis device having a member.
(4)真空容器内のプラズマの流動経路中に、メッシュ
形状電極と、前記メッシュ形状電極の下流側に基体とを
配設し、前記基体を境として、それよりも上流側の真空
容器内の圧力は、下流側の真空容器内の圧力よりも1桁
以上高くすると共に、前記メッシュ形状電極に電位を印
加して前記プラズマ中のイオンの一部もしくは大部分を
前記メッシュ形状電極において除去し、その結果得られ
る、活性種を含むガスを基体に照射して、基体上に炭素
膜を合成する、炭素膜の合成方法。
(4) A mesh-shaped electrode and a base body are disposed on the downstream side of the mesh-shaped electrode in the flow path of plasma in the vacuum vessel, and a part of the vacuum vessel on the upstream side of the base body is disposed as a boundary. The pressure is set to be at least one order of magnitude higher than the pressure in the vacuum vessel on the downstream side, and a potential is applied to the mesh-shaped electrode to remove some or most of the ions in the plasma at the mesh-shaped electrode, A method for synthesizing a carbon film, in which a carbon film is synthesized on a substrate by irradiating the resulting gas containing active species onto the substrate.
(5)メッシュ形状電極のメッシュ間隔は、プラズマ発
生状態のデバイ長より短く、かつ基体は感光体である、
請求項(4)記載の炭素膜の合成装置。
(5) The mesh spacing of the mesh-shaped electrode is shorter than the Debye length in the plasma generation state, and the substrate is a photoreceptor;
The carbon film synthesis apparatus according to claim (4).
JP1198986A 1989-07-31 1989-07-31 Method and device for synthesizing carbon film Pending JPH0364467A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1198986A JPH0364467A (en) 1989-07-31 1989-07-31 Method and device for synthesizing carbon film
EP90114140A EP0411435B1 (en) 1989-07-31 1990-07-24 Apparatus for synthesizing diamondlike thin film
DE69005938T DE69005938T2 (en) 1989-07-31 1990-07-24 Device for producing a thin diamond-like carbon layer.
US07/558,241 US5203924A (en) 1989-07-31 1990-07-26 Method of and apparatus for synthesizing diamondlike thin film
US08/174,169 US5674573A (en) 1989-07-31 1993-12-29 Method of synthesizing diamond-like carbon thin films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1198986A JPH0364467A (en) 1989-07-31 1989-07-31 Method and device for synthesizing carbon film

Publications (1)

Publication Number Publication Date
JPH0364467A true JPH0364467A (en) 1991-03-19

Family

ID=16400212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1198986A Pending JPH0364467A (en) 1989-07-31 1989-07-31 Method and device for synthesizing carbon film

Country Status (1)

Country Link
JP (1) JPH0364467A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012972A (en) * 2000-02-17 2002-01-15 Applied Materials Inc Method for depositing amorphous carbon layer
JP2006265079A (en) * 2005-03-25 2006-10-05 Kyoto Institute Of Technology Apparatus for plasma enhanced chemical vapor deposition and method for manufacturing carbon nanotube
JP2009010263A (en) * 2007-06-29 2009-01-15 Eiko Engineering Co Ltd Substrate bonding device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012972A (en) * 2000-02-17 2002-01-15 Applied Materials Inc Method for depositing amorphous carbon layer
JP2006265079A (en) * 2005-03-25 2006-10-05 Kyoto Institute Of Technology Apparatus for plasma enhanced chemical vapor deposition and method for manufacturing carbon nanotube
JP2009010263A (en) * 2007-06-29 2009-01-15 Eiko Engineering Co Ltd Substrate bonding device

Similar Documents

Publication Publication Date Title
US5464667A (en) Jet plasma process and apparatus
JP3547402B2 (en) Plasma processing system and method
EP0502385B1 (en) Process for the double-sided coating of optical workpieces
JP2002541604A (en) Method and apparatus for depositing a diamond-like carbon coating from a Hall current ion source
JPS58221271A (en) Formation of film by ion plating method
JP2001514328A (en) Jet plasma deposition method and apparatus for coating and coating thereof
US20070114637A1 (en) Article with protective film
JP2001514328A5 (en)
JPH0364467A (en) Method and device for synthesizing carbon film
JPH101305A (en) Carbon film and production of carbon film
Maier-Komor et al. Improvement of the preparation procedure of carbon stripper foils from the laser plasma ablation-deposition process
JPS59136479A (en) Composite layer growing process
JPH04118884A (en) Solid discharge element
JP2772643B2 (en) Coating method
JPH0674505B2 (en) Carbon film forming method and apparatus
JP2002115061A (en) Method for manufacturing diamond-like carbon film
JPH02115379A (en) Device for forming thin film
RU2048600C1 (en) Carbon coating production method
JPS59205471A (en) Method for forming black film on surface of article to be treated
JPH10265955A (en) Formation of carbonaceous highly functional material thin film by electron beam-excited plasma cvd
JPH0773454A (en) Production of carbon protective film and plasma treating device
JPH0380191A (en) Method for synthesizing thin diamond film
JP2001059156A (en) Production of carbon nitride compound
JPS58162194A (en) Acoustic diaphragm and its production
JPH02137712A (en) Thin iron carbide film